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QUASICONFORMAL EXTENSION OF MEROMORPHIC

FUNCTIONS WITH NONZERO POLE

B. BHOWMIK, G. SATPATI, AND T. SUGAWA

(Communicated by Jeremy Tyson)

Abstract. In this note, we consider meromorphic univalent functions f(z) in
the unit disc with a simple pole at z = p ∈ (0, 1) which have a k-quasiconformal

extension to the extended complex plane ̂C, where 0 ≤ k < 1. We denote the
class of such functions by Σk(p). We first prove an area theorem for functions
in this class. Next, we derive a sufficient condition for meromorphic functions
in the unit disc with a simple pole at z = p ∈ (0, 1) to belong to the class Σk(p).
Finally, we give a convolution property for functions in the class Σk(p).

1. Introduction

Let C denote the complex plane and Ĉ denote the extended complex plane
C∪{∞}. We shall use the following notation: D = {z : |z| < 1}, ∂D = {z : |z| = 1},
D = {z : |z| ≤ 1}, D∗ = {z : |z| > 1}, D∗ = {z : |z| ≥ 1}. Let f be a meromorphic
and univalent function in the unit disc D with a simple pole at z = p ∈ [0, 1) of
residue 1. Since f(z)− 1/(z− p) is analytic in D, one has an expression of the form

(1.1) f(z) =
1

z − p
+

∞∑
n=0

anz
n, z ∈ D.

We denote the class of such functions by Σ(p). Let Σ0(p) be the subclass of Σ(p)
consisting of those functions f for which a0 = 0 in the above expansion. Note that
if f, g ∈ Σ0(p) are related by g = M ◦f for a Möbius transformation M, then f = g.

For a given number 0 ≤ k < 1, Σk(p) stands for the class of those functions

in Σ(p) which admit k-quasiconformal extension to the extended plane Ĉ. Here,

a mapping F : Ĉ → Ĉ is called k-quasiconformal if F is a homeomorphism and
has locally L2-derivatives on C \ {F−1(∞)} (in the sense of distribution) satisfying
|∂̄F | ≤ k|∂F | a.e., where ∂F = ∂F/∂z and ∂̄F = ∂F/∂z̄. Note that such an F
is called K-quasiconformal more often, where K = (1 + k)/(1 − k) ≥ 1, in the
literature. The quantity μ = ∂̄F/∂F is called the complex dilatation of F. See the
standard textbook [5] by Lehto and Virtanen for basic properties of quasiconformal
mappings. Set Σ0

k(p) = Σ0(p) ∩ Σk(p).
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O. Lehto [3] refined the Bieberbach-Gronwall area theorem to the functions in
Σk(0) in the following form.

Theorem A. Let 0 ≤ k < 1. Suppose that f(z) = z−1 + a0 + a1z + a2z
2 + . . . is a

function in Σk(0). Then
∞∑

n=1

n|an|2 ≤ k2.

Here, equality holds if and only if

f(z) =
1

z
+ a0 + a1z, z ∈ D,

with |a1| = k. Moreover, its k-quasiconformal extension is given by setting

f(z) =
1

z
+ a0 +

a1
z̄

for z ∈ D∗.

On the other hand, the area theorem was extended by P. N. Chichra [1] to
functions in Σ(p) as follows.

Theorem B. Let f ∈ Σ(p) have the expansion in (1.1). Then

(1.2)
∞∑

n=1

n|an|2 ≤ 1

(1− p2)2
.

Equality holds for the function

fp(z) =
1

z − p
+ a0 +

z

1− p2
.

Our first result establishes an area theorem for the class Σk(p). Interestingly, the
form of extremal functions is different from that of the function fp in Theorem B.

Theorem 1. Let 0 ≤ k < 1 and 0 ≤ p < 1. Suppose that f ∈ Σk(p) is expressed in
the form of (1.1). Then

(1.3)

∞∑
n=1

n|an|2 ≤ k2

(1− p2)2
.

Here, equality holds if and only if f is of the form

f(z) =
1

z − p
+ a0 +

a1z

1− pz
for z ∈ D,(1.4)

where a0 and a1 are constants with |a1| = k. Moreover, a k-quasiconformal exten-
sion of this f is given by setting

(1.5) f(z) =
1

z − p
+ a0 +

a1
z̄ − p

for z ∈ D∗.

