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MIXED SPECTRAL TYPES FOR THE ONE-FREQUENCY

DISCRETE QUASI-PERIODIC SCHRÖDINGER OPERATOR
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(Communicated by Michael Hitrik)

Abstract. We consider a family of one-frequency discrete analytic quasi-
periodic Schrödinger operators. We show that this family provides an example
of coexistence of absolutely continuous and point spectrum for some param-
eters as well as coexistence of absolutely continuous and singular continuous
spectrum for some other parameters.

1. Introduction

In [Bjer], Bjerklöv considers the following discrete quasi-periodic Schrödinger
operator on l2(Z):

(1.1) (HK,θ,ωu)n = −un+1 − un−1 + V (θ + nω)un, n ∈ Z,

where

(1.2) V (θ) = exp
(
Kf(θ + ω)

)
+ exp

(
−Kf(θ)

)
,

θ, ω ∈ T
b, f : Tb → R is assumed to be a non-constant real-analytic function with

zero mean,
∫
Tb f(θ)dθ = 0 and K ∈ R is any constant. Consider the Lyapunov

exponent L(E) (see the next section). In this explicit example, Bjerklöv shows that
for large K we have a situation with mixed dynamics: zero Lyapunov exponent in
a region close to E = 0 and positive for larger E.

In this paper, we are going to show that for the one-frequency case, in Bjerklöv’s
example (1.1), mixed dynamics actually lead to mixed spectra: for some param-
eters (θ, ω), HK,θ,ω has mixed absolutely continuous and point spectrum, and for
some other (θ, ω), HK,θ,ω has mixed absolutely continuous and singular continuous
spectrum.

Without loss of generality, we assume that ‖f‖C1(T) = 1 and f has analytic
extension to the strip |Imz| < h, where h � K (e.g., f can be taken as any entire
function). It follows from [Bjer] that min{E ∈ σ(HK,θ,ω)} = 0 for any K, θ, ω.

And also it is not hard to show that max{E ∈ σ(HK,θ,ω)} � eK‖f‖∞ . For any

ε > 0 small (w.l.o.g. we assume 0 < ε < 1), denote Iε,K = [ε, 4eK‖f‖∞ ]. We
have Iε,K ∩ σ(HK,θ,ω) �= ∅. We say the frequency ω ∈ T satisfies the Diophantine
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Condition (denoted by ω ∈ DC(κ, τ )) if

‖ω · n‖ ≥ κ

|n|τ , ∀n ∈ Z\{0},

for some κ > 0, τ > 0. We say ω satisfies the Strong Diophantine Condition
(denoted by ω ∈ SDC(κ)) if

‖ω · n‖ ≥ κ

|n|(log(|n|+ 1))2
, ∀n ∈ Z\{0},

for some κ > 0. Denote DC =
⋃

κ DC(κ, τ ) for some fixed τ > 1 and SDC =⋃
κ SDC(κ). It is well known that DC ⊇ SDC and both of them have full Lebesgue

measure.1

The main results are as follows.

Theorem 1. Let V be given as in (1.2). Fix ω0 ∈ DC(κ, τ ). For any ε > 0, there
are K = K(ω0, ε, f) > 0, δ = δ(ω0, ε,K) > 0, and for any ω ∈ Bδ(ω0) := {ω ∈ T :
|ω − ω0| < δ}, there is 0 < ε0 = ε0(ω,K, h, ‖f‖h) < ε such that:

(a) For a.e. ω ∈ Bδ(ω0) and a.e. θ ∈ T, HK,θ,ω has pure point spectrum
in Iε,K with exponentially decaying eigenvectors and has purely absolutely
continuous spectrum in [0, ε0].

(b) For a.e. ω ∈ Bδ(ω0), there is a dense Gδ set of θ, such that HK,θ,ω has
purely singular continuous spectrum in Iε,K and has purely absolutely con-
tinuous spectrum in [0, ε0].

(c) For ω in a dense subset of Bδ(ω0) and for any θ, HK,θ,ω has purely singular
continuous spectrum in Iε,K and has purely absolutely continuous spectrum
in [0, ε0].

Previously, Bourgain [Bo] constructed a quasi-periodic operator with two fre-
quencies which has coexistence of absolutely continuous and point spectrum. While
mixed spectra are expected to occur for generic one-frequency operators, such ex-
amples for the discrete case have been considered difficult to construct explicitly.
Recently Bjerklöv and Krikorian [BK] announced an example of this nature. Avila
in Theorem 13 of [A3] showed that in the neighborhood of the critical almost Math-
ieu operator, there are operators with at least n alternances between the subcritical
and supercritical regimes for any n. Such operators are strong potential candidates
for coexistence of p.p./s.c. and a.c. spectrum (with, moreover, many alternances).
For the continuous model, Fedotov and Klopp [FK] showed coexistence of abso-
lutely continuous and singular spectrum for a family of quasi-periodic operators
and also gave a criterion for the existence of absolutely continuous and singular
spectrum in the semi-classical regime.

