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LINKED DETERMINANTAL LOCI AND LIMIT LINEAR SERIES
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(Communicated by Lev Borisov)

Abstract. We study (a generalization of) the notion of linked determinantal
loci recently introduced by the second author, showing that as with classical de-
terminantal loci, they are Cohen-Macaulay whenever they have the expected
codimension. We apply this to prove Cohen-Macaulayness and flatness for
moduli spaces of limit linear series, and to prove a comparison result between
the scheme structures of Eisenbud-Harris limit linear series and the spaces of
limit linear series recently constructed by the second author. This compari-
son result is crucial in order to study the geometry of Brill-Noether loci via

degenerations.

1. Introduction

The theory of limit linear series for curves of compact type was developed by
Eisenbud and Harris in a series of papers in the 1980’s, with the foundational
definitions and results appearing in [EH86]. They were able to give spectacular ap-
plications (see for instance [EH87a] and [EH87b]), despite the fact that the moduli
space of limit linear series they constructed for families of curves was not proper.
However, for finer analyses, it becomes important to have a proper moduli space.
This arises for instance when one wants to carry out intersection theory calculations
on moduli spaces of linear series, as in Khosla [Kho], or when one wants to study
the geometry of moduli spaces of linear series, as in the current work of Castorena-
Lopez-Teixidor [CLT] and Chan-Lopez-Pflueger-Teixidor [CLPT]. A major step in
this direction was accomplished in [Oss14b], when an equivalent definition of limit
linear series was introduced, leading to the first proper moduli spaces in families.
However, while the new definition was shown to agree with the Eisenbud-Harris
definition on a set-theoretic level, the scheme structures are difficult to compare
directly. The Eisenbud-Harris scheme structure is more amenable to explicit cal-
culation, but without knowing that the two scheme structures agree, one cannot
carry through the arguments of [CLT] and [CLPT], because different nonreduced
structures in the special fiber will typically affect more elementary aspects of the
generic fiber, such as connectedness or the genus.

In the present paper, we address this issue by showing that under the typical
circumstances considered in limit linear series arguments, the two scheme structures
do in fact agree. We further show that when they have the expected dimension, limit
linear series spaces are Cohen-Macaulay and flat. Our arguments center around an
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analysis of the “linked determinantal loci” introduced in Appendix A of [Oss14a] in
order to prove smoothing theorems for limit linear series. In fact, we study a more
general definition than the one considered in [Oss14a], which is also a generalization
of classical determinantal loci. A preliminary definition is the following:

Definition 1.1. Let S be a scheme, and d, n be positive integers. Suppose that
E1, . . . ,En are vector bundles of rank d on S and we have morphisms

fi : Ei Ñ Ei`1, f i : Ei`1 Ñ Ei

for each i “ 1, . . . , n ´ 1. Given s P ΓpS,OSq, we say that E‚ “ pEi, fi, f
iqi is an

s-linked chain if the following conditions are satisfied:

(I) For each i “ 1, . . . , n ´ 1,

fi ˝ f i
“ s ¨ id, and f i

˝ fi “ s ¨ id .

(II) On the fibers of the Ei at any point with s “ 0, we have that for each
i “ 1, . . . , n ´ 1,

ker f i
“ im fi, and ker fi “ im f i.

(III) On the fibers of the Ei at any point with s “ 0, we have that for each
i “ 1, . . . , n ´ 2,

im fi X ker fi`1 “ p0q, and im f i`1
X ker f i

“ p0q.

We then define linked determinantal loci as follows:

Definition 1.2. Let E‚ be an s-linked chain on a scheme S. Given r, r1, rn ą 0, sup-
pose F1,Fn are vector bundles of rank r1 and rn respectively, and let g1 : E1 Ñ F1

and gn : En Ñ Fn be any morphisms. Then the associated linked determinantal
locus is the closed subscheme of S on which the induced morphisms

(1.1) Ei Ñ F1 ‘ Fn

have rank less than or equal to r for all i “ 1, . . . , n.

