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WHY THE CIGAR CANNOT BE ISOMETRICALLY IMMERSED

INTO THE 3-SPACE

LI MA AND ANQIANG ZHU

(Communicated by Lei Ni)

Abstract. In this paper, we study the question if there is an isometric im-
mersion of the cigar soliton into R3. We show that the answer is negative.
This gives a counterexample to the classical Weyl problem on R2. A similar

result in higher dimensions is also true for steady Bryant solitons.

1. Introduction

The classical Weyl problem asks if there exists a global C2 isometric embedding
X : (S2, g) → (R3, σ), where σ is the standard flat metric in R3, for a two-sphere
S2 with g being a Riemannian metric on S2 whose Gauss curvature is everywhere
positive. This problem is solved affirmatively by L. Nirenberg in [4]. Recall here
that such an embedding X : (S2, g) → R3 is isometric if in the local coordinates
(uj), g = gijdu

iduj , we have the system ∂uiX · ∂ujX = gij . For more recent
progress related to the Weyl problem one may see the paper [2]. One may ask a
similar question of problem on the plane R2 with a Riemannian metric g whose
Gauss curvature is everywhere positive. We give a counterexample in this short
note by considering the cigar soliton in the study of Ricci flow [1]. Our example
also shows that a similar Minkowski problem is not true on complete noncompact
surfaces in R3, namely, for a given strictly positive real function f defined on R2,
one cannot find a complete noncompact convex surface Σ ⊂ R3 such that the Gauss
curvature of Σ at the point x equals f(n(x)), where n(x) denotes the normal to Σ
at x.

The problem we consider in this short note is if there is a nontrivial n-dimensional
steady Ricci soliton which can be embedded as a hypersurface in Rn+1. Recall that
steady Ricci solitons are special solutions to Ricci flow introduced by R. Hamilton
[3], [1]. In dimension two, the only nontrivial complete Ricci soliton is the cigar. We
show that it is impossible to realize it as a surface in R3. The key step in proving it
is to use the deep result of H. Wu [5] about the convex surfaces. A similar result is
also true for steady Bryant solitons in higher dimensions. We believe that a similar
result is also true for radially symmetric expanding Ricci solitons. We shall use the
notation u = 0(r) for large r > 0 to denote by C−1r ≤ u ≤ Cr for some uniform
constant C > 0 and the uniform constant C may vary from line to line.
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2. The cigar cannot be isometrically immersed into R3

Recall that the cigar soliton is a two-dimensional Riemannian manifold (R2, gΣ)
with the Riemannian metric ([1], [3])

gΣ =
dx2 + dy2

1 + x2 + y2
=

dr2 + r2dθ2

1 + r2
.

It has positive Gauss curvature

K =
2

1 + r2
.

If the cigar can be isometrically immersed into R3 (according to a theorem of
Sacksteder-Heijenoort and the main theorem (δ) of H. Wu in [5]), it is the graph of
a nonnegative strictly convex function u defined in the plane {x3 = 0}.

Recall that the induced metric of the graph of the function z = u(x1, x2) is given
by

g = (δij + uiuj)dx
idxj = gijdx

idxj

with its second fundamental form

II = hijdx
idxj ,

where (xi) = (xi), ui =
∂u
∂xi , F (x) = (x, u(x)), Fj(x) = ej + uj(x)en+1,

ν =
(−Du, 1)√
1 + |Du|2

etc., and

hij = (DFi(x)ν, Fj(x)) =
−uij√

1 + |Du|2
.

Hence,

II = hijdx
idxj =

D2u√
1 + |Du|2

and for u = u(r),

II =
urrdr

2 + rurdθ
2

√
1 + u2

r

.

Then the Gauss curvature of the immersed surface can be computed by

K = det(hij)/ det(gij) = det(uij)/(1 + |Du|2)2.

Theorem 1. The cigar cannot be isometrically immersed into R3.

Proof. Assume that we can have such an immersion into R3.
Since g = gΣ is radially symmetric, we have z = u(ρ) and

g = (1 + u2
ρ)dρ

2 + ρ2dθ2

where uρ = ∂u
∂ρ , etc. Hence, we have

(1) (1 + u2
ρ)dρ

2 =
dr2

1 + r2

and

(2) ρ2 =
r2

1 + r2
.
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By (2) we have

ρ =
r√

1 + r2
,

dρ

dr
=

1

(
√
1 + r2)3

.

By (1) we have √
1 + u2

ρdρ =
dr√
1 + r2

,

which implies that √
1 + u2

ρ ·
1

(
√
1 + r2)3

=
1√

1 + r2
.

Hence we have

u2
ρ = r2

and then

uρuρρ = r
dr

dρ
= r(

√
1 + r2)3.

By direct computation we know that the second fundamental form can be written
as

II =
1√

1 + u2
ρ

[uρρdρ
2 + ρuρdθ

2].

This would imply that the Gauss curvature K is

K =
uρρuρρ

(1 + u2
ρ)

2ρ2
= 1,

which is absurd. This completes the proof of Theorem 1. �

3. Higher dimensional generalization

It is quite possible to show a higher dimensional analog of the result above.
Namely, we may have

Theorem 2. The n-dimensional radially symmetric Bryant soliton cannot be iso-
metrically immersed into Rn+1.

Recall that the n-dimensional Bryant soliton is (Rn, g), (n ≥ 2) with its Rie-
mannian metric ([1])

g = dr2 + w(r)2dθ2,

where w(r) is a smooth function with w(0) = 0, w(r) = 0(r1/2), and dθ2 is the
metric on Sn−1. It is well known that it has its positive sectional curvatures

(3) k1 = −w′′

w
= 0(r−2), k2 =

1− (w′)2

w2
= 0(r−1),

where k1 is the curvature for the planes tangent to the radial direction e1 = ∂r and
k2 is the curvature for the planes tangent to the sphere.

If the n-dimensional Bryant soliton can be imbedded into Rn+1, then we can
use H. Wu’s result [5] as above to have it as the graph of a strictly convex radially
symmetric function u = u(x) = u(ρ), x ∈ R3, ρ = |x|. Then we have

g = (1 + u2
ρ)dρ

2 + ρ2dθ2

and

dr =
√
1 + u2

ρdρ, w(r) = ρ = 0(r1/2).
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Hence, r = 0(ρ2) and uρ = 0(ρ). We then have some uniform constant C > 0 such
that uρρ = 0(1) for all large ρ > 0. Recall that using the components of the second

fundamental form (hij) and |g| = ρ2(n−1)(1+u2
ρ), the radial Riemannian curvature

k1 with large ρ can also be written as

k1 =
R1212

|g| =
uρρρuρ

ρ2n−2(1 + u2
ρ)

2
= 0(ρ−2n) = 0(r−n).

We may use this to find a contradiction with (3) as above.
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