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A NOTE ON THE DOUBLE QUATERNIONIC TRANSFER

AND ITS f–INVARIANT

HANNO VON BODECKER

(Communicated by Michael A. Mandell)

Abstract. It is well known that for a line bundle over a closed framed man-
ifold, its sphere bundle can also be given the structure of a framed manifold,
usually referred to as a transfer. Given a pair of lines, the procedure can be

generalized to obtain a double transfer. We study the quaternionic case, and
derive a simple formula for the f–invariant of the underlying bordism class,
enabling us to investigate its status in the Adams–Novikov spectral sequence.
As an application, we treat the situation of quaternionic flag manifolds.

1. Introduction and statement of the results

It is well known that the Pontrjagin–Thom construction identifies the stable

stems with the framed bordism groups, i.e., πs
∗S

0 ∼= Ωfr
∗ . Starting from a real,

complex, or quaternionic line bundle over a closed framed manifold, Löffler and
Smith [LS74] considered the corresponding principal sphere bundles to obtain mor-
phisms

(1.1) SK : Ω
fr
∗ (KP∞) → Ωfr

∗+dimK−1;

in particular, if K = C, Adams’ classical e–invariant [Ada66]

(1.2) eC : π
s
2k+1S

0 → Q/Z

of such a transfer can be computed on the base by means of a simple cohomological
formula [LS74, Proposition 2.1], and similarly for K = H (although there is a slight
mistake in [LS74, Proposition 5.1]; see (2.4)).

In [Kna79], Knapp has given an extensive treatment of n-fold iterations of the
map (1.1) (and variations thereof) for K = C using K–theory, and these techniques
also prove useful for studying framings on Lie groups [Kna78]. Furthermore, iter-
ated complex transfers have been related to framed hypersurface representations of
certain beta elements at odd primes [CEH+85,BCG+88]. In the more recent work
[Ima07], an analogous result has been obtained for the element ν∗ ∈ πs

18S
0 using a

double quaternionic transfer.
Much insight into the stable homotopy groups of the spheres can be gained by

looking at the Adams–Novikov spectral sequence (ANSS),

Ep,q
2 [MU ] = Extp,qMU∗MU (MU∗,MU∗) ⇒ πs

q−pS
0

and the rich algebraic structure inherent in complex oriented cohomolgy theories
(see e.g. [Rav04]); in particular, the E2 term of its BP–based analog is populated by

Received by the editors June 1, 2015 and, in revised form, August 8, 2015.
2010 Mathematics Subject Classification. Primary 55Q45; Secondary 55R25, 58J26.

c©2015 American Mathematical Society

2731

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/12940


2732 HANNO VON BODECKER

the so-called greek letter elements. Within this framework, the e–invariant becomes
an invariant of first filtration, since it factors through the 1–line of the ANSS.

To detect second filtration phenomena, Laures introduced the f–invariant, which
is a follow-up to the e–invariant and takes values in the divided congruences between
modular forms [Lau99,Lau00]:

(1.3) f : πs
2kS

0 → DΓ

k+1
⊗Q/Z.

Recent work has deepened our understanding of the algebraic part of this invariant,
i.e., the map translating the 2–line into congruences [BL09], and the image of the
beta family at p = 2 is known in closed form [vB09].

Similar to the e–invariant, which may be interpreted as the reduction of the rel-
ative Todd genus of a (U, fr)–manifold [CF66], the f–invariant can be understood
geometrically; this time, it is the (suitably adapted relative version of the) Hirze-
bruch elliptic genus of a (U, fr)2–manifold that reduces to the f–invariant of its
corner of codimension two [Lau00]. Moreover, this description is accessible to an
index theoretical interpretation [vB08,BN10]; in particular, we could derive a coho-
mological formula for the f–invariant of the double complex transfer and perform
some explicit calculations [vB08, Section 5.1].

The purpose of this note is to extend these results to the quaternionic situation:
Given two quaternionic lines λH, λ

′
H
over a closed framed manifold B, we can restrict

the Whitney sum to the disks, resulting in a manifold Z = D(λ′
H
) ⊕ D(λH), the

codimension two corner of which is S(λ′
H
)⊕ S(λH). The vertical tangent bundle of

the latter can be trivialized using quaternion multiplication, which, when combined
with the pullback of the tangent bundle of the base, can then be used to define a
framing of this corner; passing to the underlying framed bordism classes, we obtain
a morphism

(1.4) S⊕2
H

: Ωfr
∗ (HP∞ ×HP∞) → Ωfr

∗+6.