In the above, the morphism (1.1) is induced by g1 ˝f1 ˝ ¨ ¨ ¨ ˝f i´1 and gn ˝fn´1 ˝

¨ ¨ ¨ ˝ fi. Note that the case n “ 1 and Fn “ 0 recovers the usual notion of determi-
nantal locus.1 It appears a priori that the codimension could be much larger than
for a single determinantal locus, but it turns out that the different determinantal
conditions we are imposing are highly dependent. The case considered in Appendix
A of [Oss14a] amounted to requiring that g1 and gn be quotient maps onto bundles
of rank r. In that situation, it was shown that the classical codimension bound
also applies to linked determinantal loci. However, Cohen-Macaulayness does not
appear to be addressable by the methods used in loc. cit. Our main theorem is
thus the following:

Theorem 1.3. If S is Noetherian, then in the situation of Definition 1.2, every
irreducible component of the linked determinantal locus has codimension at most
pd ´ rqpr1 ` rn ´ rq. Moreover, if equality holds, and S is Cohen-Macaulay, then
the linked determinantal locus is also Cohen-Macaulay.

1In this degenerate case, we have the unfortunate notational situation that F1 and Fn should
still be treated as distinct, even though n “ 1.
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The proof proceeds by considering a suitable universal version of the linked de-
terminantal locus, and showing in essence that it is a “partial initial degeneration”
of the classical universal determinant locus. That is to say, in terms of ideals of
minors we show that our locus is defined by zeroing out monomials in each minor
according to a certain pattern, and that the resulting initial ideal is the same as in
the classical case. In comparison with other previously studied variants of determi-
nantal ideals, this appears to yield a rather distinct direction of generalization.

As mentioned previously, using the construction given in [Oss14a], we conclude
from Theorem 1.3 that spaces of limit linear series are flat and Cohen-Macaulay; see
Theorem 3.1 below. We then conclude in Corollary 3.3 that the two scheme struc-
tures on spaces of limit linear series agree under typical circumstances (specifically,
when the space has the expected dimension, the open subset of refined limit lin-
ear series is dense, and the Eisenbud-Harris scheme structure is reduced). Finally,
for the arguments of [CLT] and [CLPT], the crucial consequence is Corollary 3.4.
This says that under the same conditions as Corollary 3.3, given a one-parameter
smoothing of a curve X0 of compact type, with generic fiber Xη, we have a flat,
proper moduli space whose special fiber is the Eisenbud-Harris moduli space of
limit linear series on X0, and whose generic fiber is the usual linear series moduli
space on Xη.

2. Linked determinantal loci

We consider the following situation:

Situation 2.1. Let R be a ring, and s P R. Given d, n, r1, rn, and nondecreasing
integers c1 ď c2 ď . . . cn´1, let R1 be the polynomial ring over R in variables xi,j

with 1 ď i ď r1 ` rn and 1 ď j ď d.

Definition 2.2. For � “ 1, . . . , n, let A� be the pr1 `rnq ˆd matrix over R1 defined
by

pA�qi,j “

#

se1,j,�xi,j : i ď r1,

se2,j,�xi,j : i ą r1,

where

e1,j,� “ #tm ă � : j ą d ´ cmu, and e2,j,� “ #tm ě � : j ď d ´ cmu.

Given r ą 0, let Ir be the ideal of R1 defined by all pr ` 1q ˆ pr ` 1q minors of
all the A�. In addition, let Jr be the universal determinantal ideal obtained from
the pr ` 1q ˆ pr ` 1q minors of the matrix with i, j entry equal to xi,j .

Example 2.3. Consider the case d “ 5, n “ 4, c1 “ 1, c2 “ 3, c3 “ 3, r “ 2,
r1 “ 1, rn “ 2, and s “ 0. Then the matrices A� are as follows:

A1 “

»

–

x1,1 x1,2 x1,3 x1,4 x1,5

0 0 0 0 x2,5

0 0 0 0 x2,5

fi

fl , A2 “

»

–

x1,1 x1,2 x1,3 x1,4 0
0 0 x2,3 x2,4 x2,5

0 0 x3,3 x3,4 x3,5

fi

fl ,

A3 “

»

–

x1,1 x1,2 0 0 0
0 0 x2,3 x2,4 x2,5

0 0 x3,3 x3,4 x3,5

fi

fl , A4 “

»

–

x1,1 x1,2 0 0 0
x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

fi

fl .
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We do not list every minor from each of the A�, but rather examine a selection
of them with representative behavior. The minors from the first three columns of
the A� are

0, 0, 0, and x1,1x2,2x3,3 ´ x1,1x3,2x2,3 ´ x2,1x1,2x3,3 ` x3,1x1,2x2,3,

respectively. The minors from the second, third, and fourth columns of the A� are

0, x1,2x2,3x3,4 ´ x1,2x3,3x2,4, x1,2x2,3x3,4 ´ x1,2x3,3x2,4,

and x1,2x2,3x3,4 ´ x1,2x3,3x2,4,

respectively. Finally, the minors from the last three columns of the A� are

0, x1,3x2,4x3,5 ´ x1,3x3,4x2,5 ´ x2,3x1,4x3,5 ` x3,3x1,4x2,5, 0, and 0,

respectively.
The key aspects of these minors are the following:

‚ For each fixed minor position, the corresponding minors of the different A�

are always equal to zero or a unique nonzero value.
‚ The unique nonzero value always occurs for some �, and always contains
the “main diagonal” term of the usual universal minor.