Observe that this is a natural extension of Theorem A. We remark that the
function in (1.4) belongs to Σ(p) as long as |a1| ≤ 1 (see the latter part of the proof
of Theorem 1 below). This function with |a1| = 1 provides another extremal case
in (1.2). As an immediate corollary of the theorem, we obtain the following.
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Corollary 1. Let 0 < p < 1 and 0 < k < 1. For f ∈ Σk(p) with the expansion
(1.1), the following inequality holds:

|a1| <
k

1− p2
.

Note that the inequality |a1| ≤ 1/(1 − p2) for f ∈ Σ(p) is sharp in view of
Theorem B. We have no exact value of the best upper bound, say, M(p, k) of |a1|
for f ∈ Σk(p). The extremal function in Theorem 1 and compactness of the class
Σ0

k(p) yield, at least, the estimates k ≤ M(p, k) < k/(1− p2) for p, k ∈ (0, 1).
Secondly, we provide a sufficient condition for functions of the form (1.1) to

belong to the class Σk(p).

Theorem 2. Let 0 ≤ k < 1 and 0 ≤ p < 1. Suppose that ω is an analytic function
in D such that |ω′(z)| ≤ k(1 + p)−2 for z ∈ D. Then the function f given by

f(z) =
1

z − p
+ ω(z), z ∈ D,

is a member of Σk(p). A k-quasiconformal extension is given by setting

(1.6) f(z) =
1

z − p
+ ω(1/z̄), for z ∈ D

∗.

We note that J. G. Krzyż [2] proved this theorem when p = 0. He also gave a
convolution theorem in the same paper [2]. We can also extend it to a modified
convolution. The modified Hadamard product (or the modified convolution) f � g
of two functions f, g ∈ Σ(p) with expansions

(1.7) f(z) =
1

z − p
+

∞∑
n=0

anz
n and g(z) =

1

z − p
+

∞∑
n=0

bnz
n, z ∈ D

is defined by

(1.8) (f � g)(z) =
1

z − p
+

∞∑
n=0

an bnz
n, z ∈ D.

Our third result concerns this Hadamard product.

Theorem 3. Let f ∈ Σk1
(p) and g ∈ Σk2

(p) for some k1, k2, p ∈ [0, 1). If α =
k1k2(1− p)−2 < 1, then the modified Hadamard product f � g belongs to Σα(p).

As we mentioned above, this result reduces to a theorem due to Krzyż [2] when
p = 0.

We prove Theorem 1 in Section 2 and Theorems 2 and 3 in Section 3. We also
give another proof of a part of Theorem 1 as a concluding remark in Section 3.

2. Proof of Theorem 1

We start the section by proving the area theorem for functions in the class Σk(p).
We follow the idea due to Lehto [3].

Proof of Theorem 1. Let f ∈ Σk(p) have the expansion in (1.1). We may suppose

that f is already extended to a k-quasiconformal mapping of Ĉ onto itself. If k = 0,
then the assertion clearly holds. Hence, we assume that k > 0 in the rest of the

proof. To start with, we first make a change of variables. We define φ : Ĉ → Ĉ by
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φ(ζ) = f(1/ζ). Note that φ has locally L2-derivatives on C\{φ−1(∞)} = C\{1/p}.
Since the function ψ(ζ) = φ(ζ)− ζ/(1− pζ) has the expression

(2.1) ψ(ζ) = φ(ζ)− ζ

1− pζ
=

∞∑
n=0

an
ζn

, ζ ∈ D
∗,

and, in particular, is bounded and analytic near the point ζ = 1/p, the function
ψ has locally L2-derivatives on C. Therefore, for every r > 0, we can apply the
Cauchy-Pompeiu formula (see [5, III §7] for details) to the function ψ in the disc
|ζ| < r to obtain

ψ(ζ) =
1

2πi

∫
|w|=r

ψ(w)

w − ζ
dw − 1

π

∫∫
|w|<r

∂̄ψ(w)

w − ζ
dudv,

where w = u + iv. We note that ψ(ζ) → a0 as ζ → ∞ and ∂̄ψ(ζ) = 0 for |ζ| > 1.
Letting r → +∞, we thus get

(2.2) ψ(ζ) = a0 −
1

π

∫∫
|w|<1

∂̄ψ(w)

w − ζ
dudv, ζ ∈ C.

