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MULTIPLICATIVE SUBGROUPS AVOIDING LINEAR

RELATIONS IN FINITE FIELDS

AND A LOCAL-GLOBAL PRINCIPLE

HECTOR PASTEN AND CHIA-LIANG SUN

(Communicated by Matthew A. Papanikolas)

Abstract. We study a local-global principle for polynomial equations with
coefficients in a finite field and solutions restricted in a rank-one multiplicative
subgroup in a function field over this finite field. We prove such a local-global
principle for all sufficiently large characteristics, and we show that the result
should hold in full generality under a certain reasonable hypothesis related to
the existence of large multiplicative subgroups of finite fields avoiding linear
relations. We give a method for verifying the latter hypothesis in specific
cases, and we show that it is a consequence of the classical Artin primitive
root conjecture. In particular, this function field local-global principle is a
consequence of GRH. We also discuss the relation of these problems with a
finite field version of the Manin-Mumford conjecture.

1. Introduction

Let K be a global field, S a finite set of places of K containing Archimedean ones
(if any), and OS the ring of S-integral elements in K. For any ring R, let R× be the
group of units in R. Given a positive integer n, a polynomial f ∈ OS [X1, . . . , Xn]
and a subgroup Γ ⊆ O×

S , we consider the following conditions (here, Γn is the n-th
cartesian power of Γ):

(Lf,Γ) For every non-zero ideal a ⊆ OS there exists (x1, . . . , xn) ∈ Γn such
that f(x1, . . . , xn) ∈ a.

(Gf,Γ) There exists (x1, . . . , xn) ∈ Γn such that f(x1, . . . , xn) = 0.

The condition (Lf,Γ) can be seen as a local vanishing condition, while (Gf,Γ) is a
global one. A natural question is whether (Lf,Γ) implies (Gf,Γ), and the purpose
of this note is to make some progress on this matter in the positive characteristic
case.

As an interpretation of an old conjecture of Skolem, the implication (Lf,Γ) ⇒
(Gf,Γ) was proposed by Harari and Voloch (Remark 2.5 in [5]) in the case where
f is a linear form. In the case where K is a number field and f has total degree
one and involves at most two monomials, this implication is implicitly proved by
Skolem [13]. When K is a global function field with constant field Fq, the second
author (immediate consequences of Theorem 1 in [14] and of Theorem 2 in [15])
proves (Lf,Γ) ⇒ (Gf,Γ) under some additional hypotheses on f ; those hypotheses
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always fail when f has constant coefficients, i.e. f ∈ Fq[X1, . . . , Xn], and involves at
least three monomials. In the present work we investigate the implication (Lf,Γ) ⇒
(Gf,Γ), precisely in the case where f has constant coefficients and has an arbitrary
number of monomials.

Remark 1. Consider the condition (L∗
f,H) (resp. (G∗

f,H)) obtained from (Lf,Γ)
(resp. (Gf,Γ)) by replacing the subgroup Γn ⊆ (O×

S )
n with a subgroup H ⊆ (O×

S )
n.

Under the assumption that H is cyclic such that the subset of O×
S consisting of

those elements appearing as some component of some element in H generates a
subgroup of O×

S with rank at most one, Bartolome, Bilu and Luca (Theorem 1.2 in

[2]) prove the implication (L∗
f,H) ⇒ (G∗

f,H) in the number field case. Using an
essentially different argument, the second author (Corollary 2 in [16]) generalizes
this result to any global field.

Our main result on the local-global principle (Theorem 1.1 below) relies on the
following condition, where m is a positive integer, q is a prime power, and r is a
positive integer relatively prime to q:

Cond(m, q, r): For any (a1, . . . , am)∈Fm
q such that

∑m
i=1 ai �= 0, we have

∑m
i=1 aiξ

ei
r

�= 0 for every (e1, . . . , em) ∈ Zm, where ξr ∈ (Falg
q )× is a primitive r-th

root of unity.

We need some more notation to state our main result. If K is a global function
field with constant field Fq and Γ ⊆ O×

S is a subgroup, we let Fq(Γ) be the minimal
subfield of K containing both Fq and Γ. Also, we denote by Tor(Γ) the torsion
subgroup of Γ. Consider the following condition:

(Lf,Γ
pr ) For every prime ideal p ⊆ OS , there exists (x1, . . . , xn) ∈ Γn such that

f(x1, . . . , xn) ∈ p.

Clearly we have (Lf,Γ) ⇒ (Lf,Γ
pr ) and (Gf,Tor(Γ)) ⇒ (Gf,Γ). Note that in the case

where Γ is finite, the implication (Lf,Γ
pr ) ⇒ (Gf,Γ) ⇔ (Gf,Tor(Γ)) is trivial since

any non-zero element in K cannot lie in infinitely many prime ideals of OS . With
this trivial case excluded, the next result addresses a local-global principle which is
more precise than the conjectural implication (Lf,Γ) ⇒ (Gf,Γ) discussed above, in
the case where K is a global function field and f has constant coefficients.