‚ There need not be a unique choice of � achieving the unique nonzero minor
value, and no single value of � generates nonzero minors in all positions.

Note that the uniqueness of the nonzero minor value occurs in spite of the fact that
a given nonzero minor may be generated by different patterns of zeroing out entries
(as occurs with A2, A3 and A4 for the minor from the second, third, and fourth
columns).

Throughout this section, we will use the lexicographic monomial order, induced
by the ordering that xi,j comes before xi1,j1 if i ă i1 or i “ i1 and j ă j1. In order
to prove Theorem 1.3, the main result is then the following:

Theorem 2.4. In the case R “ k is a field, then the initial ideal of Ir coincides
with the initial ideal of Jr, and in particular the Hilbert functions coincide. If s ‰ 0,
then also R1{Ir – R1{Jr.

We prove this by exhibiting Ir as a flat degeneration of Jr, using the following
construction:

Definition 2.5. Suppose R “ krts, and let B be the pr1 ` rnq ˆ d matrix over R1

defined by

pBqi,j “

#

tε1,jxi,j : i ď r1,

tε2,jxi,j : i ą r1,

where

ε1,j “ #tm : j ą d ´ cmu, and ε2,j “ #tm : j ď d ´ cmu.

Thus, ε1,j “ e1,j,n and ε2,j “ e2,j,1.

Example 2.6. In the context of Example 2.3, we have

B “

»

–

x1,1 x1,2 t2x1,3 t2x1,4 t3x1,5

t3x2,1 t3x2,2 tx2,3 tx2,4 x2,5

t3x3,1 t3x3,2 tx3,3 tx3,4 x3,5

fi

fl .
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If we consider the minor from the first three columns of B, we get

t4x1,1x2,2x3,3 ´ t4x1,1x3,2x2,3 ´ t4x2,1x1,2x3,3

` t4x3,1x1,2x2,3 ` t8x2,1x3,2x1,3 ´ t8x3,1x2,2x1,3.

Observe that if we factor out t4 from this and then set t “ 0 we obtain the nonzero
minor from A4 of Example 2.3.

The minor from the second, third, and fourth columns of B is

t2x1,2x2,3x3,4 ´ t2x1,2x3,3x2,4 ´ t6x2,2x1,3x3,4

` t6x3,2x1,3x2,4 ` t6x2,2x3,3x1,4 ´ t6x3,2x2,3x1,4,

and again factoring out t2 and setting t “ 0 recovers the corresponding nonzero
minors from A2, A3, and A4.

Finally, the minor from the last three columns of B is

t3x1,3x2,4x3,5 ´ t3x1,3x3,4x2,5 ´ t3x2,3x1,4x3,5

` t3x3,3x1,4x2,5 ` t5x3,3x2,4x1,5 ´ t5x2,3x3,4x1,5,

and factoring out t3 and setting t “ 0 yields the corresponding nonzero minor from
A2.

The above, together with similar analysis of the remaining minors, says that in
this example the ideal Ir is governed in a suitable sense by the single matrix B,
and it follows that Ir is a flat degeneration of the universal determinantal ideal Jr.

The following key lemma shows that the behavior of Examples 2.3 and 2.6 gen-
eralizes.

Lemma 2.7. In the case that R “ k is a field and s “ 0, then if we fix i‚ “

pi0, . . . , irq with 1 ď i0 ă i1 ă ¨ ¨ ¨ ă ir ď r1 ` rn and j‚ “ pj0, . . . , jrq with
1 ď j0 ă j1 ă ¨ ¨ ¨ ă jr ď d, let gi‚,j‚ be obtained from the pi‚, j‚q minor of B by
factoring out the largest possible power of t, and then setting t “ 0.

Then for all �, the pi‚, j‚q minor of A� is either equal to 0 or to gi‚,j‚ , and the
latter occurs for at least one value of �. In addition, gi‚,j‚ contains the monomial
xi0,j0xi1,j1 ¨ ¨ ¨xir,jr .

