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SUBGROUP OF INTERVAL EXCHANGES
GENERATED BY TORSION ELEMENTS AND ROTATIONS
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(Communicated by Nimish Shah)

ABSTRACT. Denote by G the group of interval exchange transformations (IETs)
on the unit interval. Let Gper C G be the subgroup generated by torsion
elements in G (periodic IETSs), and let Grot C G be the subset of 2-IETs
(rotations).

The elements of the subgroup H = (Gper, Grot) C G (generated by the sets
Gper and Grot) are characterized constructively in terms of their Sah-Arnoux-
Fathi (SAF) invariant. The characterization implies that a non-rotation type
3-1ET lies in H if and only if the lengths of its exchanged intervals are linearly
dependent over Q. In particular, H C G.

The main tools used in the paper are the SAF invariant and a recent result
by Y. Vorobets that Gper coincides with the commutator subgroup of G.

1. A croup or IETS

Denote by R, Q, N the sets of real, rational and natural numbers. By a standard
interval we mean a finite interval of the form X = [a,b) C R (left closed - right
open). We write | X| = b — a for its length.

By an IET (interval exchange transformation) we mean a pair (X, f) where X =
[a,b) is a standard interval and f is a right continuous bijection f: X — X with a
finite set D of discontinuities and such that the translation function y(z) = f(x)—=x
is piecewise constant.

The map f itself is referred to as an IET, and then X = domain(f) and D =
disc(f) denote the domain (also the range) of f and the discontinuity set of f,
respectively.

Given an IET f: X — X, the set disc(f) partitions X into a finite number of
subintervals X, in such a way that f restricted to each X}, is a translation

(1.1) flx, t @ = T+ Vi,

so that the action of f reduces to a rearrangement of the intervals Xj. The number
r of exchanged intervals X can be specified by calling f an r-IET.
Denote by G the set of IETs. Then

r>1
where G, stands for the set of r-IETSs:
(1.3) G, = {f € G| card(disc(f)) =r — 1}.
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For a standard interval X = [a,b), the subset
(1.4) G(X)={f € G| domain(f) = X}

forms a group under composition (of bijections of X). Its identity is 1g(x) € G,
the identity map on X. Given two standard intervals X and Y, there is a canonical
isomorphism

defined by the formula
(1.6) oxy(f)=lofol t€G(Y), for feG(X),

where [ =[x y stands for the unique affine order preserving bijection X — Y.

By the group of IETs we mean the group G := G([0,1)). (It is isomorphic to
G(X), for any standard interval X.)

The interval exchange transformations have been a popular subject of study in
ergodic theory. (We refer the reader to the book [I2] by Marcelo Viana which may
serve as a nice introduction and survey reference in the subject.) Most papers on
IETSs study these as dynamical systems; they concern specific dynamical properties
(like minimality, ergodicity, mixing properties, etc.) the IETs may satisfy.

The focus of the present paper is different; we address certain questions on the
group-theoretical structure of the group G of IETs. (For recent results on this
general area see [I3] and [7].) In particular, we discuss possible generator subsets
of the group G.

It was known for a while that the subgroup G,., generated by periodic IETs
forms a proper subgroup of G; in particular, G, contains no irrational rotations.
(The SAF invariant introduced in the next section vanishes on Gy, but has non-
zero value on irrational rotations.) On the other hand, the set G, contains some
uniquely ergodic, even pseudo-Anosov (self-similar) IETs (see [2]).

We show that the subgroup H = (Gper, Grot) generated by Gpe, and the set
of rotations G,,; C G is still a proper subgroup of G. On the other hand, H is
large enough to contain all rank 2 IETs (see Section H), in particular the IETSs over
quadratic number fields.

We present a constructive criterion (in terms of the SAF invariant) for a given
IET to lie in H. It follows from this criterion that a 3-IET lies in H if and only
if the lengths of its exchanged subintervals are linearly independent. Note that
3-IETs generate the whole group of IETs. (More precisely, G3 N G is a generating
set for the group G.)

2. THE SAF INVARIANT AND SUBGROUPS OF G(X)

Throughout the paper (whenever vector spaces or linear dependence/independ-
ence are discussed) the implied field (if not specified) is always meant to be Q, the
field of rationals.

Denote by T the tensor product of two copies of R viewed as vector spaces (over
Q). Denote by K the skew symmetric tensor product of two copies of reals:

T:=R®qgR; K:=RngRCT.
Recall that K is the vector subspace of T spanned by the wedge products

UNV:=u®v—0vQu, u,v € R.
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The Sah-Arnoux-Fathi (SAF) invariant (sometimes also called the scissors con-
gruence invariant) of f € G, is defined by the formula

(2.1) SAF(f) ==Y M@y €T,

k=1

where the vectors X\ = A2, ), ¥ = (91,72, -+, %, ) € R” encode the
lengths Ay = |X| of exchanged intervals X and the corresponding translation
constants 7y, respectively (see (II])).