Here we give a short proof which shows that the operator (1.1) with potential
(1.2) has mixed spectral types. The mixed nature of the spectrum follows from
the coexistence of the positive Lyapunov exponent and the zero Lyapunov expo-
nent which was obtained in [Bjer] and a combination of several recent results on
localization, reducibility and continuity.

1Here ‖ · ‖ means the distance to the closest integer.
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2. Singular spectrum in the positive Lyapunov exponent region

Denote

A(θ, E) =

(
V (θ)− E −1

1 0

)
, θ ∈ T, An(θ, E) =

0∏
k=n−1

A(θ + kω,E), n > 0.

The Lyapunov exponent as usual (see [CFKS]) is defined by

L(E) = lim
n→∞

∫
T

1

n
log ‖ An(θ, E) ‖ dθ ≥ 0.

In the following, we would like to fix f and consider the Lyapunov exponent
L(E,ω,K) as the function of energy E, frequency ω, and parameter K. In [Bjer],
Bjerklöv proved that:

Theorem 2 ([Bjer]). Assume that V is as in (1.2), and that ω ∈ DC(κ, τ ). Then
for any ε > 0 there is a K0 = K0(ε, f, κ, τ ) > 0 and c = c(f) > 0 such that for all
K > K0, we have

L(E,ω,K) ≥ cK, for all E �∈ [0, ε].

The proof is based on the Large Deviation Theorem (LDT)-Avalanche Princi-
ple (AvP) scheme developed by Bourgain, Goldstein, and Schlag [BG,GS1]. Due
to some technical reasons, the largeness of K depends on the Diophantine Con-
ditions of ω in this theorem, which means the positivity is not uniform for all ω.
However, we can get the following local non-perturbative positivity. Bourgain and
Jitomirskaya showed that the Lyapunov exponent is jointly continuous in (ω,E) at
any irrational frequency (Theorem 1, [BJ]). The following result is obvious:

Proposition 1. Fix any ε > 0 and ω0 ∈ DC(κ, τ ), let K0 = K0(ε, f, ω0) > 0
be given as in Theorem 2. Then for any K > K0, there is δ = δ(ω0, ε,K) > 0,
such that for any ω ∈ Bδ(ω0), L(E,ω,K) > 0 on Iε,K , where the lower bound only
depends on ω0, ε,K, f and is uniform in E and ω.

The absence of a.c. spectrum on Iε,K is therefore obvious due to Kotani theory;
see [K] and the discrete version in [S]. What we want to claim is the pure point
spectrum or purely singular continuous spectrum in this region.

Anderson Localization (part (a)): Let Ω = SDC ∩ Bδ(ω0), which is a
full measure subset of Bδ(ω0). Notice that the positivity of L(E,ω,K) is
uniform for E ∈ Iε,K and ω ∈ Ω. Then according to the non-perturbative
localization result of Bourgain and Goldstein (see Theorem 10.1 and Re-
mark (3), Chapter 10 in [Bo1]), for any θ ∈ T, a.e. ω ∈ Ω , HK,θ,ω exhibits
A.L. in Iε,K , i.e., HK,θ,ω has pure point spectrum restricted in Iε,K and
the corresponding eigenfunctions decay exponentially. Thus by Fubini’s
theorem, HK,f,θ,ω has A.L. for a.e. ω ∈ Ω and a.e. θ ∈ T.

Purely s.c. spectrum (part (b)): Let Ω be the same as in the previous
part. Goldstein and Schlag [GS2] show that for a.e. ω ∈ Ω, the intersection
σ(HK,f,θ,ω)∩Iε,K is a Cantor set (see Theorem 1.1 in [GS2]). Then accord-
ing to a theorem of Gordon [G2], nowhere dense structure of the spectrum
implies the absence of point spectrum for a dense Gδ set of θ (see Theorem
6 in [G2]). Therefore, for a.e. ω ∈ Ω, there is a dense Gδ set of θ such that
HK,θ,ω has purely singular continuous spectrum in Iε,K .
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Purely s.c. spectrum (part (c)): Absence of point spectrum in this part
is based on rational approximation. More precisely, denote

β(ω) := lim sup
n

log qn+1

qn

where pn

qn
is the nth rational approximation of ω. Notice that

sup
n

sup
(θ,ω)∈T2, E∈Iε,K

1

|n| log ‖A
n(θ, E)‖ ≤ 10K.

Then by a standard Gordon type argument (see e.g. [G1,CFKS]), if β(ω) >
40K, then for any θ, HK,θ,ω does not have any point spectrum. Combined
with the positivity of the Lyapunov exponent in Iε,K , the proof for the
purely s.c. spectrum of part (c) is completed. Notice that for any β0 ∈
[0,∞], the level set Ωβ0

:= {ω : β(ω) = β0} is a dense set. For later purpose,
we would like to pick the dense subset Ωβ0

∩Bδ(ω0) with 40K < β0 < h/2.