Clearly, if this construction is applied to a single point, we recover the non-trivial
element ν2 ∈ πs

6S
0 ∼= Z/2 (i.e. the permanent cycle α2

2/2 = β2/2 in the ANSS);

regarding positive-dimensional base spaces, we establish the following theorem.

Theorem. Let λH, λ
′
H
be quaternionic lines over a framed smooth closed manifold

B of dimension 2m > 0 and let u, v ∈ H4 (B,Z) be the corresponding second Chern
classes. Then, for arbitrary levels N > 1, the f–invariant of the double transfer
S⊕2
H

B is represented by

(1.5) f
[
S⊕2
H

B
]
≡ (−1)n+1

n−1∑
k=1

B2k+2

k + 1
G2n−2k+2(τ )

〈
uk

(2k)!

vn−k

(2n− 2k)!
, [B]

〉

if m = 2n, and it vanishes if m 	= 2n.

Remark. As a rather obvious consequence, the double quaternionic transfer neces-
sarily misses several elements in the Adams–Novikov 2–line; in particular, at the
prime two, this applies to the elements βi/j if i is even but j is odd, and to the per-
manent cycles α1ᾱ4k (which correspond to ImJ8k). Although not for dimensional
reasons, this is also true for the permanent cycles α1α4k+1; these correspond to
members of Adams’ μ–family [Ada66], which can be detected by the dR–invariant,
so they cannot bound a Spin manifold.
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As an application, we perform explicit calculations in some (admittedly low-
dimensional) range and exhibit two particularly simple yet non-trivial examples.

Corollary 1. Starting with an arbitrary framing on a quaternionic flag manifold
and applying the transfers S⊕2

H
w.r.t. the tautological quaternionic lines, we have:

(i) S⊕2
H

(
Sp (2) /Sp (1)

×2
)×2

corresponds to β4/4 at p = 2,

(ii) S⊕2
H

(
Sp (3) /Sp (1)×3

)
corresponds to ±β4/2,2 at p = 2.

Moreover, modulo higher Adams–Novikov filtration, these classes generate the image
of the transfer S⊕2

H
in πs

6<2k≤20S
0.

Remark. It is well known that πs
18S

0 ∼= Z/8⊕ Z/2, which is reflected in the ANSS
by the non-trivial group extension 4β4/2,2 = α2

1β4/3 (whereas the second summand
is generated by a member of Adams’ μ–family, hence corresponding to α1α9); thus,
Corollary 1 is in accordance with Imaoka’s result [Ima07] that the element ν∗ is in
the image of a double quaternionic transfer.

Unfortunately, we have to acknowledge the fact that the examples given above
exhaust the list of interesting double transfers on quaternionic flag manifolds.

Corollary 2. Let n ≥ 4; then, for any pair of tautological lines, we have:

f
[
S⊕2
H

(
Sp (n) /Sp (1)×n

)]
= 0.

Before presenting the proofs, a comment seems to be in order.

Remark. Although for a complex line λC the sum λC⊕λC can be given the structure
of a quaternionic line, such ‘split’ lines are far from sufficient to understand the
transfer S⊕2

H
; in particular, neither β4/4 nor β4/2,2 can be obtained from a double

transfer involving such a line (this is due to the improved divisibility results for the
Chern numbers – it can, however, be done for 2β4/2,2 = β4/2, e.g., by using a pair
of these lines on the base G2/T ).

2. Proof of the results

2.1. Recollection of notation and definitions. Throughout this note, modular
forms will be thought of in terms of their q–expansions (where q = exp(2πiτ )) at
the cusp i∞; our normalization conventions for the classical Eisenstein series can
be summarized in terms of

G2k(τ ) = −B2k

4k
E2k(τ ) = −B2k

4k
+

∑
n≥1

∑
d|n

d2k−1 qn,

and the argument will be omitted if confusion is unlikely. For later use, we remind
the reader that the ring of modular forms w.r.t. Γ1(3) is generated by the odd
Eisenstein series of weight one and three, viz.