The SAF invariant was introduced independently by Sah [9] and Arnoux and
Fathi [I]. The following lemma makes this invariant a useful tool in the study of
IETs.

Lemma 1. Let X be a standard interval. Then
(a) SAF: G(X) — T is a group homomorphism.2
(b) SAF: G(X) — K is a surjective group homomorphism: SAF(G(X)) =
KcT.2
(¢c) If foh = hog holds for f,g,h € G(X), then SAF(f) = SAF(g). (The
SAF invariant does not distinguish between conjugate IETS.)

Clearly, (c) follows from (b) because both T and K are Abelian groups.

2.1. Subgroups of G(X). Let X be a standard interval. An IET f € G(X) is
called periodic if f is an element of finite order in the group G(X) (defined in (IA4).
Set

(2.2) G (X):=G,NGX), r>1,
(see notation (L2)). Note that Gi(X) = {1¢(x)} is a singleton.
Consider the following subgroups of G(X):
o ('(X) =[G(X),G(X)] is the commutator subgroup of G (generated by the
commutators f~1g7! fg, with f,g € G(X));3
e G (X) is the subgroup of G(z) generated by periodic IETs f € G(X);5

o Go(X) ={f € G(X) | SAF(f) = 0} (see 1));3
o Grot(X) = G1(X)UGa(X) = Go(X) U{1lg(x)} is the group of rotations on
X. (It contains all IETs f € G(X) with at most one discontinuity.)

Observe that (a) in Lemma [Tl implies immediately the inclusions
G'(X) C Go(X); Gper(X) C Go(X),

as well as the fact that the set Go(X) forms a subgroup of G(X).

An unpublished theorem of Sah [9] (mentioned by Veech in [II]) contains
Lemma [Tl and the equality G'(X) = Go(X). This equality has been recently ex-
tended by Vorobets [I3] to also include G, (X) as an additional set:

(23) GI(X) = GO(X) = Gper(X)'

We refer to Vorobets’ paper [13] for a nice self-contained introduction to the SAF
invariant. In particular, the paper contains the proof of Lemma[land of the equality

@3).

The results of the present paper concern the subgroup

(2.4) H(X) = (Gper(X),Grot(X)) C G(X)
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generated by periodic IETs and the rotations in G(X). The elements of H(X) are
classified in terms of their SAF invariant; see Theorem 2l It is shown that “most”
3-IETs do not lie in H(X) (Lemmalfland Theorem H]). In particular, it follows that
H(X) # G(X).

3. SUBGROUP H AND ITS SAF INVARIANT CHARACTERIZATION

For u € R, denote
K(u) ={unv|veR}CK=RAgR.

K(u) forms a vector subspace of K. If u # 0, K(u) is isomorphic to R/Q.

In the next lemma we compute the SAF invariant for 2-IETs. This is known and
follows immediately from the definition (21I), but is included for completeness.

In what follows X denotes a standard interval. Recall that G,.(X) = G, N G(X)
stands for the set of r-IETs on X.

Lemma 2. Assume that [ € Go(X) exchanges two subintervals of lengths A1 and
Ao (with Ay + Ao = | X|). Then

SAF(f) = |X| A A € K(|1X]).
Proof. For such f the traslation constants are 73 = —Xg and 79 = =X +1 =)\
(see (LI)). It follows that
SAF(f) =AM ®@m+X@7=A®(=X)+ AN
=X AAM =R+ M) AN =|X]A N
(]
Lemma 3. Let 8 € K(|X|). Then there exists f € Go(X) such that SAF(F) = .

Proof. Let B = |X| At. Select a rational r € Q such that 0 < r|X| +¢ < | X|. Set
A1 =r|X| +tand Ay = | X| — A\;. Take f € Go(X) which exchanges two intervals
of lengths A\; and Ag. Then, by Lemma 2

SAF(f) = |X| AN =|X|A (| X]|+1t) =|X| AL,

completing the proof. O
Corollary 1. SAF(G,x(X)) = SAF(G2(X)) = K(|X|).
Proof. Follows from Lemmas 2] and O

Theorem 1. Let f € G(X). Assume that SAF(f) € K(|X|). Then there exists a
rotation g € Go(X) and hy, he € Gper(X) such that

f:gthZhlog.
Note that in the above theorem G, (X) can be replaced by G'(X) or Go(X)
(see @33).
Proof of Theorem Il By Lemma [B] there exists g € Go(X) such that SAF(g)
SAF(f) € K(]X|). Take hy = fog™?t, ha = g lof. Then hy, ha € Go(X) = Gper(
in view of Lemma [Tl
Theorem 2. Let f € G(X). Then

feH(X) < SAF(f) € K(X]).

oZ
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Proof. Direction =. In view of ([Z4)), it is enough to show the following two inclu-
sions:
S1 = SAF(G,(X)) € K(|X|); S2 =SAF(Go(X)) € K(|X]).
Both are immediate: S; = K(]X|) by Corollary [l and S = 0.
Direction <. Follows from Theorem [l (]

4. RANkK 2 IETS LIE IN H

By the span of a subset A C R (notation: span(A4)) we mean the minimal vector
subspace of R (over Q) containing A.

