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How many people must be in a room so that the chance at least two share a
birthday is at least 1/27 This is the ‘Birthday Problem’, and the answer is that 23
people is enough (assuming that the birthdays are independently and identically
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ABSTRACT. We study a birthday inequality in random geometric graphs: the
probability of the empty graph is upper bounded by the product of the proba-
bilities that each edge is absent. We show the birthday inequality holds at low
densities, but does not hold in general. We give three different applications
of the birthday inequality in statistical physics and combinatorics: we prove
lower bounds on the free energy of the hard sphere model and upper bounds
on the number of independent sets and matchings of a given size in d-regular
graphs.

The birthday inequality is implied by a repulsion inequality: the expected
volume of the union of spheres of radius r around n randomly placed centers
increases if we condition on the event that the centers are at pairwise distance
greater than r. Surprisingly we show that the repulsion inequality is not true
in general, and in particular that it fails in 24-dimensional Euclidean space:
conditioning on the pairwise repulsion of centers of 24-dimensional spheres can
decrease the expected volume of their union.

1. INTRODUCTION

distributed).

Our starting point is an elementary inequality, which we will call the birthday

inequality

Proposition 1.1 (The birthday inequality). Suppose n people have birthdays each
chosen independently and uniformly at random from m possible birthdays. Let E,,
be the event that no two people share a birthday, and p = 1/m the probability that

two given people share a birthday. Then

Pr[E,] < (1-p)02).
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Proof. Let Ej be the event that there are no shared birthdays among the first k
people. Let Vi be the fraction of birthdays covered by the first & people. Then

Pr[E,] = E[1 — Vo_1|En_1] - Pr[En_1].

We assume inductively that Pr[Ej] < (1 — p)(g), and note that
k

k
]E[l—Vk|Ek}:1—m§ (1—%) =(1-p)t

which shows that Pr[Fy41] < (1 — p)(kgl) for all k£ > 1. O

We are interested in geometric birthday inequalities, and in particular in settings
relevant to two models from statistical physics: the hard sphere model and the
hard-core lattice gas model. In these models, particles are placed at random in a
metric space X equipped with a probability measure p (e.g. the unit cube or a
subset of the d-dimensional integer lattice with uniform measure) conditioned on
all pairwise distances between particles being larger than some threshold r. In this
setting the birthday inequality supposes an upper bound on the probability that
no two particles are within distance r when n particles are placed independently at
random according to .

Definition 1.2. Let X1, X5, ..., X, be independently sampled points from a space
X according to the distribution p. Then a birthday inequality holds if

(1.1) Pr(E,] < (1-p))
where E, is the event {A1<i<j<nd(X;, X;) > r} and p := Pr[d(X:, X5) <7].

The quantity on the right is what the probability on the left would be if all pair-
wise interactions were independent, and so the birthday inequality is a statement
about correlations of these events.

A related inequality is the following repulsion inequality.

Definition 1.3. In the setting above, the repulsion inequality holds if
(1.2) E[Vi|Ex] > E[Vi]

where Fj is the event that the centers Xi, Xs,..., X} are at pairwise distance
greater than r, Vj is the volume fraction of X covered by the union of the closed
balls of radius r around X1, ..., Xy, and the expectations are taken over choosing
X1,..., X} independently at random in X according to u.

The repulsion inequality states that conditioning on the event that the centers
of randomly placed balls of radius r are at pairwise distance greater than r does
not decrease the expected volume of their union (as compared to the unconditional
expectation). The repulsion inequality has the flavor of a probabilistic version of
the Kneser-Poulsen conjecture [I4L[I8]: moving a set of spheres in Euclidean space
so that all pairwise distances between their centers do not decrease cannot decrease
the volume of the union of the spheres. This was proved in two dimensions by
Bezdek and Connelly [I], but is open in higher dimensions.

While the repulsion inequality seems intuitively obvious, we show in Corollary
that it is not always true; in particular it fails in dimension 24.
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As in the proof of Proposition [I.1] the birthday inequality on n points is implied
if the repulsion inequality holds for all k between 1 and n — 1. We write Pr[E, | =
(1 —E[V,—1|En—1]) - Pr[E,—1] and continue inductively. The unconditional expec-
tation satisfies E[V;] = 1 — (1 — p)¥, and so if the repulsion inequality holds for all
1 <k <n —1, the birthday inequality holds.

We will show that at sufficiently low particle densities, the repulsion inequality
holds in both the hard sphere and hard-core models. This leads to bounds on the
free energy in both models via the birthday inequality. However, we will also show
that at sufficiently high densities the birthday inequality can fail. We conclude by
conjecturing that the failure of the repulsion inequality can be used to indicate the
fluid/solid phase transition.