Proof. For each �, let A1
� be the pr`1q ˆ pr`1q matrix obtained from A� by taking

the pi, jq entries with i P ti0, . . . , iru and j P tj0, . . . , jru, so that the minor we are
considering is detA1

�. Let m1 be the number of w such that iw ď r1, and m2 the
number of w such that iw ą r1, so that m1 ` m2 “ r ` 1. Then for any �, there
are p1,�, p2,� ě 0 so that the first m1 rows of the matrix A1

� end in p1,� zeroes, while
the last m2 rows begin with p2,� zeroes (reading left to right). Explicitly, we have

p1,� “ #tw : jw ą d ´ c�´1u, p2,� “ #tw : jw ď d ´ c�u,

where here we should use the convention that c0 “ 0 and cn “ d. In particular,
we have p1,�`1 ` p2,� “ r ` 1 for � “ 1, . . . , n ´ 1. Now, clearly detA1

� can only be
nonzero if r ` 1´ p1,� ě m1 and r ` 1´ p2,� ě m2, and in fact, since the individual
terms appearing in the determinant are distinct monomials, there cannot be any
cancellation, so the converse holds as well. From the expression for the pi,j , it
follows that p1,1 “ 0, and that p1,� ď p1,�`1 for all �. Thus, choose � maximal with
r ` 1 ´ p1,� ě m1. If � ă n, then we have p2,� “ r ` 1 ´ p1,�`1 ă m1 “ r ` 1 ´ m2,
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so in this case detA1
� ‰ 0. On the other hand, if r ` 1 ´ p1,n ě m1, then p2,n “

0 ď r ` 1 ´ m2, so again detA1
n ‰ 0.

Thus, it remains to show that for any � such that r ` 1 ´ p1,� ě m1 and
r ` 1 ´ p2,� ě m2, we have that detA1

� “ gi‚,j‚ , and that gi‚,j‚ contains the mono-
mial xi0,j0xi1,j1 ¨ ¨ ¨xir,jr . Now, both detA1

� and gi‚,j‚ are obtained by omitting some
monomials from the determinant of the pr`1qˆpr`1q matrix with entries given by
xiw,jv , so we can prove the desired statements by explicitly identifying which mono-
mials are included in each. First, for gi‚,j‚ we observe that since in B the powers
of t in the first r1 rows are nondecreasing from left to right, and in the last rn rows
are nonincreasing from left to right, it is clear that (within the rows and columns
determined by i‚, j‚) if we take the top m1 entries from the first m1 columns (and
consequently the remaining m2 entries from the last m2 columns), we will simulta-
neously minimize the power of t coming from the top m1 rows and the bottom m2

rows. In particular, the “diagonal” term obtained from pi0, j0q, pi1, j1q, . . . , pir, jrq

achieves the minimal possible power of t in the relevant minor, so gi‚,j‚ contains
xi0,j0xi1,j1 ¨ ¨ ¨xir,jr , as claimed. Moreover, we see that in order for a general term
coming from pi0, jσp0qq, . . . , pir, jσprqq for σ P Sympt0, . . . , ruq to have the mini-
mal power of t, we must have ε1,jσp0q , . . . , ε1,jσpm1´1q equal (as an unordered set

with repetitions) to ε1,j0 , . . . , ε1,jm1´1
, and similarly for ε2,jσpm1q , . . . , ε2,jσprq and

ε2,jm1
, . . . , ε2,jr .

Now, suppose that ε1,jσp0q , . . . , ε1,jσpm1´1q is not equal to ε1,j0 , . . . , ε1,jm1´1
. Then

let w ď m1 ´ 1 be minimal such that the entry in column jw is taken from one
of the bottom m2 rows, so that ε1,jw occurs strictly fewer times in the sequence
ε1,jσp0q , . . . , ε1,jσpm1´1q than in ε1,j0 , . . . , ε1,jm1´1

. If ε1,jw “ ε1,jm1´1
, we conclude

from minimality of ε1,j0 , . . . , ε1,jm1´1
that for some w1 ď m1 ´ 1, we have

ε1,jσpw1q ą ε1,jm1´1
.

On the other hand, if ε1,jw ă ε1,jm1´1
, we have that

ε2,jw ą ε2,jm1´1
ě ε2,jm1

,

and because we have taken the entry in the jw column from the bottom m2 rows,
we conclude that for some w1 ě m1, we have

ε2,jσpw1q “ ε2,jw ą ε2,jm1
.