Theorem 1.1. Suppose that K is a global function field with constant field Fq. Let
Γ ⊆ O×

S be a rank-one subgroup, n a positive integer and f ∈ Fq[X1, . . . , Xn]. Then

(Lf,Γ
pr ) ⇒ (Gf,Tor(Γ)) provided that Cond(m, q, r) holds, where m is the number of

monomials appearing in the expansion of∏
(τ1,...,τn)∈Tor(Γ)n

f(τ1X1, . . . , τnXn),

and r is a positive integer larger than the cardinality of the residue field of the global
field Fq(Γ) at any w ∈ ΣFq(Γ) lying below some place in S.

This theorem is proved in Section 5. We may remove the hypothesis on
Cond(m, q, r) if we could establish the following statement for each positive integer
m and each prime power q:

Conjecture (Conj(m, q)). The condition Cond(m, q, r) holds for infinitely many
positive integers r relatively prime to q.
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Statements similar to Conj(m, q) have already attracted the attention of re-
searchers, especially in the form “large multiplicative subgroups of finite fields must
satisfy some additive relation”; see for instance [1] and the references therein.

It is thus natural to investigate to what extent we can establish Conj(m, q). Note
that Conj(2, q) holds; indeed, for any (a1, a2) ∈ F2

q with a1 �= −a2, the quotient
−a1

a2
is a non-trivial (q − 1)-th root of unity and thus cannot be an r-th root of

unity provided that gcd(q− 1, r) = 1; thus Cond(2, q, r) holds for such r. The case
of m = 3 is established unconditionally in the following result.

Theorem 1.2. Suppose that m≤3. Then Cond(m, 2t, 4kt+1) and Cond(m, q, q
2k+1
2 )

both hold for all natural numbers k, t, and odd prime powers q. Hence, for m ≥ 3
we have that Conj(m, q) holds for all prime powers q.

We prove Theorem 1.2 in Section 2, based on a study of Fermat curves.
Let us recall Artin’s primitive root conjecture (APRC): for every non-square

positive integer a, the following statement should hold:

APRC(a) There are infinitely many primes � such that a generates (Z/�Z)×.

The relevance of APRC in our context is due to the following result.

Theorem 1.3. Let m be a positive integer, let p be a prime and let q = pt with t ≥ 1.
If there is a prime � ≥ mt satisfying that p generates (Z/�Z)×, then Cond(m, q, �)
is true. In particular, APRC(p) implies Conj(m, q) for all m and for all q a power
of p.

After the work of Gupta and Murty [4], Murty and Srinivasan [11] and finally
by Heath-Brown (Corollary 2 in [6]), we know that APRC(p) holds for all but
at most two prime numbers p. Moreover, Hooley [8] showed that the generalized
Riemann hypothesis (GRH) for certain Dedekind zeta functions implies a sharp
form of APRC, namely, that for every non-square positive integer a there is a set of
primes S with positive natural density in the primes such that a generates (Z/�Z)×

for each prime � ∈ S. These results towards APRC, together with Theorem 1.1 and
Theorem 1.3, yield the next consequence for the local-global principle.

Theorem 1.4. For all primes p with at most two exceptions (hence, for all suffi-
ciently large primes p), the following local-global principle holds:

Let K be a global function field with constant field Fq of characteristic p. Let Γ ⊆
O×

S be a rank-one subgroup, let n be a positive integer and let f ∈ Fq[X1, . . . , Xn].

Then (Lf,Γ
pr ) ⇒ (Gf,Tor(Γ)).

Moreover, GRH implies that the local-global principle holds without restrictions
on the characteristic.

While there is no prime p for which it is unconditionally known that APRC(p)
holds, the next result permits the verification of Conj(m, q) for any given m and
q after a finite amount of computations which finds an odd prime � validating the
hypothesis in the following statement.

Theorem 1.5. Let m be a positive integer, and let q = pt be a prime power with p
prime. Suppose that there is an odd prime � > mt such that p generates (Z/�2Z)×.
Then Cond(m, q, �k) is true for all k ≥ 1, hence Conj(m, q) holds.