By the rank of an IET f (notation rank(f)) we mean the dimension of the span
of the set the lengths of the intervals exchanged by f:

rank(f) := dimg(L(f)),
where
(4.1) L(f) :==span({\, Ao, ..., A\ }) (if f€G,).
The following implication is immediate: rank(f) =1 = [ &€ Gper = Go.
Theorem 3. For f € G(X), the following implication holds:
rank(f) <2 = fe H(X).
Proof. We may assume that rank(f) = dim(L(f)) = 2. Since all A\, € L(f), it
follows that |X|=>",_, A\ € L(F). Let B = {|X|,u} be a basis in L(F). Then
SAF(f) € L(f) Ao L(f) = {q|X[Au]qeQ}
={IXIAqu|qeQ} CK(X]),
whence f € H(X), in view of Theorem [2 O

5. CRITERION FOR 3-IETS TO LIE IN H

Let f € G3(X). Then f has 2 discontinuities, and f acts by reversing the order
of three subintervals, X7, X5 and X35. Set A\; = |X;|. Then X = domain(f) =
[a,a + A1 + A2 + Ag), with some a € R. Set for convenience a = 0 so that X =
[0, A1 + A1+ A3).

The corresponding translation constants are easily computed:

Y1 :f(O)—OZ/\Q—F)\g = |X| — A3

y2 = f(A1) = A1 = Az — Ag;

Y3=F( A1+ X)) — (A1 +X2) =0— (A1 + X2) = A5 — | X].
(The above short computation follows general receipt for computing the translation
constants v in terms of the constants A\, and the permutation specifying the way
intervals X} are rearranged; see e.g. [I0, Section 0]. The permutation here must
be (321).)

Since A2 = | X |—A1— A3, we can compute SAF(X) in terms of linear combinations
of the wedge products involving only X, A1 and A3:

3

(5.1) SAF(X) =Y M@y = X[ A (A1 = Ag) — M A s,
k=1

We need the following known basic fact (see e.g. [I3] Lemma 3.1]).
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Lemma 4. If vi,v9,...,v, are n > 2 linearly independent real numbers, then the
% wedge products v; ANvj, 1 <1< j <n, are linearly independent.

Corollary 2. Let vy,v9,v3 € R be linearly independent. Then vy A vy # vs Au for
all uw € R.

Proof. Assume to the contrary that
v1 ANV =v3 AU

for some u € R. If u ¢ span({v1,v2,v3}), then the set {u,v1,vs,v3} is linearly
independent, contradicting Lemma [l

And if u € span({vy,vs,v3}), then u = qrv1 + g2v2 + g3v3 with some ¢; € Q
whence

v1 Avg = q1v3 N V1 + g2 v3 A Vg,

a contradiction with Lemma [ again. O

Lemma 5. Let f: X — X be a 3-IET and assume that rank(f) = 3. (Equiva-
lently, the set {\1, A1, A3} is linearly independent.) Then f ¢ H(X).

Proof. Assume to the contrary that f € H(X). Then, by Theorem 2, SAF(f) €
K(|X]). It follows from () that Ay A A3 € K(|X|), i.e., that

(5.2) )\1 A )\3 = |X‘ A u,

for some u € R. Since the numbers A\, A3 and |X| = Ay + A2 + A3 are linearly
independent, (5.2]) contradicts Corollary (2 O

Theorem 4 (Criterion for a 3-IET to lie in H). Let f: X — X be a 3-IET. Then
feH(X) <= rank(f)<2.

Proof. The direction = is a contrapositive restatement of Lemma[El The direction
< is given by Theorem O

6. VALIDATION OF THE MEMBERSHIP IN CLASSES Go(X) AND H(X)

Given f € G(X), we describe constructive procedures to decide whether f €
Gper(X) and whether f € H(X).