To summarize, we obtain a nonminimal power of t for a given term if and only
if ε1,jσpwq ď ε1,jm1´1

for all w ă m1, and ε2,jσpwq ď ε2,jm1
for all w ě m1. Thus, if

we set a so that d ´ ca ă jm1
ď d ´ ca´1, and b so that d ´ cb ă jm1`1 ď d ´ cb´1,

then we are saying simply that a given term appears in gi‚,j‚ if and only if

(2.1) jσpwq ď d ´ ca´1 for w ă m1, and jσpwq ą d ´ cb for w ě m1.

Now, we consider the monomials in detA1
� for � such that r`1´p1,� ě m1 and r`

1´p2,� ě m2. It is clear that a given monomial from entries pi0, jσp0qq, . . . , pir, jσprqq

occurs in detA1
� if and only if

(2.2) jσpwq ď d ´ c�´1 for w ă m1, and jσpwq ą d ´ c� for w ě m1.

To compare (2.1) to (2.2), we note that r ` 1 ´ p1,� ě m1 is equivalent to saying
that jm1

ď d ´ c�´1, and r ` 1 ´ p2,� ě m2 is the same as p2,� ď m1, which is the
same as jm1`1 ą d ´ c�, so we can conclude that � ´ 1 ď a ´ 1 and � ě b, which is
to say that the relevant range for � is b ď � ď a. It then follows immediately that
(2.1) implies (2.2), and we wish to verify the converse.
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If a “ b, the converse is likewise immediate. However, we see from the definitions
that if a ą b, then d ´ cb “ d ´ ca´1 ą d ´ ca, and then the first part of (2.1) is
equivalent to the second part. In addition, we must have either � “ a or c� “ cb.
In the first case, we have that ca´1 “ c�´1, so the first part of (2.2) implies the
first part of (2.1), which then implies the second part of (2.1) as well. But in the
second case, the second part of (2.2) implies the second part of (2.1), which then
implies the first part as well. �

Proof of Theorem 2.4. First, suppose that s ‰ 0. We see that in this case, for
� ă n, the matrix A�`1 may be obtained from A� by multiplying the righthand c�
columns by s, and dividing the bottom rn rows by s. Thus, any given minor of
A� is a power of s times the corresponding minor of A�`1, and we concude that
Ir is simply equal to the ideal generated by the pr ` 1q ˆ pr ` 1q minors of A1.
As this is obtained from Jr by rescaling the variables by powers of s, we find that
R1{Ir – R1{Jr, and also that the initial ideals and Hilbert functions coincide.

Now, suppose that s “ 0. According to Lemma 2.7, in this case Ir is generated
by the gi‚,j‚ , and the initial terms of the latter agree with the initial terms of the
minors generating Jr. Now, let J 1

r be the flat degeneration of Jr defined as in
Section 15.8 of [Eis95] by the weight function assigning ε1,j to the variable xi,j if
i ď r1 and ε2,j to the variable xi,j if i ą r1. Then, it is clear from the definitions
of the gi‚,j‚ and of J 1

r that gi‚,j‚ P J 1
r for each pi‚, j‚q. But by Theorem 15.17

and Exercise 20.14 of [Eis95], we have that the Hilbert functions of Jr and of J 1
r

coincide, so we conclude that the Hilbert function of Ir is less than or equal to the
Hilbert function of Jr. On the other hand, the universal minors form a Grobner
basis for Jr (see Theorem 5.3 of [BC03]), and their initial terms agree with those
of the gi‚,j‚ , so we conclude that in Jr Ď in Ir. Again using invariance of Hilbert
functions under flat degenerations, we conclude that the Hilbert function of Ir is
greater than or equal to that of Jr, so they must be equal, and then we also have
in Jr “ in Ir, as desired. �

Theorem 1.3 then follows by standard reductions to known results on the initial
ideal of universal determinantal ideals. Indeed, we first conclude:

Corollary 2.8. In the case R “ k is a field, then R1{Ir is reduced and Cohen-
Macaulay, with codimension pd´ rqpr1 ` rn ´ rq in R1. If further s ‰ 0, then R1{Ir
is integral.

Proof. It is well known that R1{ in Jr is reduced and Cohen-Macaulay, of dimension
pd ´ rqpr1 ` rn ´ rq; see for instance Theorems 1.10, 5.3, and 6.7 of [BC03]. We
conclude the same statements for R1{Ir by Theorem 2.4, together with Proposition
3.12 of [BC03]. In addition, for s ‰ 0 we have R1{Ir – R1{Jr, and the latter is
integral (again by Theorem 1.10 of [BC03]). �

We next find:

Corollary 2.9. In the case that R “ Zrts and s “ t, then R1{Ir is flat over R, and
integral and Cohen-Macaulay, with codimension pd ´ rqpr1 ` rn ´ rq in R1.