E
Γ1(3)
1 = 1 + 6

∑
n≥1

∑
d|n

(
d

3
) qn and E

Γ1(3)
3 = 1− 9

∑
n≥1

∑
d|n

(
d

3
)d2 qn,

where ( ·· ) is the Legendre symbol; again, whenever confusion is unlikely, we drop
the superscript from the notation.

Regarding the definition of the f–invariant, let us briefly recall some notation
from [Lau99,Lau00]: Considering the congruence subgroup Γ = Γ1(N) for a fixed
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level N , let ZΓ = Z[ζN , 1/N ] and denote by MΓ
∗ the graded ring of modular forms

w.r.t. Γ which expand integrally, i.e., which lie in ZΓ[[q]]. The ring of divided
congruences DΓ consists of those rational combinations of modular forms which
expand integrally; this ring can be filtered by setting

DΓ
k =

{
f =

∑k
i=0fi

∣∣∣ fi ∈ MΓ
i ⊗Q, f ∈ ZΓ[[q]]

}
.

Furthermore, put
DΓ

k
= DΓ

k +MΓ
0 ⊗Q+MΓ

k ⊗Q.

For our purposes, a (U, fr)2–manifold is just a stably almost complex 〈2〉–manifold
Z together with a stable decomposition TZ ∼= E1⊕E2 (in terms of complex vector
bundles) and specified trivializations of the restriction of the Ei to the respective
face ∂iZ for i = 1, 2 (strictly speaking, this defines the tangential version of such
a structure, but it can be converted into the normal version once an embedding is
chosen). Suppressing the induced structure from the notation, let M denote the
corner of a 2n + 2–dimensional (U, fr)2–manifold Z; then the f–invariant of the
underlying bordism class is defined to be

(2.1) f [M ] ≡ 〈(EllΓ(E1)− 1)(EllΓ0 (E2)− 1), [Z, ∂Z]〉 mod DΓ

n+1
,

where EllΓ is the Hirzebruch genus associated to Γ and EllΓ0 is its constant term
in the q–expansion (i.e. the stable χ−ζ genus). For further details, we refer to
[Lau00,vB08].

2.2. Establishing the Theorem. First of all, we turn the manifold Z = D (λ′
H
)⊕

D (λH) described in the introduction into a (U, fr)2–manifold. To this end, we note
that the tangent bundle already decomposes into

TZ ∼= π∗TB ⊕ π∗λ′
H ⊕ π∗λH

where π : Z → B is the natural projection; dropping the first summand (which
is stably trivial), we put E1 = π∗λ′

H
, E2 = π∗λH as complex vector bundles,

using quaternion multiplication to trivialize the restriction of E1 to the face ∂1Z =
S (λ′

H
)⊕D (λH) and the restriction of E2 to the other face.

Next, we observe that the Hirzebruch elliptic genus of a quaternionic line is
remarkably close to being modular w.r.t. the full modular group.

Lemma. For a quaternionic line bundle λH we have:

(2.2) EllΓ1(N) (λH) = 1 + g
(N)
2 c2 (λH) +

∑
k≥2

(−1)kG2k
ck2 (λH)

(2k − 2)!/2
,

where g
(N)
2 = ℘

(
τ, 2πiN

)
is a modular form of level N and weight two, and it satisfies

g
(N)
2 ≡ 1

12 mod ZΓ[[q]].

Proof. Recall that the power series associated to Hirzebruch elliptic genus of level
N may be expressed as (see e.g. [HBJ92, Appendix I])

EllΓ1(N)(x) = x
Φ (τ, x− ω)

Φ (τ, x)Φ (τ,−ω)

for ω = 2πi
N ; here, the Φ–function may be defined by

Φ(τ, z) = 2 sinh(z/2)
∏
n≥1

(1− ezqn) (1− e−zqn)

(1− qn)
2 ,
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and it satisfies the transformation property

Φ (τ, z + 2πi(λτ + μ)) = qλ
2/2e−λz(−1)λ+μΦ(τ, z) ∀λ, μ ∈ Z.