One can ask if the hypothesis in Theorem 1.5 is expected to be satisfied, so that
a finite computation is enough to successfully verify Conj(m, q). In fact, this is the
case as we now explain.
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Recall that a prime number � is called a Wieferich prime to the base a if a�−1 ≡ 1
mod �2. In this terminology, the hypothesis in Theorem 1.5 always holds under the
assumption that for any prime p, there are infinitely many non-Wieferich primes
� to base p such that p generates (Z/�Z)×. This assumption is implied by two
well-known conjectures in analytic number theory. First, it is widely believed that
the set of Wieferich primes to any given basis has natural density zero; see [10].
Moreover, the result of Hooley on APRC mentioned above shows that under GRH
we have a positive proportion of primes � for which p is a primitive root modulo �.
Therefore, assuming GRH and the sparseness of Wieferich primes, one may always
verify Conj(m, q) by using Theorem 1.5. For the sake of concreteness, here is a
simple numerical example:

Let us check that Conj(4, 9) holds. In the notation of Theorem 1.5 we have
m = 4, p = 3, q = 9, t = 2, and we need to find a prime � > mt = 16 such that
p = 3 generates (Z/�2Z)×. The relevant information for the first few primes � > 16
is in the following table:

� 17 19 23 29
#(Z/�2Z)× 272 342 506 812

#〈3〉 272 342 253 812

Thus, we can take � = 17, 19 or 29 to conclude that Conj(4, 9) holds. (Instead of
checking if 3 is a primitive root modulo �2 for primes � > 16, we could have checked
if 3 is a primitive root modulo � and then verify if it is modulo �2 – the previous
heuristic suggests that this approach is more efficient in general.)

We prove both Theorem 1.3 and Theorem 1.5 in Section 3.
There is also a connection between our Conj(m, q) and the Manin-Mumford

conjecture. The latter conjecture does not have an obvious analogue over finite
fields (note that we do not mean global function fields) because all algebraic points
of a semi-abelian variety A defined over Fq are torsion. However, Poonen proposed
an analogue for the Manin-Mumford conjecture over finite fields, based on the idea
that for a semi-abelian variety A/Fq one should consider a point in A(Falg

q ) as
non-torsion whenever its order is ‘large’ in a precise way. See Section 4 in [18] or
Conjecture 4.2 in Section 4 below for the precise statement of Poonen’s conjecture.
In Section 4 we prove Theorem 4.4, which roughly says that a much weaker version
of Poonen’s conjecture implies the following stronger version of Conj(m, q), where
m is a positive integer and q is a prime power.

Conjecture (sConj(m, q)). There is a set of primes L (depending on m and q)
with natural density 1 in the primes such that the condition Cond(m, q, �) holds for
all � ∈ L.

Here, we recall that the (natural) density of a set of primes P (in the primes) is
the following quantity, provided that it exists:

lim
t→+∞

#P ∩ [1, t]

π(t)

where π(t) is the number of prime numbers up to t.
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2. Conj(m, q) and Fermat curves

This section is devoted to proving Theorem 1.2. Our approach using Fermat
curves originates in the work of Yekhanin (cf. Lemma 5, Theorem 6 and Corollary
7 in [19]). See also the appendix in [1].

For every i ∈ N, we denote by μ(i) ⊆ (Falg
q )× the finite subgroup generated by a

primitive i-th root of unity.

Lemma 2.1. Suppose that n ≤ 3 and let a1, . . . , an ∈ F∗
q . Then every Fq4-rational

point on the Fermat hypersurface in Pn−1 defined by
∑n

i=1 aiX
q+1
i = 0 is actually

Fq2-rational.

Proof. We can assume that n = 3, for otherwise the result can be easily checked.
Note that each ai ∈ F∗

q is a (q+ 1)-th power of elements in Fq2 . So we may further
assume that ai = 1 for each i.

Denote by V ⊆ P2 the Fermat curve defined by
∑3

i=1 X
q+1
i = 0. Letting [x1 :

x2 : x3] ∈ V (Fq4) we note that [xq2

1 : xq2

2 : xq2

3 ] ∈ V (Fq4). For clarity, we assume
that xi ∈ Fq4 for each i.

It suffices to show that [x1 : x2 : x3] = [xq2

1 : xq2

2 : xq2

3 ] in P2. Assume that
this is false. Then there is a unique line L in P2 passing through [x1 : x2 : x3] and

[xq2

1 : xq2

2 : xq2

3 ], and it is parameterized as [sx1+ txq2

1 : sx2+ txq2

2 : sx3+ txq2

3 ] with
[s, t] ∈ P1. The line L is contained in V as the following calculation shows:

3∑
i=1

(sxi + txq2

i )q+1 =
3∑

i=1

(sxi + txq2

i )(sqxq
i + tqxq3

i )

= sq+1
3∑

i=1

xq+1
i + stq

3∑
i=1

xq3+1
i + sqt

(
3∑

i=1

xq+1
i

)q

+ tq+1

(
3∑

i=1

xq+1
i

)q2

= 0 + stq
3∑

i=1

xq3+1
i + 0 + 0 = 0,

where the last equality holds since
(∑3

i=1 x
q3+1
i

)q

=
∑3

i=1 x
q4+q
i =

∑3
i=1 x

1+q
i = 0.