Proof. From Theorem 2.4 we have that all fibers of R1{Ir over R have the same
Hilbert function. Since R is reduced, it follows from Exercise 20.14 of [Eis95]
that R1{Ir is flat over R. Given flatness, the statements on irreducibility and
codimension follow from the corresponding statements on the generic fibers, which
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is a consequence of the s ‰ 0 statement of Corollary 2.8. Again using flatness, the
statements on Cohen-Macaulyness and reducedness follow from the corresponding
statements on fibers (see the Corollaries to Theorems 23.3 and 23.9 of [Mat86]),
which is again Corollary 2.8. �

In order to deduce our main theorem from the universal case, we return to the
situation that S is an arbitrary scheme, and recall Lemma 2.3 of [OT14].

Lemma 2.10. Suppose that E‚ is s-linked on a scheme S. Let ci “ rk fi for
i “ 1, . . . , n ´ 1, and by convention set c0 “ 0, cn “ d. Also, for j ď i set
fj,i “ fi´1 ˝ fi´2 ˝ ¨ ¨ ¨ ˝ fj , and for j ě i set f j,i “ f i ˝ f i`1 ˝ ¨ ¨ ¨ ˝ f j´1. Then,
locally on S, for i “ 1, . . . , n there exist subbundles Wi Ď Ei of rank ci ´ ci´1 such
that:

(i) For i “ 2, . . . , n ´ 1, we have that

Wi X spanpker fi, ker f
i´1

q “ p0q,

and similarly W1 X ker f1 “ p0q,Wn X ker fn´1 “ p0q.
(ii) For all j ă i, the restriction of fj,i to Wj is an isomorphism onto a sub-

bundle of Ei, and for j ą i, the restriction of f j,i to Wj is an isomorphism
onto a subbundle of Ei.

(iii) The natural map
˜

i
à

j“1

fj,ipWjq

¸

‘

˜

n
à

j“i`1

f j,i
pWjq

¸

Ñ Ei

is an isomorphism for each i.

Proof of Theorem 1.3. The statement is local on S, so we may assume that we have
Wi Ď Ei as in Lemma 2.10, and further that S “ SpecR is affine and the Wi are
free. Choose bases of the Wi and use them to induce bases of the Ei via Lemma
2.10 (iii), but with reversed ordering (so that basis elements from Wn come first,
and those from W1 last). Choosing arbitrary bases of F1 and Fn, we then have
that the induced maps

Ei Ñ F1 ‘ Fn

are given by matrices of the form of our A�. These can be viewed as induced by
a map Zrtxi,ju, ts Ñ R, and our linked determinantal locus is then the pullback
of the universal one under the corresponding morphism S Ñ SpecZrtxi,ju, ts. The
theorem then follows from Corollary 2.9, making use of Theorem 3.5 (see also
Proposition 16.19) of [BV88]. �

We conclude with a couple of examples showing that the definition of linked
determinantal locus is somewhat delicate, in that minor variations will invalidate
the conclusion of Theorem 2.4.

Example 2.11. We first observe that a very similar pattern of zeroing out entries
in a sequence of matrices can violate the uniqueness of nonzero minors proved in
Lemma 2.7. Indeed, in Example 2.3, if we set pA3q1,3 to be x1,3 instead of 0,
the minor from the last three columns is x1,3x2,4x3,5 ´x1,3x3,4x2,5, which does not
agree with the corresponding minor from A2. Moreover, taking the difference yields
x2,3x1,4x3,5´x3,3x1,4x2,5, and since neither of these monomials is in the initial ideal
of Jr, we see that the conclusion of Theorem 2.4 is also violated in this case.
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Example 2.12. We also see that if we zero out monomials from the generators
of the standard universal determinantal ideal, even if the initial terms of each
generator remain unchanged, in general the initial ideals can change. For instance,
if we let J be the ideal generated by the 2 ˆ 2 minors of the matrix

A “

„

x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

j

,

and we let

I “ px1,1x2,2, x1,2x2,3, x1,1x2,3 ´ x2,1x1,3q,

then the initial terms of the generators are the same, and since we know the minors
are a Grobner basis for J , we conclude that

in I Ě in J “ px1,1x2,2, x1,2x2,3, x1,1x2,3q.