On the other hand, the Weierstraß ℘–function, which admits the expansion

(2.3) ℘ (τ, z) =
1

z2
+ 2

∑
k≥2

G2k(τ )
z2k−2

(2k − 2)!
,

is periodic with respect to the lattice 2πi(Zτ+Z). Thus, standard results for elliptic
functions imply (cf. [HBJ92, Appendix I, Theorem 5.6] for the case N = 2)

EllΓ1(N)(z)EllΓ1(N)(−z) = z2 (℘(τ, z)− ℘(τ, 2πi/N)) ;

substituting c2 (λH) = −z2 and making use of (2.3), equation (2.2) follows. Finally,

the modular properties of g
(N)
2 = ℘ (τ, 2πi/N) are an immediate consequence of

those of the Hirzebruch elliptic genus, and it is readily verified that

℘ (τ, 2πi/N) =
1

12
+

ζN
(1− ζN )2

+
∑
n≥1

⎛
⎝∑

d|n
d(ζdN + ζ−d

N − 2)

⎞
⎠ qn,

where ζN = exp(2πi/N), cf. [HBJ92, Appendix I, Lemma 3.3]. �

The remaining steps in establishing the Theorem are then fairly standard.

Proof of the Theorem. Identifying the pair

(Z, ∂Z) = (D(λ′
H)⊕D(λH), S(λ

′
H)⊕D(λH) ∪D(λ′

H)⊕ S(λH))

with the Thom space of the Whitney sum bundle λ′
H
⊕ λH, we have:

f
[
S⊕2
H

B
]
≡

〈
(EllΓ(π∗λ′

H)− 1)(EllΓ0 (π
∗λH)− 1), [Z, ∂Z]

〉
=

〈
EllΓ(λ′

H
)− 1

c2(λ′
H
)

EllΓ0 (λH)− 1

c2(λH)
, [B]

〉
.

Clearly, this expression vanishes if the dimension of the base is not divisible by four;
therefore, in what follows, we put dimB = 2m = 4n > 0. A priori, f

[
S⊕2
H

B
]
is

now expressed as the sum of n+ 1 Chern numbers weighted with coefficients that
can be read off of (2.2). However, index theory yields the divisibility result (which
is improvable for even n)〈

(−1)n
cn2 (λ

′
H
)

(2n)!/2
, [B]

〉
=

〈
Â(TB) ch (λ′

H) , [B]
〉
∈ Z;

moreover, the congruence d3 ≡ d5 mod 24 ensures that −( 1
12 + ζN

(1−ζN )2 )G2n+2 is

congruent (up to addition of a constant) to a modular form of top weight, i.e., of
weight 2n + 4. Thus, the contribution to f arising from vn = cn2 (λ

′
H
) vanishes.

Similarly, modulo the indeterminacy we have 0 ≡ (g
(N)
2 − 1

12 )
B2n+2

4n+4 (E2n+2 − 1) ≡
− B2n+2

48(n+1) (12g
(N)
2 + E2n+2), hence g

(N)
2

B2n+2

4n+4 ≡ 1
12G2n+2. Consequently, the previ-

ous argument also disposes of the contribution coming from un = cn2 (λH), and we
arrive at the formula (1.5). �
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Remark. A computation along the lines of the preceding lemma shows

Td (λH) = 1 +
∑
k=1

(−1)
k+1 B2k

2k

ck2 (λH)

(2k − 2)!
,

hence an application of the Thom isomorphism to the disk bundle leads to the
correct formula for the e–invariant of the single quaternionic transfer on a framed
manifold of dimension 4n, viz.

(2.4) eC[SHB] ≡ B2n+2

4n+ 4

〈
(−1)n

cn2 (λH)

(2n)!/2
, [B]

〉
mod Z,

the bracket yielding the λH–twisted Dirac index (which is even if n is even).

2.3. Calculations in low dimensions. In principle, one can combine computa-
tions in the ring of divided congruences with divisibility results for combinations of
Chern numbers (obtained from index theory) in order to simplify the formula (1.5)
in the generic situation; the following proposition is an illustration of this approach.

Proposition. In the notation of the Theorem, let the manifold B be of dimension
0 < 2m ≤ 14. Then the f–invariant (at the level N = 3) of the transfer

[
S⊕2
H

B
]
is

trivial unless

(i) dimB = 8 and 〈uv, [B]〉 is odd,
(ii) dimB = 12 and 4 � 〈u2v, [B]〉.

