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Abstract. In the case of a complete noncompact shrinking gradient Ricci soli-
ton, building upon the works of Derdzinski, Fernández-López and Garćıa-Rio,
Lott, Naber, and Wylie, we obtain a bound for the order of its fundamental
group π1 in terms of the dimension n and the logarithmic Sobolev constant.
Under the additional assumption of being strongly κ-noncollapsed, a bound
for the order of π1 is κ−1 times a function of n.

Let (Mn, g) be a complete Riemannian manifold and let X be a vector field
on M satisfying the inequality Rc+LXg ≥ 1

2g. Here, Rc is the Ricci tensor of g
and L is the Lie derivative. Regarding the fundamental group of M, the strongest
result is by Wylie [11], who proved that π1(M) is finite. Naber [9] proved this
assuming that X = 1

2∇f for some function f (i.e., a Bakry–Emery manifold) and
|Rc| is bounded. Fernández-López and Garćıa-Rio [4] proved that if X is bounded,
then M is compact. By passing to the universal cover, this implies that π1(M)
is finite; for an alternative proof, see Zhang [13]. Earlier, Lott [6] obtained the
same conclusion assuming that M is compact and X = 1

2∇f for some f . We also
mention two other works. Derdzinski [3] proved that if Rc+LXg > 0, then π1(M)
has only finitely many conjugacy classes. Yokota [12] has some previous work on
π1(M) of ancient solutions of Ricci flow using the reduced volume which appears
related to ours.

In this paper, for the special case of shrinking gradient Ricci solitons (GRS),
i.e., the equality case Rc+LXg = 1

2g with X = 1
2∇f , we discuss a quantification

of the above results regarding the fundamental group. Throughout the rest of
this paper (Mn, g, f) shall denote a complete noncompact shrinking GRS, where
Rc+∇2f = 1

2g and f is normalized by R+ |∇f |2 = f . Note that
∫
M e−fdμ is finite

and that the logarithmic Sobolev constant, that is, the minimum of Perelman’s
entropy at scale 1, is μ0(g, f) � − ln

(∫
M(4π)−n/2e−fdμ

)
; see Carrillo and Ni [2].

Our main result is the following.

Theorem 1. If (Mn, g, f) is a complete noncompact shrinking gradient Ricci soli-
ton, then |π1(M)| ≤ C(n, μ0(g, f)).

Proof. Let (M̃n, g̃, f̃) be the universal covering shrinking GRS, that is, π : M̃ →
M is the universal covering map, g̃ = π∗g, and f̃ = f ◦ π. Then we have that
Rcg̃ +∇2

g̃ f̃ = 1
2 g̃ and Rg̃+ |∇f̃ |2g̃ = f̃ , so that the potential function f̃ is normalized.
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Let γ ∈ π1(M)−{e}. Then γ corresponds to a deck transformation γ : M̃ → M̃
that is a fixed-point-free isometry of the metric g̃. Since π◦γ = π, we have f̃ ◦γ = f̃ .
In particular, γ is a fixed-point-free isometry of any level or sublevel set of f̃ . Hence
Volg̃({f̃ ≤ s}) = |π1(M)|Vol({f ≤ s}) for any s > 0. Let O be a minimum point of
f . By Cao and Zhou [1] and its improvement of constants by Haslhofer and Müller
[5], we have

(1)
1

4
((d (x,O)− 5n)+)

2 ≤ f (x) ≤ 1

4
(d(x,O) +

√
2n)2

for g. They also proved that Volg̃({f̃ ≤ s}) ≤ C(n)sn/2. We remark that by
using the Riccati equation and a clever integration by parts, Munteanu and Wang
[8] proved the slightly improved inequality that VolBr(O) ≤ ωne

n/2rn for r > 0,
where ωn = VolRn B1. On the other hand, by Munteanu and Wang [7], there exists
a constant c(n,

∫
M e−fdμ) > 0 such that VolBr(O) ≥ cr for r ≥ 1.

By the above, we have that

C(n)(2n)
n
2 ≥ Volg̃({f̃ ≤ 2n}) = |π1(M)|Vol({f ≤ 2n}).

We also have the inequality

(2) Vol({f ≤ 2n}) ≥ Vol(B√
2n(O)) ≥ c(n,

∫
M

e−fdμ).

The theorem follows. �
Remark 2. For shrinking GRS (Mi, gi, fi), i = 1, 2, we have the product rule

μ0(g1 × g2, f1 ◦ p1 + f2 ◦ p2) = μ0(g1, f1) + μ0(g2, f2),

where pi : M1 × M2 → Mi are the projection maps. For a Gaussian shrinking
GRS we have μ0 = 0. Thus, if M is compact, then we may apply the theorem to
M× R.

Assume that, whenever x ∈ M and r ∈ (0, 1) are such that the scalar curvature
satisfies R ≤ r−2 in Br (x), then we have VolBs (x) ≥ κsn for 0 < s ≤ r. In
this case we say that (M, g) is strongly κ-noncollapsed below the scale 1. For a
shrinking GRS that is also the singularity model of a finite time singular solution
to the Ricci flow on a closed manifold, there is such a κ > 0 by the improved
κ-noncollapsing result of Perelman [10]. We have the following.

Proposition 3. If (Mn, g, f) is a complete noncompact shrinking gradient Ricci
soliton which is strongly κ-noncollapsed below the scale 1, then |π1(M)| ≤ C(n)κ−1.

Proof. Let x ∈ B 1√
2n
(O). From (1), we have R(x) ≤ f(x) ≤ 2n. By our hypothesis,

this implies VolB 1√
2n
(O) ≥ (2n)−

n
2 κ. Using this to replace the last inequality in

(2), the proposition then follows. �
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