However, in this case the containment is strict: we see that

x2,3px1,1x2,2q ´ x2,2px1,1x2,3 ´ x2,1x1,3q “ x2,1x2,2x1,3 R in J.

3. Applications to limit linear series

We now apply our results to draw conclusions on spaces of limit linear series.
Because our results can be applied directly to limit linear series moduli space con-
structions carried out in [Oss14a], which are explicitly in terms of linked determi-
nantal loci, we have elected to keep the presentation brief and not recall the rather
lengthy definitions leading up to the aforementioned constructions. However, we
will below briefly recall the Eisenbud-Harris limit linear series definition, so that
all objects relevant to our final conclusion, Corollary 3.4, have been defined.

Our main theorem deals with moduli spaces of limit linear series on a family
π : X Ñ B of curves. In order to simplify notation and hypotheses, we state the
theorem in case of one-parameter families of curves of compact type, but in fact
the arguments go through somewhat more generally; see Remark 3.5. Recall that
in Section 4 of [Oss14b], a new construction of limit linear series was introduced (in
the higher-rank context) which leads to an a priori different scheme structure on
the space of Eisenbud-Harris limit linear series. This new construction is developed
further in the rank-1 case for curves not necessarily of compact type in [Oss14a],
and the constructions in [Oss14a] are those which will be immediately relevant to
us.

Theorem 3.1. Suppose that we have π : X Ñ B a flat proper family of curves,
admitting at least one section, and satisfying one of the following two sets of further
conditions:

(I) B is the spectrum of a discrete valuation ring; X is regular; the special fiber
X0 of π is a (split) nodal curve of compact type; and the generic fiber Xη

of π is smooth.
(II) B is the spectrum of a field; and X0 :“ X is a (split) nodal curve of compact

type.

Suppose also that the space Gr
w̄0

pX0q of limit linear series on X0 (as constructed
in Definition 3.2 of [Oss14a]) has the expected dimension ρ at a given point z.

Then the limit linear series moduli space rG1r
w̄0

pX{Bq of Notation 6.3 of [Oss14a] is

Cohen-Macaulay at z, and flat over rB.
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In the above, a split nodal curve is one with all nodes and all components rational
over the base field. The w̄0 in the above notation is a choice of multidegree class
which in the compact-type case is irrelevant. Similarly, in referring to [Oss14a]

we should technically have written Gr
w̄0

pX0,n, pOvqvq and rG1r
w̄0

p rX{ rB,X0,n, pOvqvq

in place of Gr
w̄0

pX0q and rG1r
w̄0

pX{Bq, respectively. However, in the compact-type
case no generality is lost by choosing n to be the trivial chain structure, in which

case rX “ X and rB “ B, and the enriched structure pOvqv is in any case uniquely
determined, so we have omitted them from the notation.

Proof. First, in [Oss14a] there is an additional hypothesis that π admits sections
through all components of X0. However, this is used only to deduce the repre-
sentability of the relative Picard functor in arbitrary multidegree from the case of
multidegree zero on every component. In the compact-type case, instead of twist-
ing by sections to obtain arbitrary multidegree, we can twist by components of the
special fiber.

Next, according to Proposition 6.4 of [Oss14a], rG1r
w̄0

pX{Bq is described by the
construction in the proof of Theorem 6.1 of [Oss14a]. This construction proceeds

by constructing rG1r
w̄0

pX{Bq as a closed subscheme of a scheme G which is smooth

over rB. Furthermore, rB is regular, so G is likewise regular. The construction is
given as an intersection of pr ` 1q degD local equations ensuring vanishing along
an auxiliary divisor D, together with |V pΓq ´ 1| linked determinantal loci, each of
expected codimension pr ` 1qpd ` degD ` 1 ´ g ´ pr ` 1qq. The numbers work out
that in order for Gr

w̄0
pX0q to have dimension ρ at z, the aforementioned conditions

must intersect with maximal codimension at z. It thus follows that each individual
condition cuts out a closed subscheme of G of maximal codimension at z, and
therefore by Theorem 1.3 we conclude that each of these closed subschemes is
Cohen-Macaulay at z. By Lemma 4.4 of [HO08] we conclude that the intersection
rG1r
w̄0

pX{Bq is likewise Cohen-Macaulay at z.
Flatness is nontrivial only in case (I). Then Theorem 6.1 of [Oss14a] implies

that rG1r
w̄0

pX{Bq is (universally) open over B at z, so every irreducible component
containing z dominates B. Moreover, Cohen-Macaulayness implies that there are
no imbedded components meeting z, so since B is the spectrum of a DVR, we

conclude that rG1r
w̄0

pX{Bq is flat over B at z, as desired. �

We now recall the Eisenbud-Harris definition in the compact-type case.