We differentiate the above expression with respect to ζ and obtain

(2.3) ∂ψ(ζ) = − 1

π

∫∫
|w|<1

∂̄ψ(w)

(w − ζ)2
dudv = H[∂̄ψ](ζ), ζ ∈ C,

where H is the two dimensional Hilbert transformation. (Strictly speaking, the
above integral should be understood as Cauchy’s principal value for |ζ| ≤ 1. See
[5, III §7] for details.) Since H is a linear isometry of L2(C), in conjunction with
(2.3), we have

(2.4)

∫∫
D

|∂̄ψ(ζ)|2 dξdη =

∫∫
C

∣∣H[∂̄ψ](ζ)
∣∣2 dξdη =

∫∫
C

|∂ψ(ζ)|2 dξdη,

where ζ = ξ+ iη. Next, we recall that Chichra indeed showed the following relation
in the proof of Theorem B:

Area (C \ f(D)) = π

[
1

(1− p2)2
−

∞∑
n=1

n|an|2
]
.

We remark that f(∂D) is of area zero because f is quasiconformal. Noting φ(D) =
f(D∗) = C \ f(D), we thus have the relation

(2.5) Areaφ(D) = π

[
1

(1− p2)2
−

∞∑
n=1

n|an|2
]
.

Since |∂̄φ| ≤ k|∂φ| a.e., the Jacobian Jφ of φ satisfies the inequality

Jφ = |∂φ|2 − |∂̄φ|2 ≥ (1− k2)|∂φ|2 ≥ (k−2 − 1)|∂̄φ|2 = (k−2 − 1)|∂̄ψ|2.
Hence, we obtain

(2.6) Areaφ(D) =

∫∫
D

Jφ(ζ)dξdη ≥ (k−2 − 1)

∫∫
D

|∂̄ψ(ζ)|2dξdη.
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Next, we see from (2.4) that

(2.7)

∫∫
D

|∂̄ψ(ζ)|2 dξdη =

∫∫
C

|∂ψ(ζ)|2 dξdη ≥
∫∫

|ζ|>1

|∂ψ(ζ)|2 dξdη.

It is easy to evaluate the right-most integral above by using the expansion in (2.1)
as follows: ∫∫

|ζ|>1

|∂ψ(ζ)|2 dξdη = π
∞∑

n=1

n|an|2.

Plugging this with (2.5), (2.6) and (2.7), we obtain

(k−2 − 1)π

∞∑
n=1

n|an|2 ≤ π

[
1

(1− p2)2
−

∞∑
n=1

n|an|2
]
,

which yields the desired inequality.
Finally, we analyze the equality case for (1.3). Suppose that equality holds in

(1.3). Then, equalities must hold both in (2.6) and in (2.7). The equality in (2.7)
implies that ∂ψ = 0 on D. In other words, h = ψ̄ is analytic on D. Therefore,
φ(ζ) = ζ/(1− pζ) + h(ζ). The equality in (2.6) means that |∂̄φ/∂φ| is the constant

k a.e. on D. Since ∂̄φ(ζ)/∂φ(ζ) = h′(ζ)(1 − pζ)2, it then implies that the analytic
function h′(ζ)(1 − pζ)2 has constant modulus k and therefore a constant α with
|α| = k. Hence, h′(ζ) = α(1 − pζ)−2 for |ζ| < 1. Integrating it, we obtain h(ζ) =
αζ/(1− pζ) + h(0). Thus, we finally have the form

φ(ζ) =
ζ

1− pζ
+ h(0) +

ᾱζ̄

1− pζ̄
, ζ ∈ D.

Therefore,

f(z) =
1

z − p
+ h(0) +

ᾱ

z̄ − p
, z ∈ D

∗,

whose boundary values on ∂D are the same as those of the meromorphic function

g(z) =
1

z − p
+ h(0) +

ᾱz

1− pz
.

