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Abstract. In this note we show that the moduli spaceM(Sg,n) of surface Sg,n

of genus g with n punctures, satisfying 3g + n ≥ 5, admits no complete Rie-
mannian metric of nonpositive sectional curvature such that the Teichmüller
space T(Sg,n) is a mapping class group Mod(Sg,n)-invariant visibility mani-
fold.

1. Introduction

Let Sg,n be a surface of genus g with n punctures, and let M(Sg,n) be the
moduli space of Sg,n. There are many canonical metrics on M(Sg,n) such as the
Teichmüller metric and the Weil-Petersson metric (see [IT92]). Kravetz [Kra59]
asserted that the Teichmüller metric has negative curvature. However, a mistake in
the proof of Kravetz’s theorem was found by Linch [Lin71]. Masur [Mas75] proved
that the Teichmüller metric is not nonpositively curved with the exception of a
few cases. On the other hand, the Weil-Petersson metric is negatively curved (see
[Tro86,Wol86]), but not complete (see [Chu76,Wol75]). The McMullen metric,
constructed by McMullen in [McM00], is a complete Kähler-hyperbolic metric in
the sense of Gromov. Liu, Sun and Yau in [LSY05] perturbed the Weil-Petersson
metric to construct the perturbed Ricci metric, which is complete and has negatively
pinched holomorphic sectional curvature. In light of the properties of all these
metrics, the following question is phrased in [BF06] (see Question 6.1 in [BF06]).

Question 1.1 (Brock-Farb-McMullen). Does M(Sg,n) admit a complete, nonpos-
itively curved Riemannian metric?

Since M(Sg,n) is an orbifold, here a Riemannian metric on M(Sg,n) means a Rie-
mannian metric on the Teichmüller space T(Sg,n), the universal cover of M(Sg,n),
on which the natural action of the mapping class group Mod(Sg,n) is an isometric
action.

Recall that Eberlein and O’Neill in [EO73] introduced the so-called visibility
manifold M of nonpositive sectional curvature which in some sense means that for
any two different points at “infinity” of M , they can be viewed from each other
along the space; this phenomenon cannot happen in R

n. Let M be a complete
simply connected Riemannian manifold of nonpositive sectional curvature. The vi-
sual boundary M(∞) of M consists of all the equivalent asymptotic geodesic rays
(see [BGS85]). We call M a visibility manifold if for any x �= y ∈ M(∞) there
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exists a geodesic line c : (−∞,+∞) → M such that c(−∞) = x and c(+∞) = y.
Classical examples for visibility manifolds are complete simply connected Riemann-
ian manifolds with uniformly negative sectional curvatures (see [BGS85,BH99] for
details).

If 3g + n ≤ 4 and M(Sg,n) has positive dimension, then (g, n) must be one of
{(1, 0), (1, 1), (0, 4)}. For these three cases, it is well known that the Teichmüller
metric on M(Sg,n) is a complete hyperbolic metric (see [FW10]). In particular, the
Teichmüller space T(Sg,n), endowed with the Teichmüller metric, is a Mod(Sg,n)-
invariant visibility manifold. Hence, we can always assume that 3g + n ≥ 5 for
Question 1.1. Now we are ready to state our result.

Theorem 1.2. If 3g+n ≥ 5, then M(Sg,n) admits no complete Riemannian metric
such that T(Sg,n) is a Mod(Sg,n)-invariant visibility manifold.

We remark that there is no finite volume condition in Theorem 1.2. As intro-
duced above, the universal cover of a complete Riemannian manifold whose sectional
curvatures are bounded from above by a negative number (we can always take a
rescaling for the metric such that the upper bound for the sectional curvature is
given by −1) is a visibility manifold, so the following result follows immediately
from Theorem 1.2.

Corollary 1.3. If 3g + n ≥ 5, M(Sg,n) admits no complete Riemannian metric
such that the sectional curvature K(M(Sg,n)) ≤ −1.

Ivanov [Iva88] showed that M(Sg,n) (3g + n ≥ 5) admits no complete, finite
volume Riemannian metric whose sectional curvature is pinched by two negative
numbers. McMullen in [McM00] stated (without proof) that M(Sg,n) (3g + n ≥ 5)
admits no complete Riemannian metric whose sectional curvature is pinched by
two negative numbers, which was proved by Brock and Farb in [BF06]. Moreover,
the authors in [BF06] showed that M(Sg,n) (3g + n ≥ 5) admits no complete,
finite volume Riemannian metric such that the universal covering space is Gromov-
hyperbolic. For related topics, one can also see [KN04,LSY04,MP99,MW95,Wu11].