However, V is a Fermat curve of degree q+1, thus it cannot contain a line, and we
obtain a contradiction. �

Note that F∗
q ⊆ μ( q

4−1
q+1 ) ⊆ F∗

q4 .

Proposition 2.2. Suppose that n ≤ 3. Let x1, . . . , xn ∈ μ( q
4−1
q+1 ) and a1, . . . , an ∈

F∗
q satisfy

∑n
i=1 aixi = 0. Then x1, . . . , xn reduce to the same element in the

quotient μ( q
4−1
q+1 )/F∗

q.

Proof. Letting y1, . . . , yn ∈ F∗
q4 such that xi = yq+1

i for each i, we see that

[y1, . . . , yn] is an Fq4-rational point on the hypersurface in Pn−1 defined by∑n
i=0 aiX

q+1
i = 0. By Lemma 2.1, we have for each i that yi

y1
∈ F∗

q2 , whence
xi

x1
= ( yi

y1
)q+1 ∈ F∗

q . �

Corollary 2.3. Suppose that n ≤ 3. Let a1, . . . , an ∈ F∗
q satisfy

∑n
i=1 ai �= 0.

When q is even, we put G = μ(q2 + 1); when q is odd, we put G = μ( q
2+1
2 ). Then

there is no (x1, . . . , xn) ∈ Gn such that
∑n

i=1 aixi = 0.
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Proof. Assume that for some (x1, . . . , xn) ∈ Gn we have
∑n

i=1 aixi = 0. Since

G ⊆ μ( q
4−1
q+1 ) for any prime power q, Proposition 2.2 implies that we may further

suppose for all i that xi ∈ F∗
q . It follows that xi = (xq−1

i )
q+1
2 xi = x

q2+1
2

i = 1 when

q is odd, and that x2
i = (xq−1

i )q+1x2
i = xq2+1

i = 1, i.e. xi = 1, when q is even. This
contradicts the assumption

∑n
i=1 ai �= 0. �

Proof of Theorem 1.2. Fix a natural number k and a prime power q. If q is even,

we put G = μ(q2k + 1); if q is odd, we put G = μ( q
2k+1
2 ). By definition of

Cond(m, q, i) and μ(i), Corollary 2.3 yields the desired result since a1, . . . , am ∈ F∗
qk

satisfy
∑m

i=1 ai �= 0. �

3. Conj(m, q) and primitive roots

In this section we prove Theorem 1.3 and Theorem 1.5. Both are obtained from
a more general result, for which it will be convenient to introduce the following
hypothesis for pt, �k prime powers and m a positive integer:

Hyp(m, pt, �k): p is a primitive root modulo �k, and � > mgcd(t,�2−�).

Theorem 3.1. Let m, t and k be positive integers, and let p and � be primes. If
Hyp(m, pt, �k) holds, then Cond(m, q, �k) holds.

Before proving Theorem 3.1, let us first deduce Theorem 1.3 and Theorem 1.5
from it.

Proof of Theorem 1.3. Since p is a primitive root modulo the prime � and � >

mt ≥ mgcd(t,�2−�), the hypothesis Hyp(m, q, �) in Theorem 3.1 is satisfied, and
hence Cond(m, q, �) holds. �

Recall the following elementary fact.

Lemma 3.2. Let � be an odd prime. If a is a primitive root modulo �2, then it is
a primitive root modulo �k for all integers k ≥ 1.

Proof of Theorem 1.5. Assume, as in the statement, that there is a prime � >

mt ≥ mgcd(t,�2−�) such that p generates (Z/�2Z)×. Fix a natural number k ≥ 1. By
Lemma 3.2 we get that p generates (Z/�kZ)×. Hence the hypothesis Hyp(m, q, �k)
in Theorem 3.1 is satisfied, and then Cond(m, q, �k) holds. �

To prove Theorem 3.1, we need the next two elementary lemmas, the first of
which is well known.

Lemma 3.3. The cyclotomic polynomial Φm(x) ∈ Z[x] factors in Fq[x] as a product
of distinct irreducible polynomials all of which have degree equal to the order of q
in the multiplicative group (Z/mZ)×, where m is a positive integer relatively prime
to the prime power q.

Lemma 3.4. Let k be a field, P ∈ k[X] a polynomial and N a positive integer. Let
R ∈ k[X] be the remainder of P divided by XN − 1. The number of monomials in
R is at most the number of monomials in P .