3. Absolutely continuous spectrum near the bottom

Next we are going to show that for any ω ∈ T with finite β(ω), if the energy E is
sufficiently small (depends on ω), then the Schrödinger cocycle is almost reducible.
This will imply purely a.c. spectrum near the bottom of the spectrum for any phase
θ. To complete the proof of the main theorem, we first pick some ω near ω0 and
some θ which will give us point spectrum or singular continuous spectrum as in
the previous part. Then for these pairs of (ω, θ), we apply the almost reducibility
result to get the coexistence of two types of spectrum.

The key step to find purely a.c. spectrum near the bottom is the following
reducibility result at E = 0, which generalizes Lemma 5.1 in [Bjer] to the case
0 < β(ω) < ∞.

Proposition 2. For any frequency ω with β(ω) < ∞, if h > 2β, then there exists
an analytic transformation C : T → SL(2,R) such that

C(θ + ω)A(θ, 0)C(θ)−1 = A0,

where

A0 =

(
1 k̂
0 1

)
, k̂ ∈ R.

Remark 3.1. If ω is Diophantine or β = 0, the proposition has been proved in
Lemma 5.1 of [Bjer]. If β > 0, we can still find such a transformation C provided
h is large. The only loss is the decrease of the width of the analytic strip. Also the
analytic norm of the transformation and the constant could be very large. Actually,
C has an analytic extension to the strip |Imz| < h− 2β, with ‖C‖h−2β ∼ eK‖f‖h .

We also have |k̂| ∼ eK‖f‖h .

Proof. Recall the main steps in the proof of Lemma 5.1 in [Bjer], if there are
g, h : T → R satisfying the equations

g(θ + ω)− g(θ) = f(θ + ω),(3.1)

k(θ) = −e−Kg(θ−ω)−Kg(θ) , k̂ =

∫
T

k(θ)dθ,

h(θ + ω)− h(θ) = k̂ − k(θ),(3.2)
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then set

C(θ) =

(
1 h(θ)
0 1

)
·
(

0 exp
(
−Kg(θ − ω)

)
− exp

(
Kg(θ − ω)

)
exp

(
Kg(θ)

) )
∈ SL(2,R).

Direct computation shows that

C(θ + ω)A(θ, 0)C(θ)−1 =

(
1 k̂
0 1

)
,

which is the desired form.

For real analytic f with zero average, if ω is Diophantine, equations (3.1), (3.2)
always have real analytic solutions g, h, which is the case in [Bjer].

If β > 0, recall for f analytic in the strip |Imz| < h that the Fourier coefficients

of f satisfy |f̂k| ≤ ‖f‖he−h|k|, therefore, from Fourier series expansion, equation
(3.1) has an analytic solution g in the strip |Imz| < h − β provided h > β. From
the definition of k, k(θ) also has analytic extension to the strip |Imz| < h−β with
‖k‖h−β ∼ eK‖g‖h−β ∼ eK‖f‖h . Then for the same reason, equation (3.2) also has
an analytic solution h in the strip |Imz| < h− 2β provided h− β > β. �

Then it is easy to see that by applying C to A(θ, E), we have

C(θ + ω)A(θ, E)C(θ)−1 = A0 + C(θ + ω)

(
−E 0
0 0

)
C(θ)−1

= A0 + EF (θ) ∈ SL(2,R)(3.3)

where

F (θ) = C(θ + ω)

(
−1 0
0 0

)
C(θ)−1.

From the proof of Proposition 2, we see that F has analytic extension to the strip
|Imz| < h− 2β and the largeness of ‖A0‖, ‖F‖h−2β depends on ω,K, ‖f‖h.

For Diophantine frequency, as Bjerklöv mentioned in Remark 2 in [Bjer], one can
show purely absolutely continuous spectrum for sufficiently small E based on the
KAM approach as in [E]. Here since we also need to deal with Liouvillean frequency,
we want to prove all cases together with the almost reducibility concept.

We say the skew product system (ω,A) is almost reducible if there exist η > 0
and a sequence of analytic maps B(n) : T → PSL(2;R), admitting holomorphic
extensions to the common strip |Imz| < η such that B(n)(z + ω)A(z)B(n)(z)−1

converges to a constant uniformly in |Imz| < η. We need the following result
about almost reducibility:

Proposition 3 (Corollary 1.2, [A1]). Any one-frequency analytic quasi-periodic
SL(2,R) cocycle close to constant is analytically almost reducible.

Proof of purely a.c. spectrum near the bottom. According to Proposition 3, (ω,A0+
EF (θ)) is almost reducible for small E. More precisely, consider A0 + EF in
(3.3). There exists ε0 = ε0(ω, ‖A0‖, h, ‖F‖h−2β) < ε such that for 0 < E < ε0,
(ω,A0 + EF (θ)) is almost reducible. (Such a quantitative version can be found
in Theorem 1.2 of [HY] and Corollary 1.3 of [YZ].) Therefore, (ω,A(θ, E)) is also
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almost reducible for 0 < E < ε0. As a corollary of almost reducibility [A1,A2],2

we have that for any θ, HK,f,θ,ω has purely absolutely continuous spectrum in
[0, ε0]. �
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