Since f(z) − g(z) is bounded analytic on D, f(z) is identically equal to g(z) on D

by the maximum principle. In particular, h(0) = a0 and α = a1. Thus we have seen
that the function f must have the form (1.4) if equality holds in (2.7). We need to
show that the function f of the form (1.4) is indeed a member of Σk(p). We first
show that f is univalent in D. We compute

f(z1)− f(z2) =
z2 − z1

(z1 − p)(z2 − p)

[
1− a1

(
z1 − p

1− pz1
· z2 − p

1− pz2

)]
for z1, z2 ∈ D. Since ∣∣∣∣a1 ( z1 − p

1− pz1
· z2 − p

1− pz2

)∣∣∣∣ < |a1| = k ≤ 1

for z1, z2 ∈ D, we see that f(z1) 
= f(z2) if z1 
= z2. Hence, f ∈ Σ(p). On the other
hand, the function in (1.5) agrees with that in (1.4) on the boundary |z| = 1, and
is a composition of the Möbius transformation 1/(z− p) with the k-quasiconformal
affine mapping w + a0 + a1w̄. Thus we conclude that f belongs to Σk(p). �
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3. Proof of Theorems 2 and 3 and a concluding remark

We start with the proof of Theorem 2.

Proof of Theorem 2. We first show the theorem under the additional condition
that ω is analytic on the closed unit disc D; in other words, ω is analytic on the
disc |z| < R for some R > 1. The function f(z) = 1/(z − p) + ω(z) now extends to
D analytically. Since |ω′| ≤ k(1 + p)−2, we have the inequality

|ω(z1)− ω(z2)| ≤
k

(1 + p)2
|z1 − z2|, z1, z2 ∈ D.

We now see that∣∣∣∣ 1

z1 − p
− 1

z2 − p

∣∣∣∣ = |z1 − z2|
|z1 − p||z2 − p| ≥

|z1 − z2|
(1 + p)2

, z1, z2 ∈ D.

Hence, we have

|f(z1)− f(z2)| ≥
1− k

(1 + p)2
|z1 − z2|

for z1, z2 ∈ D, which proves that f(z) is univalent on D.
For a while, we denote by g(z) the function appearing in the right-hand side of

(1.6) for |z| > 1/R. Obviously, g(z) agrees with f(z) = 1/(z − p) + ω(z) on ∂D.
We show now that g is orientation-preserving and locally C1-diffeomorphic on a
neighborhood of D∗ and locally k-quasiconformal on D∗. To deal with the point at
infinity as an ordinary point, we use the coordinate ζ = 1/z. Then

g(z) =
ζ

1− pζ
+ ω(ζ̄), |ζ| < R.

A simple computation yields

∂g

∂ζ
=

1

(1− pζ)2
and

∂g

∂ζ̄
= ω′(ζ̄).

Hence, the Jacobian of g satisfies

Jg(1/ζ)|ζ|−4 =
1

|1− pζ|4 − |ω′(ζ̄)|2 ≥ 1− k2

(1 + p)4
> 0, ζ ∈ D.

The inverse function theorem now implies that g is a local C1-diffeomorphism at
each point of D∗. Moreover, the complex dilatation μ = ∂̄g/∂g of g satisfies

|μ(ζ)| = |1− pζ|2|ω′(ζ̄)| ≤ (1 + p)2|ω′(ζ̄)| ≤ k < 1, ζ ∈ D,

which means that g is locally k-quasiconformal on D∗.

Define F : Ĉ → Ĉ by

F (z) =

{
f(z), z ∈ D,

g(z), z ∈ D∗.

Since f(z) = g(z) on ∂D the function F is continuous on Ĉ. Furthermore, F is

locally univalent on Ĉ, which implies that F : Ĉ → Ĉ is a topological covering

projection. Since Ĉ is simply connected, F must be globally univalent; namely,

F is a homeomorphism of Ĉ onto itself.We recall that F is k-quasiconformal off
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the unit circle ∂D. Since the unit circle is removable for quasiconformality (see
[5, p.205]), we therefore conclude that F is a k-quasiconformal extension of f. Thus
we have shown that the theorem is valid if ω is analytic on D.