Proof. According to the Theorem, it is sufficient to check the cases m = 2n: If
n = 1 in (1.5), the sum is empty; if n = 2, the only contribution comes from the
coefficient of 〈uv, [B]〉, viz. 1

240
E4−1
240 ≡ 1

2 (
E4−1
240 )2 which has been identified with the

f–invariant of β4/4 = α2
4/4 in [vB08] (cf. also [vB09]). The remaining case n = 3

results in

f
[
S⊕2
H

B
]
≡ 1

12

(
1

240

E6 − 1

504

〈
uv2, [B]

〉
+

1

504

E4 − 1

240

〈
u2v, [B]

〉)

≡ 1

12

(
− 1

240

E6 − 1

504
+

1

504

E4 − 1

240

)〈
u2v, [B]

〉
≡ 1

4

(
E6 − 1

8

1

16
− 1

8

E4 − 1

16

)〈
u2v, [B]

〉
mod DΓ1(3)

10
,

since the congruence d5 ≡ d9 mod 240 implies 1
240

E6−1
504 ≡ 1

240
E10−1
264 , while the

index interpretation of 〈ch(λH − 2)ch(λ′
H
− 2), [B]〉 yields the divisibility result

12|〈
(
u2v + uv2

)
, [B]〉; thus, the second line follows, and the congruence dp ≡ d

mod p allows the removal of the primes p > 3 from the denominators.
It remains to be shown that the coefficient of 〈u2v, [B]〉 is of order precisely four;

this will follow immediately once we have established a stronger statement, viz.
that it coincides with the image of β4/2,2. To this end, we perform an admittedly
tedious yet (hopefully) transparent calculation, first expressing the coefficient in
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terms of the Eisenstein series E4:

1

4

(
E6 − 1

8

1

16
− 1

8

E4 − 1

16

)
= −1

4

E6 − 1

8

E4 − 1

16
+

1

64
E4

E6 − 1

8
− 1

32

E4 − 1

16

≡ −1

4

E6 − 1

8

E4 − 1

16
− 1

16

E4 − 1

16

≡ 1

4

(
E4 − 1

16

)2

− 1

16

E4 − 1

16
.

In terms of EΓ
1 and EΓ

3 , the first summand can be rewritten as follows:

1

4

(
E4 − 1

16

)2

=
1

4

[
1

4

(
E4

1 − 1

8

)2

+
1

2

E4
1 − 1

8

(
E4

1 − E1E3

)
+

1

4

(
E4

1 − E1E3

)2]

=
1

4

[(
E2

1 − 1

4

)4

+

(
E2

1 − 1

4

)3

+
1

4

(
E2

1 − 1

4

)2

+
1

2

E4
1 − 1

8

(
E4

1 − E1E3

)
+

1

4

(
E4

1 − E1E3

)2]

≡ 1

4
E2

1

[(
E2

1 − 1

4

)4

+

(
E2

1 − 1

4

)3

+
1

4

(
E2

1 − 1

4

)2

+
1

2

E4
1 − 1

8

(
E4

1 − E1E3

)
+

1

4

(
E4

1 − E1E3

)2]

≡ 1

4

(
E2

1 − 1

4

)4

+
1

4

(
E2

1 − 1

4

)3

+
1

16
E2

1

(
E2

1 − 1

4

)2

− 1

32
E1E3

=
1

4

(
E2

1 − 1

4

)4

+
1

2

(
E2

1 − 1

4

)3

+
1

16

(
E2

1 − 1

4

)2

− 1

32
E1E3,

where the next-to-last step follows from

1

8

E4
1 − 1

8

(
E6

1 − E3
1E3

)
≡ 1

64

(
E3

1E3 − 1
)
− 1

16

E6
1 − 1

4

≡ 1

64

(
E3

1E3 − 1
)
+

1

4

E4 − 1

16

≡ 1

64

(
E3

1E3 − 1
)

≡ −1

4

E4 − 1

16
E3

1E3 ≡ −1

4

E4 − 1

16
E1E3

≡ 1

4

E6 − 1

8
E1E3 ≡ − 1

32
E1E3.
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On the other hand, making use of − 1
32

E2
1−1
4 ≡ 1

4
E2

4−1
32 = 1

4
E8−1
32 we deduce

1

16

E4 − 1

16
=

1

32

(
E4

1 − 1

8
+ E4

1 − E1E3

)