6.1. Does the inclusion f € G, (X) hold? Since Gpe,(X) = Go(X) (see [Z3)),
one only has to test the equality

SAF(f) =Y A @7 =0.
k=1
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We assume that the linear structure of f is known. By the linear structure of f
we mean:1
(a) a basis B = {v1,v9,...,v,} of the finite dimensional space

L(f) :==span({\1, Aa, ..., A\ });

(b) the (unique) linear representations A\, = Y .-, qx,v;, 1 < k <, with all
qr,; € Q.
Observe that all translation constants 7 also lie in L(f), and their linear rep-
resentation in terms of basis B can be computed. This way one can get the repre-
sentation

(6.1) SAF(f) = Z Dij Vi AUy,
1<i<j<n
with known p; ; € Q. By Lemma ] SAF(f) = 0 if and only if all the constants p; ;

vanish. Then

J€Gper(X)=Go(X) <= pi;=0, foralli,j.

6.2. Does the inclusion f € H(X) hold? Again we assume that the linear
structure of f is known. To answer the question, we proceed as follows.

First, we modify the basis B of L(f) to make v; = |X|. Then we proceed just
as before and get (6.1]) with known p; ; € Q. By Theorem 2] and Lemma [H]

feHX) <= SAF(f)eK(X|) <= pi;=0 for2<i<j<n.

7. CLASS H IS NOT PRESERVED UNDER INDUCTION

An IET (X, f) is called minimal if its every orbit is dense in X. For a sufficient
condition for an TET to be minimal see [5].

Let (X, f) be an r-IET and assume that ¥ C X is a standard subinterval. It is
well known (see e.g. [4] or [5]) that the (first return) map fy: Y — Y induced by f
on Y is also an IET (exchanging at most r + 1 subintervals). It is also known that,
under the minimality assumption, the SAF invariant is preserved under induction.

Proposition 1 ([I, Part II, Proposition 2.13)). Let (X, f) be a minimal IET and
assume that Y C X is a standard subinterval. Then

SAF(f) = SAF(fy).

Corollary 3. Let (X, f) be a minimal IET and assume that Y C X is a standard
subinterval. Then

f€Gr(X) = [y €Gper(Y).
Proof. Follows from Proposition [[l and the fact that Gpe,(X) = Go(X). O

Corollary 4. Let (X, f) be a minimal IET and assume that Y C X is a standard
subinterval such that % € Q. Then

feHX) <= fyeH(Y).
Proof. Follows from Proposition [l because K(|.X|) = K(|Y|) assuming that % €
Q. O
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Theorem 5. Let (X, f) be a minimal IET. Then the following two assertions are
equivalent:

(a) There exists a standard subinterval Y C X such that fy € H(Y);

(b) SAF(X) =u A v, for some u,v € R.

One can show that if (b) of the above theorem holds and SAF(X) # 0, then
u,v € L(f).

Proof. (a)=(b). SAF(X) = SAF(Y) € K([Y]) whence SAF(X) = |Y| Av, for some
veR.

(b)=(a). Let SAF(X) = uAw, for some u,v € R. Without loss of generality, both
u,v can be selected positive (using the identities u Av = (—v) Au and 1 A1 = 0).
Select ¢ € Q so that 0 < qu < |X|. Select any standard subinterval Y C X of
length |Y| = qu. Then SAF(fy) = uAv = |Y|A (¢ 'v) € SAF(]Y]), and hence
fy e HY). O

Let K C R be a subfield of reals. An IET f is said to be over K if L(f) C K
(see [@I)), i.e., if all (lengths of exchanged intervals) Ay lie in K.
We complete the paper by the following result.

Theorem 6. Let K be a real quadratic number field and let (X, f) be a minimal
IET over K. Let Y C X be a standard subinterval. Then

fy eHY) <« |Y|€K.

Proof. Since rank(f) = dim(L(f)) < dim(F') = 2, and rank(f) # 1 (because f is
not periodic), we conclude that rank(f) =2 and L(f) = K.

Proof of the <= implication. Select a basis B = {|Y|,u} in K. Then
SAF(fy) =SAF(f) e KAK ={q|Y[Au]qeQ} CK(Y]).
By Theorem [ fy € H(Y).

Proof of the = implication. It has been proved in [3] that minimal rank 2 TETs
must be uniquely ergodic. Thus f is uniquely ergodic. By McMullen’s result
[0, Theorem 2.1], SAF(f) # 0. (McMullen uses the “Galois flux” invariant for the
IETSs over a quadratic number field which, in his setting, is equivalent to the SAF
invariant.)

Select a basis B = {|X|,u} in K. Then

SAF(fy) = SAF(f) e K AK = {q|X|Au|qe Q).

Since SAF(f) # 0, SAF(fy) = ¢|X| A u, with some ¢ € Q, ¢ # 0.

By Theorem[2 fy € H(Y) implies that ¢ | X|Au = |Y|Awv, for some v € R. This
is incompatible with the assumption Y ¢ K in view of Corollary [2] completing the
proof. O
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