Proof. By induction. Noting that R = P whenever degP < N , we assume the
truth of this lemma in the case where degP < d and prove it when degP = d,
where d ≥ N . Letting ad ∈ k× be the leading coefficient of P , we note that
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P0(X) = P (X)− adX
d−N (XN − 1) is either the zero polynomial or has degree less

than d. We also observe that the number of monomials in P0 is no more than that
in P . By the induction hypothesis, the number of monomials in the remainder of
P0(X) divided by XN − 1 is at most that in P0, which is no more than that in P
as observed. Noting that R(X) is also the remainder of P0(X) divided by XN − 1,
we finish the proof. �

Proof of Theorem 3.1. The desired conclusion holds trivially when m = 1. Assume
that hypothesis Hyp(m, q, �k) is satisfied for certain positive integers m ≥ 2, prime
powers q = pt and �k. We note that � cannot divide t, for otherwise one would

have � > mgcd(t,�2−�) ≥ m� ≥ 2�, a contradiction. This gives gcd(t, �k − �k−1) =
gcd(t, �− 1) = gcd(t, �2 − �).

Suppose that Cond(m, q, �k) fails, i.e., for some (a1, . . . , am) ∈ Fm
q with

∑m
i=1 ai

�= 0 we have

(3.1)
m∑
i=1

aiξ
ei
�k

= 0

for some (e1, . . . , em) ∈ Zm, where ξ�k ∈ (Falg
q )× is a primitive �k-th root of unity.

For each prime-to-� integer 0 ≤ e ≤ �k − 1, let fe be the unique integer such that
0 ≤ fe ≤ �k − 1 and efe ∈ 1 + �kZ; we define the auxiliary polynomials

Pe(X) =

m∑
i=1

aiX
eife ∈ Fq[X].

Using (3.1) we see that Pe(ξ
e
�k) = 0 for each prime-to-� integer 0 ≤ e ≤ �k − 1.

Since p generates the finite abelian group (Z/�kZ)× with cardinality �k−�k−1, the

order of q = pt in (Z/�kZ)× is �k−�k−1

d , where d = gcd(t, �k − �k−1) = gcd(t, �2 − �)
as noted in the beginning of this proof. By Lemma 3.3, the cyclotomic polynomial
Φ�k factors as a product of d distinct irreducible polynomials over Fq. As each root
of Φ�k in Falg

q is ξe for some prime-to-� integer 0 ≤ e ≤ �k−1, there are d prime-to-�

integers 0 ≤ n1 < · · · < nd ≤ �k − 1 such that Φ�k divides the product Pn1
· · ·Pnd

over Fq. Let R ∈ Fq[X] be the remainder obtained when we perform the Euclidean

division of (Pn1
· · ·Pnd

) (X) by X�k − 1 in Fq[X]. Since R(1) = (Pn1
· · ·Pnd

)(1) =

(
∑m

i=1 ai)
d �= 0, we note that R is not the zero polynomial. Also, by Lemma 3.4,

the number of monomials appearing in R is no more than that in Pn1
· · ·Pnd

, and

thus is at most md. Since Φ�k(X) divides both Pn1
· · ·Pnd

and X�k − 1 in Fq[X],
it follows that Φ�k divides the non-zero polynomial R, i.e. there is some non-zero
polynomial Q ∈ Fq[X] such that R = QΦ�k . Since R has degree at most �k − 1 and
Φ�k has degree �k−1(�− 1), it implies that Q has degree at most �k−1 − 1. Noting
that

Φ�k(X) = X�k−1(�−1) +X�k−1(�−2) + · · ·+X�k−1

+ 1,

we see that the expression

R(X) = Q(X)X�k−1(�−1) +Q(X)X�k−1(�−2) + · · ·+Q(X)X�k−1

+Q(X)

involves no cancellation among terms. From this, we observe that R has at least
� monomials. Since � > md, this is a contradiction to the fact that at most md

monomials appear in R. This shows that Cond(m, q, �k) holds. �
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4. Finite field analogue of the Manin-Mumford conjecture

In this section, we connect Poonen’s analogue of the Manin-Mumford conjecture
over finite fields with our conjecture sConj(m, q), which is a much stronger version of
Conj(m, q). We begin by recalling the statement of the Manin-Mumford conjecture
over number fields, which is now a theorem.

Theorem 4.1. Let K be a number field, let A/K be a semi-abelian variety, and let
X/K be a closed subvariety of A. Let Z be the union of all translates of positive-
dimensional semi-abelian subvarieties of A defined over Kalg and contained in X.
Then at most finitely many points x ∈ (X � Z)(Kalg) are torsion.

A first version of this was proved by Raynaud [12] in the case when X is a
curve of genus g > 1 embedded in an abelian variety, and since then the result has
been extended in a number of ways. The version stated here is due to Hindry (cf.
Théorème 2 in [7]). See [17] for a survey on this subject.

As promised in the introduction, let us recall the following finite field analogue
of the Manin-Mumford conjecture proposed by Poonen (see Section 4 in [18]).

Conjecture 4.2. Let k be a finite field, let A/k be a semi-abelian variety, and let
X/k be a closed subvariety of A. Let Z be the union of all translates of positive-
dimensional semi-abelian subvarieties of A defined over kalg and contained in X.
Then there is a positive constant c > 0, depending on A and X, such that for all
x ∈ (X � Z)(kalg) we have

#〈x〉 > (#κx)
c,

where 〈x〉 ⊂ A(kalg) is the cyclic subgroup generated by x, and κx is the smallest
field extension of k such that x ∈ A(κx).