2. Notation and Preliminaries

2.1. Isometries on manifolds of nonpositive sectional curvatures. Let M
be a complete Riemannian manifold of nonpositive sectional curvature and let γ be
an isometry of M . Recall that the translation length |γ| is defined as

|γ| := inf
p∈M

dist(p, γ ◦ p).

We call γ parabolic if |γ| cannot be achieved in M and hyperbolic if |γ| > 0 and
|γ| is achieved in M . Otherwise, we call γ elliptic.

The following lemma will be applied later.

Lemma 2.1. Let M be a visibility manifold and γ a parabolic isometry of M . Then
γ has exactly one fixed point in the visual boundary M(∞) of M .

Proof. See Lemma 6.8 in [BGS85]. �

Recall a group G acting on a metric space X is called proper if for each compact
subset K ⊂ X, the set K ∩ gK is nonempty for only finitely many g in G.
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Lemma 2.2. Let M be a visibility manifold and let G = Z⊕Z, a free abelian group
of rank 2, act properly on M by isometries. Then for any nontrivial g ∈ G, g is
parabolic.

Proof. We argue by contradiction. Assume g ∈ G is nontrivial and not parabolic.
So g is either elliptic or hyperbolic. Since G acts properly on M , the element g
cannot be elliptic. So g is hyperbolic. Let Min(g) := {p ∈ M,dist(g · p, p) = |g|}.
From Theorem 6.8 on page 231 in Chapter II.6 of [BH99] we know that Min(g)
is isometric to the product Y × R on which g acts trivially on the Y component,
where Y × {0} is a closed convex subset in M . Since M is a visibility manifold,
Y is bounded, otherwise there exists a flat half-plane [0,+∞) × R in M , which is
impossible in a visibility space.

Let h ∈ G such that the group 〈g, h〉, generated by g and h, is a free abelian
group of rank 2. Since gh = hg, Min(g) is h-invariant. Since h is an isometry, it
sends geodesic lines to geodesic lines. It is not hard to see that h splits into (h1, h2)
where h1 is an isometry on Y and h2 is an isometry on R. First Y ×{0} is a complete
Riemannian manifold of nonpositive sectional curvature because Y × {0} is closed
convex in M . Since Y is bounded, the classical Cartan Fixed Point Theorem (see
Lemma 6.3 in [BGS85]) tells us that there exists x1 ∈ Y such that h1 · x1 = x1.
Hence x1×R is 〈g, h〉-invariant. Since G acts properly onM and 〈g, h〉 is a subgroup
of G, 〈g, h〉 also acts properly on x1 × R, which is impossible because the rank of
〈g, h〉 is 2. �
2.2. Mapping class groups. Let Sg,n be a Riemann surface of genus g with n
punctures, and let Mod(Sg,n) be the mapping class group of Sg,n, i.e., the group of
isotopy classes of self-homeomorphisms of Sg,n which preserve the orientation and
the punctures. The following proposition lists the basic properties of Mod(Sg,n),
which will be used later.

Proposition 2.3. If 3g+n ≥ 5 and Mod(Sg,n) is the mapping class group of Sg,n,
then

(1) Mod(Sg,n) acts properly on the Teichmüller space.
(2) Mod(Sg,n) is finitely generated by Dehn twists along essential non-peripheral

simple closed curves.
(3) There exists a torsion-free subgroup of finite index in Mod(Sg,n).

Proof. See the details in [FM12]. �
Bestvina, Kapovich and Kleiner in [BKK02] defined the action dimension of a

group G, denoted by actdim(G), to be the minimum dimension of a contractible
manifold on which G acts properly. For example, the action dimension of Z is 1.
More generally, the action dimension of the fundamental group of a closed spherical
manifold is the same as the dimension of the manifold. In [BKK02] the authors
introduced the so-called obstructor dimension of a group G, denoted by obdim(G).
This quantity satisfies

Proposition 2.4 (Bestvina-Kapovich-Kleiner). (1) For any group G,

actdim(G) ≥ obdim(G).

(2) The obstructor dimension is a quasi-isometric invariance.