≡ 1

32

E4
1 − 1

8
− 1

4
E4

1

E6 − 1

8
− 1

32
E1E3

≡ 1

32

E4
1 − 1

8
− 1

32
E1E3

≡ 1

32

(
E4

1 − 1

8
− E2

1 − 1

4

)
− 1

32
E1E3

=
1

16

(
E2

1 − 1

4

)2

− 1

32
E1E3.

Therefore, the coefficient of 〈u2v, [B]〉 is congruent to 1
4 (

E2
1−1
4 )4 + 1

2 (
E2

1−1
4 )3, which

can be identified with f(β4/2,2) by the results of [vB09]. �

2.4. The examples. Recall that the homogeneous space Sp(n)/Sp(1)×n may be
identified with the quaternionic flag manifold, i.e., the space of n–flags in Hn. In
particular, it comes with n tautological quaternionic line bundles λi, and the total
Whitney sum λ1 ⊕ . . . ⊕ λn is a trivial quaternionic n–plane bundle. If the latter
condition is expressed in terms of the Chern classes (and the structure of the fiber
bundles Sp(k)/Sp(1)×k → HP k−1 is taken into account), one recovers the well-
known integral cohomology ring of the quaternionic flag manifold, viz.

(2.5) H∗ (Sp(n)/Sp(1)×n;Z
) ∼= Z [t1, . . . , tn] /

(
S+ (t1, . . . , tn)

)
where ti = c2(λi) and S+ (t1, . . . , tn) is the ideal generated by the symmetric poly-
nomials (of positive degree) in these Chern classes. Furthermore, by the results
of [SW86], the quaternionic flag manifolds are stably parallelizable, hence can be
framed.

Remark. For definiteness, we may consider the stable tangential framing of the flag
manifold Sp(n)/Sp(1)×n which is induced by the identification

(n− 1)⊕Ad
(
Sp(n), Sp(1)×n

) ∼= Ad (SU(2n), Sp(n)) |Sp(1)×n ,

where Ad(G,H) denotes the isotropy representation H → Aut (TeHG/H).

Proof of Corollary 1. First of all, observe that the Theorem implies that the image
of the double quaternionic transfer in the tenth stable stem has trivial f–invariant;

actually, since πs
10S

0 ∼= Z/3⊕Z/2 is generated by β
(3)
1 and α1α5, the image of this

transfer itself is necessarily trivial. Moreover, the element β
(3)
1 generates the only

3–primary information visible to the f–invariant in the range under consideration

(see e.g. the tables in [Rav04]); we also remark that the square of β
(3)
1 is a non-

trivial element in πs
20S

0 ∼= Z/3 ⊕ Z/8, but it is in fourth filtration. Noting that
2β4 = 〈2, α3

1, β4/3〉, 4β4 = α2
2/2β3 and 4β4/2,2 = α2

1β4/3 account for the remaining

elements in higher filtration, all that remains to be checked is that the conditions
obtained in the previous proposition can be met: Clearly, for (i) we may take the
cartesian product of two copies of the flag manifold Sp(2)/Sp(1)×2 ≈ HP1 equipped
with the pullbacks of the respective tautological lines. Similarly, for (ii) we may
take the flag manifold Sp(3)/Sp(1)×3 equipped with any pair of distinct tautological
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lines λi, λj ; then by (2.5) we know that, up to sign, tit
2
j is dual to the fundamental

class. �

Proof of Corollary 2. Working in the cohomology ring (2.5) for a fixed n, the suc-
cessive use of all the relations reveals that

tn1 = −tn−1
1 (t2 + · · ·+ tn) = tn−2

1 (t2t3 + · · ·+ tn−1tn) = · · · =
= (−1)n−1 t1t2 . . . tn = 0;

specializing to n = 4, we also have t31t
3
2 = t31t2 (t1t3 + t1t4 + t3t4) = 0. Therefore,

if n ≥ 4, no non-trivial summands occur in the formula (1.5) for the f–invariant of
the tautological transfer of the quaternionic flag manifolds. �
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