Finally the proof of Theorem 2 will be complete, if we consider a general ω
satisfying the assumptions of this theorem. To this end, for 0 < r < 1, let us
consider the function ωr(z) = ω(rz), z ∈ D. Since ωr is analytic on D and satisfies
|ω′

r(z)| ≤ k/(1+p)2, the function fr(z) = 1/(z−p)+ωr(z) has the k-quasiconformal
extension Fr constructed above. By a normality criterion for k-quasiconformal

homeomorphisms of Ĉ (see, for instance, [5, II §5, Theorem 5.3]), one can see that

Fr converges to a k-quasiconformal mapping, say F, uniformly on Ĉ as r → 1−. It
is evident that F gives the required quasiconformal extension of f(z) = 1/(z−p)+
ω(z). �

A straightforward application of Theorem 2 yields the following sufficient condi-
tion for a function f of the form (1.1) to belong to Σk(p).

Corollary 2. Let 0 ≤ p < 1 and 0 ≤ k < 1. Suppose that a meromorphic function
f(z) on D has the form (1.1). If

∞∑
n=1

n|an| ≤
k

(1 + p)2
,

then f ∈ Σk(p).

Proof. This immediately follows from Theorem 2 because

|ω′(z)| ≤
∞∑

n=1

n|an||z|n−1 ≤
∞∑

n=1

n|an| ≤
k

(1 + p)2
, z ∈ D.

�

Next we prove Theorem 3.

Proof of Theorem 3. Let f ∈ Σk1
(p) and g ∈ Σk2

(p) be expressed as in (1.4).
Then Theorem 1 gives us

∞∑
n=1

n|an|2 ≤ k1
2

(1− p2)2
and

∞∑
n=1

n|bn|2 ≤ k2
2

(1− p2)2
.

Now an application of Cauchy-Schwarz inequality together with the aforementioned
inequalities yields

∞∑
n=1

n|anbn| =
∞∑

n=1

(
√
n|an|)(

√
n|bn|)

≤
( ∞∑

n=1

n|an|2
)1/2 ( ∞∑

n=1

n|bn|2
)1/2

≤ k1k2
(1− p2)2

=
α

(1 + p)2
,

where α = k1k2(1 − p)−2. Since α < 1 by assumption, the desired result follows
from Corollary 2. �
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Remark. We conclude the present note with an outline of another proof of (1.3)
based on Lehto’s principle (cf. [4, II.3.3]) and Theorem B. First of all, we recall
the definition of the complex Banach (indeed, Hilbert) space �2. This is the set of
sequences x = {xn}∞n=1 of complex numbers with the norm

‖x‖�2 =

( ∞∑
n=1

|xn|2
)1/2

< ∞.

It is enough to show (1.3) for functions in Σ0
k(p) only. Suppose that f ∈ Σ0

k(p)

is already extended to a k-quasiconformal mapping of Ĉ and let μ be its complex
dilatation. We remark that |μ| ≤ k a.e. in D∗ and μ = 0 in D. By the measurable
Riemann mapping theorem, for each t ∈ D, there exists a unique quasiconformal

mapping ft of Ĉ for which the complex dilatation is tμ/k and ft|D ∈ Σ0(p). Note
here that fk = f. Then ft has an expansion of the form

ft(z) =
1

z − p
+

∞∑
n=1

an(t)z
n, z ∈ D.

By the holomorphic dependence of the solution to the Beltrami equation, an(t) is
analytic in {t : t ∈ D} for every n ≥ 1. We now consider the sequence σ(t) =
{
√
nan(t)}∞n=1. Theorem B tells us that ‖σ(t)‖�2 ≤ 1/(1− p2). Hence, we conclude

that σ : D → �2 is a bounded analytic function taking values in the complex Banach
space �2. Since σ(0) = 0, the (generalized) Schwarz lemma yields the inequality
‖σ(t)‖�2 ≤ |t|/(1− p2). In particular, letting t = k gives (1.3).

We must say that this method is conceptually simpler than that of our proof in
Section 2. However, this does not provide information about the equality case in
an obvious manner.
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