Definition 3.2. Given a curve X0 of compact type, with dual graph Γ, for v P

V pΓq, let Zv denote the corresponding component of X0, and for e P EpΓq, let Pe

denote the corresponding node.
Given r, d ą 0, a limit linear series (or more specifically, a limit grd) on X0

consists of a tuple pL v, V vqvPV pΓq of grds on the components Zv, satisfying the
condition that for each e P EpΓq connecting vertices v, v1, we have

(3.1) a
pe,vq

j ` a
pe,v1

q

r´j ě d for j “ 0, . . . , r,

where ape,vq denotes the vanishing sequence of pL v, V vq at Pe.
We say the limit linear series is refined if (3.1) is an equality for all e P EpΓq.

In the compact-type case, the Eisenbud-Harris definition of limit linear series
leads to a natural scheme structure on the moduli space Gr

dpX0q of limit linear



LINKED DETERMINANTAL LOCI AND LIMIT LINEAR SERIES 2409

series, as a union of closed subschemes ranging over all possible refined ramification
conditions at the nodes. This definition has the advantage of being very amenable
to calculations, for instance in verifying reducedness. The alternative definition
introduced in Section 4 of [Oss14b] and used in the statement of Theorem 3.1 also
gives a scheme structure, which in principle could be different. The difficulty in
comparing them arises from the union in the Eisenbud-Harris case, as the functor
of points of a union cannot be easily described. However, we can now conclude that
under typical circumstances, the two scheme structures agree.

Corollary 3.3. If X0 is a curve of compact type, suppose that we have the following
conditions:

(I) Gr
dpX0q has the expected dimension ρ;

(II) the refined limit linear series are dense in Gr
dpX0q;

(III) the Eisenbud-Harris scheme structure on Gr
dpX0q is reduced.

Then the Eisenbud-Harris scheme structure on Gr
dpX0q coincides with the scheme

structure introduced in [Oss14b].

Proof. According to Theorem 3.1, condition (I) implies that the scheme structure
of [Oss14b] is Cohen-Macaulay. Thus, in view of condition (III), it is enough to
show that the two scheme structures agree on a dense open subset, since Cohen-
Macaulayness will then imply reducedness. But Proposition 4.2.6 of [Oss14b] asserts
that the two scheme structures agree on the refined locus, so the desired result
follows from condition (II). �

For applications such as [CLT] and [CLPT], the key point is the following im-
mediate consequence of Theorem 3.1 and Corollary 3.3:

Corollary 3.4. In case (I) of Theorem 3.1, suppose further that the conditions of

Corollary 3.3 are satisfied. Then rG1r
w̄0

pX{Bq is flat and proper over B, with special
fiber equal to the Eisenbud-Harris scheme structure on Gr

dpX0q, and generic fiber
equal to the classical space Gr

dpXηq of linear series on Xη.

Remark 3.5. At the price of requiring sections through every component of X0,
the hypotheses of Theorem 3.1 can be weakened to allow certain curves not of
compact type, namely the curves of “pseudocompact type” studied in Sections 5-6
of [Oss14a]. Specifically, we can replace case (I) of our theorem with the hypotheses
of Theorem 6.1 of [Oss14a], and case (II) with the hypotheses of Theorem 5.9
of [Oss14a], and the argument goes through unchanged. In particular, we can
allow arbitrary chain structures n and enriched structures pOvqv on our families of
curves (although in case (I) the enriched structures are uniquely determined by the
smoothing family rπ).

Additionally, the moduli space construction of [Oss14a] restricted to the case
that B was the spectrum of a DVR partly to avoid developing technical hypotheses
such as the “almost local” condition of Section 2.2 of [Oss14b], and partly because
in the non-compact-type case, it is necessary to impose more stringent conditions
on the family to ensure that every component of the curve comes from a divisor in
the total family. With that said, under suitable hypotheses the construction does
generalize to higher-dimensional base schemes B, and in this case, Theorem 3.1
also generalizes. The only place where we used that B was the spectrum of a DVR
was in arguing flatness, but as long as B is regular, this argument can be replaced
via the use of Theorem 14.2.1 of [GD66] and Proposition 6.1.5 of [GD65].
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mathématiques de l’I.H.É.S., vol. 24, Institut des Hautes Études Scientifiques, 1965.
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