Proof. See Theorem 1 in [BKK02] for part (1) and remark 11 in [BKK02] for part
(2). �
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In [Des06] Despotovic proved that the action dimension of the mapping class
group satisfies actdim(Mod(Sg,n)) = 6g − 6 + 2n if 3g + n ≥ 5 (also see page 6 of
[FW10]). In fact, Despotovic proved the obstructor dimension obdim(Mod(Sg,n)) =
6g−6+2n and then used part (1) of Proposition 2.4 to conclude actdim(Mod(Sg,n))
= 6g−6+2n. The following result tells us that the action dimension is preserved by
finite index subgroups of the mapping class group. In general, the action dimension
is not a quasi-isometric invariance (see [BKK02] for details).

Proposition 2.5 (Despotovic). If 3g + n ≥ 5, then for any finite index subgroup
G of Mod(Sg,n), we have actdim(G) = 6g − 6 + 2n.

Proof. Let G be a subgroup of Mod(Sg,n) with finite index. So G endowed with a
word metric is quasi-isometric to Mod(Sg,n). Since obdim(Mod(Sg,n)) = 6g−6+2n
(see [Des06]), by part (2) of Proposition 2.4 we have obdim(G) = 6g−6+2n. Thus
from part (1) of Proposition 2.4 we know that actdim(G) ≥ 6g − 6 + 2n.

On the other hand it is obvious that actdim(G) ≤ 6g − 6 + 2n because G acts
properly on the Teichmüller space, which is contractible. Hence, actdim(G) =
6g − 6 + 2n. �

3. Proof of Theorem 1.2

We divide the proof of Theorem 1.2 into several lemmas.
The proof of the following lemma is implicitly included in several places in the

literature (see [BF06,KN04,MP99]). For completeness we still give the proof here.

Lemma 3.1. Let M be a visibility Riemannian manifold. Assume that the mapping
class group Mod(Sg,n) acts properly on M by isometries. If 3g + n ≥ 5, then there
exists a point x ∈ M(∞) such that γ · x = x for all γ ∈ Mod(Sg,n).

Proof. Let α be an essential non-peripheral simple closed curve on Sg,n and let
τα be the Dehn twist along α (see the definition of Dehn twist in [FM12]). Since
3g + n ≥ 5, there exists an essential non-peripheral simple closed curve β which is
disjoint with α. Let τβ be the Dehn twist along β. Since 〈τα, τβ〉 is a free abelian
group of rank 2, by Lemma 2.2 the element τα is parabolic. Since M is a visibility
manifold, by Lemma 2.1 there exists a unique x ∈ M(∞) such that Fix(τα) = {x}.

Claim (1). If τα · τβ = τβ · τα, then Fix(τβ) = Fix(τα) = {x}.
Proof of Claim (1). Since τα · τβ = τβ · τα and τα · x = x, τα · (τβ · x) = τβ · x.

So τβ · x is contained in Fix(τα). Thus τβ · x = x. Then the claim Fix(τβ) = {x}
follows from the fact that Fix(τβ) is unique.

Claim (2). For any essential non-peripheral simple closed curve β on Sg,n, we
have Fix(τβ) = {x}.

Proof of Claim (2). Let β be a simple closed curve. Since 3g + n ≥ 5, the
curve complex is connected (see Theorem 4.3 in [FM12]). In particular, there
exists a sequence of essential non-peripheral simple closed curves {αi}ki=1 such that
α1 = α, αk = β and αi ∩ αi+1 = ∅. Hence, by Claim (1),

Fix(τβ) = Fix(ταk−1
) = Fix(ταk−2

) = · · · = Fix(τα1
) = {x}.

Then the conclusion follows from part (2) of Proposition 2.3 and Claim (2). �
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Lemma 3.2. Let M be a visibility Riemannian manifold. Assume that the mapping
class group Mod(Sg,n) acts properly on M by isometries. If 3g + n ≥ 5, then any
infinite ordered element φ ∈ Mod(Sg,n) acts as a parabolic isometry.