One way to think about this conjecture is that, although all Falg
q -rational points

in A are torsion, one should see points of ‘large’ order as the finite field analogue
of non-torsion points. From this point of view, Conjecture 4.2 is analogous to the
Manin-Mumford conjecture over number fields. Remarkably, the Manin-Mumford
conjecture over number fields is now a theorem (and there are analogous results
over function fields; see for instance [9]), while Conjecture 4.2 remains open.

For our purposes, the following weaker version of Conjecture 4.2 will suffice.

Conjecture 4.3. Let k be a finite field, let A/k be a semi-abelian variety, and let
X/k be a closed subvariety of A. Let Z be the union of all translates of positive-
dimensional semi-abelian subvarieties of A defined over kalg and contained in X.
Then, depending on A and X, there is a positive function F (t) defined on Z≥1

satisfying for every ε > 0 that F (t) = O(tε) as t goes to infinity, such that for all
x ∈ (X � Z)(kalg) we have

(4.1) #〈x〉 > [κx : k]2

F ([κx : k])
,

where 〈x〉 ⊂ A(kalg) is the cyclic subgroup generated by x, and κx is the smallest
field extension of k such that x ∈ A(κx).

To derive Conjecture 4.3 from Conjecture 4.2, just note that #κx = (#k)[κx:k]

and take F (t) = t2(#k)−ct, which tends to zero as t goes to infinity. This ex-
ponentially decaying property is not necessary for our application, where we only
have to require that F (t) does not grow too fast; for instance, candidates of type



A LOCAL-GLOBAL PRINCIPLE 2369

F (t) = (log t)b (with positive constants b) make the bound (4.1) useful. To the best
of our knowledge, however, even this much weaker Conjecture 4.3 remains open,
although substantial progress has been achieved by Voloch in the case A = G2

m; see
the main Theorem in [18]. We remark that the exponent 2 in (4.1) is critical in
Voloch’s work.

The main result in this section is the following.

Theorem 4.4. Let m be a positive integer, and let q be a power of a prime. Suppose
that Conjecture 4.3 holds for k = Fq and any torus A with dimension < m. Then
sConj(m, q) holds.

Before proving this result, we need the following lemmas.

Lemma 4.5. Let K be an algebraically closed field, and let S be a semi-abelian
variety embedded in a torus Gr

m/K. Then S is a torus.

Proof. There is a maximal torus subgroup T ⊆ S such that A = S/T is an abelian
variety. On the other hand T is also a subtorus of Gr

m and the quotient Gr
m/T is

affine. Since A embeds into Gr
m/T , we conclude that A is a point. �

Lemma 4.6. Let r ≥ 2 be an integer. Let a1, . . . , ar ∈ Fq be non-zero, and let
X/Fq be the subvariety of Gr

m/Fq defined by

X : a1x1 + . . .+ arxr = 1.

Let Z be the union of all translates of positive-dimensional semi-abelian subvarieties
of Gr

m contained in X and defined over Falg
q . Let Z ′ be the union of subvarieties of

X ⊆ Gr
m defined by the vanishing of a (proper, non-empty) subsum of a1x1 + . . .+

arxr. Then Z ⊆ Z ′.

Proof. Up to a multiplicative translation, we can assume that ai = 1 for each i
(because they are non-zero), so X is given by x1 + . . . + xr = 1. Let G be a
translate of some positive-dimensional (proper) semi-abelian subvariety T ⊂ Gr

m

contained in X and defined over Falg
q . By Lemma 4.5, we have T � Gk

m for some

1 ≤ k < r. It suffices to show for any b = (b1, . . . , br) ∈ G(Falg
q ) that some proper

non-empty subsum of the bi vanishes. Since G = b · T , there are rational functions
fi ∈ Falg

q (y), 1 ≤ i ≤ r, defining a rational map f = (fi)1≤i≤r : P1 ��� T which

restricts to an embedding of Gm ⊆ P1 into T , and since T is an algebraic group
and b · T = G ⊂ X, we have for each positive integer n that

(4.2) b1f
n
1 + . . .+ brf

n
r = 1.