Proof. Suppose that there exists an element φ ∈ Mod(Sg,n) with infinite order
which acts on M as a hyperbolic isometry. Then there exists a geodesic line γ :
R → M , an axis for φ, such that φ · γ(t) = γ(|φ| + t) for all t ∈ R. Since M is
a visibility manifold, it is not hard to see that Fix(φ) = {γ(+∞), γ(−∞)}. From
Lemma 3.1 we assume that γ(+∞) is fixed by Mod(Sg,n). Let σ ∈ Mod(Sg,n); since
σ fixes γ(+∞) there exists some C > 0 such that dist(σ · γ(n · |φ|), γ(n · |φ|)) ≤ C
for all n > 0. Hence dist((φ−n · σ ·φn) · γ(0), γ(0)) ≤ C. Since the action is proper,
there exists a subsequence {ni} such that φ−ni · σ · φni ≡ φ−n1 · σ · φn1 , hence
φn1−ni · σ = σ · φn1−ni . Since σ is arbitrary and φ has infinite order in Mod(Sg,n),
we can choose σ to be pseudo-Anosov such that {σ, φ} generates a free group of
rank 2 (see [Iva92]). Since φn1−ni · σ = σ · φn1−ni , the group 〈σ, φ〉 contains a free
abelian subgroup of rank 2, which is a contradiction since 〈σ, φ〉 is a free group. �

Lemma 3.3. Let M be a visibility Riemannian manifold. Assume that the mapping
class group Mod(Sg,n) acts properly on M by isometries. If 3g + n ≥ 5, then
there exists a horosphere H such that every torsion free subgroup of Mod(Sg,n) acts
properly on H.

Proof. From Lemma 3.1, there exists a point x ∈ M(∞) such that Mod(Sg,n) fixes
x. Let H be a horosphere at x and let G be a torsion free subgroup of Mod(Sg,n).
By Lemma 3.2 we know that G consists of parabolic isometries except the unit.
Hence, by Proposition 8.25 on page 275 in Chapter II.8 of [BH99], H is G-invariant
because G fixes x. Let d be the metric of M and let dH be the induced metric on
H. It is obvious that dH(p, q) ≥ d(p, q) for all p, q ∈ H. The conclusion that G
acts properly on H follows easily from the facts that G acts properly on M and
dH(p, q) ≥ d(p, q). �

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. We argue by contradiction. Assume that M(Sg,n) admits a
complete Riemannian metric ds2 such that T(Sg,n) is a Mod(Sg,n)-invariant visi-
bility manifold where the Teichmüller space T(Sg,n) is endowed with the pull-back
metric ds2. By part (3) of Proposition 2.3 we may assume that G is a torsion free
subgroup of Mod(Sg,n) with finite index. By Lemma 3.3, there exists a horosphere
H such that G acts properly on H. It is well known that H is homeomorphic to
R

6g−7+2n, in particular H is a contractible manifold. By the definition of action
dimension we know that

actdim(G) ≤ 6g − 7 + 2n.

On the other hand, since 3g+n ≥ 5 and G is a finite index subgroup of Mod(Sg,n),
by Proposition 2.5, we have

actdim(G) = 6g − 6 + 2n,

which is a contradiction. �

Remark 3.1. The author is grateful to Benson Farb for pointing out this point; the
proof of Theorem 1.2 also yields
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Theorem 3.4. The Teichmüller space T(Sg,n) (3g + n ≥ 5) admits no complete
Mod(Sg,n)-invariant nonpositively curved Riemannian metric such that every Dehn
twist has only one fixed point in the visual boundary of T(Sg,n).

Remark 3.2. Consider the case that n = 0 and g ≥ 3. It is known that Mod(Sg) is
generated by the Dehn twists on certain nonseparating simple closed curves which
are pairwise conjugate in Mod(Sg) (see [FM12]). Then the proof of Theorem 1.2
also yields

Theorem 3.5. The Teichmüller space T(Sg) (g ≥ 3) admits no complete Mod(Sg)-
invariant nonpositively curved Riemannian metric such that the Dehn twist on some
nonseparating simple closed curve has only one fixed point in the visual boundary
of T(Sg).

Acknowledgments

Most of this article is part of the author’s thesis work. The author is greatly in-
debted to his advisor, Jeffrey Brock, for his consistent encouragement and support.
Without his guidance this paper could not be completed. The author is indebted
to Andy Putman for the discussion on the proof of Theorem 1.2, in particular for
his suggestion on the writing for the original manuscript. He also would like to
thank an anonymous referee for the language correction.

References

[BF06] Jeffrey Brock and Benson Farb, Curvature and rank of Teichmüller space, Amer. J.
Math. 128 (2006), no. 1, 1–22. MR2197066 (2006j:32013)

[BGS85] Werner Ballmann, Mikhael Gromov, and Viktor Schroeder, Manifolds of nonpositive
curvature, Progress in Mathematics, vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985.
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