As f is non-constant, some fi must have a pole at p ∈ P1 \Gm. Let I ⊆ {1, . . . , r}
be the subset of indices i such that the order of pole for fi at p is maximal over
i ∈ {1, . . . , r}. Noting that the right-hand side of (4.2) has no poles, we look at the
Taylor expansion of both sides of (4.2) at p, and find∑

i∈I

biα
n
i = 0,

where αi ∈ (Falg
q )× is the first non-zero coefficient of the power series expansion

of fi at p. Choosing a suitable positive integer n we conclude
∑

i∈I bi = 0. Note
that I is non-empty by construction, and it is a proper subset of {1, . . . , r} because∑r

i=1 bi = 1. �
We also need the following result of Erdös and Murty (Theorem 1 in [3]).
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Theorem 4.7. Let f(t) be a positive function tending to 0 as t grows. Let a > 1
be an integer. Let P be the set of prime numbers � satisfying that the order of a in

(Z/�Z)× is greater than �
1
2+f(�). Then P has density 1 in the primes.

Proof of Theorem 4.4. For any positive integer n, it follows from relabeling and
scaling that sConj(n, q) is equivalent to the following statement: There is a set of
primes L (depending on n and q) with natural density 1 in the primes such that

for any (a1, . . . , an−1) ∈ Fn−1
q with

∑n−1
i=1 ai �= 1, the equation

∑n−1
i=1 aixi = 1 has

no solutions in the group μ(�) of �-th roots of unity in Falg
q .

Assume that Conjecture 4.3 holds for k = Fq and any torus A with dimension
< m. We desire to show that sConj(m, q) holds; the case where m = 1 is trivial.
By induction on m, we can assume that sConj(n, q) holds for all n < m.

Write r = m − 1 and let (a1, . . . , ar) ∈ Fr
q be such that

∑r
i=1 ai �= 1. Let

X0 be the subvariety of Gr
m defined by

∑r
i=1 aixi = 1; let Z0 be the union of all

translates of positive-dimensional semi-abelian subvarieties of Gr
m defined over Falg

q

and contained in X0. Note that 1 ∈ (Gr
m \X0)(F

alg
q ).

Let F (t) be the positive function on Z≥1 coming from Conjecture 4.3 specialized
to the case where (k,A,X) = (Fq,G

r
m, X0). Replacing F (t) by max{F (n) : 1 ≤

n ≤ t} if necessary, we can assume without loss of generality that F (t) is non-
decreasing (keeping the bound (4.1) valid and the property that for every ε > 0 we
have F (t) = O(tε) as t goes to infinity).

Consider the function

f(t) =
log(max{1, F (t)} · log t)

log t

which tends to 0 as t goes to infinity because F (t) = O(tε) for every ε > 0. Let P
be the set of primes � such that q has order larger than

�
1
2+f(�) = �

1
2 max{1, F (�)} log �

in (Z/�Z)×. By Theorem 4.7 we know that P has density 1 in the primes.
Now we show for any � ∈ P that

(4.3) μ(�)r ∩ (X0 � Z0)(F
alg
q ) = ∅.

Indeed, under Conjecture 4.3, we have for all x ∈ (X0 � Z0)(F
alg
q ) that

#〈x〉 > [κx : Fq]
2

F ([κx : Fq])
.

Suppose that for some � ∈ P the set μ(�)r ∩ (X0 � Z0)(F
alg
q ) is not empty and

contains some element x. Then we would derive the following contradiction:

� = #〈x〉 > [κx : Fq]
2

F ([κx : Fq])
>

�max{1, F (�)}2(log �)2
F (�)

≥ �max{F (�),
1

F (�)
}(log �)2 ≥ �(log �)2,

where the first equality is due to the condition 1 /∈ X0(F
alg
q ), and the second in-

equality is deduced as follows: Lemma 3.3 gives that [κx : Fq] equals the order of q
modulo �, hence

�
1
2 max{1, F (�)} log � < [κx : Fq] < �
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which, together with the fact that F is non-decreasing, yields the desired inequality.
This proves (4.3).

It remains to claim that there is a set of primes P ′ of density 1 such that for all
� ∈ P ′ we have

(4.4) μ(�)r ∩ Z0(F
alg
q ) = ∅,

since then for every � in the set of primes P ∩ P ′ having density 1, we have

μ(�)r ∩X0(F
alg
q ) = ∅,

i.e. sConj(m, q) holds. By Lemma 4.6, Z0 is contained in the union of subvarieties of
X0 ⊆ Gr

m defined by the vanishing of
∑

i∈I aixi over all (finitely many) non-empty
(proper) subsets I � {1, . . . , r}. It suffices to show that for every such I there is a
set of primes P ′

I with density 1 such that for all � ∈ P ′
I there is no common solution

for
∑

i∈I aixi = 0 and
∑r

i=1 aixi = 1 (equivalently, for
∑

i∈{1,...,r}�I aixi = 1

and
∑r

i=1 aixi = 1) over μ(�), for then we can let P ′ =
⋂

I�{1,...,r} P ′
I since the

intersection of finitely many sets of primes with density 1 also has density 1. Since
#I ≤ r < m and #({1, . . . , r} � I) ≤ r − 1 < m − 1, the induction hypothesis
guarantees that both sConj(#I, q) and sConj(#({1, . . . , r}� I) + 1, q) holds. Note
that since

∑r
i=1 ai �= 1, we have either

∑
i∈I ai �= 0 or

∑
i∈{1,...,r}�I ai �= 1. By the

first sentence of this proof, we therefore conclude that the desired P ′
I always exists.

This finishes our proof. �

5. Proof of Theorem 1.1

For the purposes of this section, a monomial means a product of variables in a
polynomial ring (the empty product gives the monomial 1 by convention), while a
term is a monomial multiplied by a non-zero coefficient.

Lemma 5.1. Suppose that K is a global function field with constant field Fq. Let
Γ ⊆ O×

S be a finitely generated subgroup and let Φ ⊆ Γ be a free subgroup such
that Γ = {τφ : τ ∈ Tor(Γ), φ ∈ Φ}; note that such Φ always exists (as Γ is finitely
generated abelian), and that Tor(Γ) ⊆ Fq. Let f ∈ Fq[X1, . . . , Xn] and define

g =
∏

(τ1,...,τn)∈Tor(Γ)n

f(τ1X1, . . . , τnXn) ∈ Fq[X1, . . . , Xn].

Let m be the number of terms appearing in g after expanding it, and let h ∈
Fq[Y1, . . . , Ym] be the linear form obtained by formally replacing the monomials
in g by new variables Yi and keeping the respective coefficients. Suppose that
(Lh,Φ

pr ) ⇒ (Gh,{1}) holds. Then (Lf,Γ
pr ) ⇒ (Gf,Tor(Γ)) holds.

Proof. From Γ = {τφ : τ ∈ Tor(Γ), φ ∈ Φ}, it follows that (Lf,Γ
pr ) implies (Lg,Φ

pr ),

and that (Gg,{1}) implies (Gf,Tor(Γ)). On the other hand, by construction of h we
see that (Lg,Φ

pr ) implies (Lh,Φ
pr ), and that (Gh,{1}) implies (Gg,{1}). This finishes the

proof. �
Proposition 5.2. Let K be a global function field of characteristic p with constant
field Fq. Let Φ ⊆ O×

S be an infinite cyclic subgroup, and let m be a positive integer.
Then for any positive integers m and every linear form h ∈ Fq[X1, . . . , Xm] which

has m monomials, we have (Lh,Φ
pr ) ⇒ (Gh,{1}) provided that Cond(m, q, r) holds,

where r is a positive integer larger than the cardinality of the residue field of the
global field Fq(Φ) at any w ∈ ΣFq(Φ) lying below some place in S.



2372 HECTOR PASTEN AND CHIA-LIANG SUN

Proof. Let h =
∑m

i=1 aiXi for certain a1, . . . , am ∈ F×
q . Suppose that (G

h,{1}) fails,

that is,
∑m

i=1 ai = h(1, . . . , 1) �= 0. It suffices to show that (Lh,Φ
pr ) fails. By the

assumption that Cond(m, q, r) holds, since
∑m

i=1 ai �= 0, we have
∑m

i=1 aiξ
ei
r �= 0

for every (e1, . . . , em) ∈ Zm, where ξr ∈ (Falg
q )× is a primitive r-th root of unity.

Let γ ∈ K×�Fq generate Φ. We note that Fq(Φ) = Fq(γ) and that the extension
K/Fq(Φ) is finite. Consider the Fq-isomorphism of fields Fq(T ) � Fq(Φ) given by
T �→ γ. Let F ∈ Fq[T ] be the minimal polynomial of ξr over Fq. Under this
isomorphism, the irreducible polynomial F corresponds to a place w0 ∈ ΣFq(Φ).
Since the residue field of Fq(Φ) at w0 contains ξr, the cardinality of this residue
field must exceed r, and hence the property of r ensures that w0 does not lie below
any place in S. Let P be the maximal ideal associated to a place v0 ∈ ΣK above
w0 ∈ ΣFq(Φ). Then we have v0 /∈ S and thus P ⊂ OS is a prime ideal.

Now we show that (Lh,Φ
pr ) fails by proving that for all (e1, . . . , em) ∈ Zm we have∑m

i=1 aiγ
ei /∈ P. Suppose that

∑m
i=1 aiγ

ei ∈ P for some (e1, . . . , em) ∈ Zm. Then∑m
i=1 aiγ

ei lies in P∩Fq(Φ) and hence vanishes at w0. The Fq-isomorphism of fields
Fq(T ) � Fq(Φ) given by T �→ γ shows that the rational function

∑m
i=1 aiT

ei lies in
the ideal generated by F in Fq[T, T

−1]. Since F (ξr) = 0, we deduce that
∑m

i=1 aiT
ei

vanishes at ξr. This contradicts Cond(m, q, r) and finishes our proof. �

Proof of Theorem 1.1. This follows from the previous two results. �
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