2. HARD SPHERES

The hard sphere model is a model of particles as randomly positioned non-
overlapping spheres: a random sphere packing. There are no forces in the model
besides the hard constraint that two spheres cannot overlap. We define the hard
sphere model on 7, the d-dimensional unit torus.

Definition 2.1. The hard sphere model Hy(n,r) consists of a uniformly random
configuration of n spheres of radius /2 in 79, conditioned on the event that the
centers of the n spheres are at pairwise distance greater than r.

An important quantity in statistical physics is the partition function:

Definition 2.2. The partition function, Z4(n,r), of the hard sphere model on T
is defined as:

(2.1) Zd(n,r) = / / 1E" dJ?l d.’L‘n
T Td
where E,, is the event that d(z;,z;) > r forall 1 <i< j <n.

We define the density o of Hy(n,r) as the fraction of volume of 7% occupied by
the spheres of radius r/2 around the n centers, i.e., a = n(r/2)%y, where v, is the
volume of the unit ball in R?. As « is the density of the random sphere packing
given by Hgy(n,r), it must lie between 0 and the maximum sphere packing density
in d dimensions.

Definition 2.3. The free energy of the hard sphere model at density « is:
1

(2.2) Fyla) =— nhﬁn;() - log Zg(n,rn(a))

where r, (o) = 2(a/(nvg))"/.

Physicists believe that the hard sphere model in dimension d > 2 undergoes a
fluid/solid phase transition as the density of the spheres increases: at low densities
configurations show no long-range order, while after the phase transition long-
range order emerges. For an introduction to the hard sphere model see [I6] and the
references therein. In dimension d = 1 there is no phase transition and the model
is solved; that is, an explicit expression for the free energy is known, and it has no
non-analytic points [2I]. In higher dimensions, mathematicians have proved that
Markov chains can efficiently sample from the model at sufficiently low densities
[7,9}13L20], but no proof of a phase transition is known. See [2L[I9] for a discussion
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of mathematical proofs of phase transitions in continuous hard-core models, and in
the second a proof of a phase transition in a system with zipper-like molecules.

We define the model with spheres of radius /2 because it will be convenient to
view the hard sphere model from the perspective of the random geometric graph
Gy(n,r): n points placed uniformly and independently at random in 7¢ with an
edge placed between pairs of points at distance at most 7.

The following proposition relates the hard sphere model to the random geometric
graph, and follows immediately from Definition 211

Proposition 2.4.
Zg(n,r) = Pr[Ga(n,r) is empty|.

In what follows we parameterize both the hard sphere model and the random
geometric graph by p := vgr?, the probability that two uniformly random points
in 79 are at distance at most r. Abusing notation we will write G4(n,p) for
Ga(n,r(p)) where vgr(p)? = p. This parameterization gives some intuition for
the birthday inequality: if G(n,p) is the Erdds-Rényi random graph on n vertices
(every edge present independently with probability p), then the birthday inequality
is Pr[Gq(n,p) is empty] < Pr[G(n,p) is empty]. In fact, if we fix n and p and
let d — oo, then Pr[Gg4(n,p) is empty] — Pr[G(n,p) is empty] (Theorem 2 in [6]
for the random geometric graph defined on the surface of the d-dimensional unit
sphere).

The birthday inequality holds in dimension 1 for all values of p:

Proposition 2.5. For all p € [0,1],
Pr[G1(n,p) is empty] < (1 —p)(2) )

Proof. For p > 2/n, we are beyond the maximum packing density on the circle,
and so Pr[G1(n,p) is empty] = 0 and the inequality holds. For p < 2/n, we can
write the left-hand side explicitly: Pr[Gy(n,p) is empty] = (1 — np/2)"~1; then it
is a calculus exercise to show that (1 —np/2)"~! < (1 — p)(g) for p < 2/n. O

Our first main result of this section is to show that in any dimension, at a
low enough density the birthday inequality holds. We do this via the repulsion

inequality (L2).

Theorem 2.6. For the the hard sphere model on T, for densities o < 27273% the
repulsion inequality holds.

Theorem and the birthday inequality immediately imply a lower bound on
the free energy of the hard sphere model at sufficiently low densities, which to the
best of our knowledge is new.

Corollary 2.7. For a < 272734 Fy(a) > 29 1a.

Proof of Theorem 2.6l We first define some notation. For a collection of k centers
in 7%, let Vi be the volume of points in 7¢ at distance at most r from one of the k
centers, i.e., the volume of the union of balls of radius r around the centers. Let Ej
be the event that the k centers are at pairwise distance greater than r. As always,
we have p = vgr?, and we assume a < 272734 je., p < 47179 /n. Our goal is to
prove the repulsion inequality E[Vy|E)] > E[V)] where the randomness is in placing
each center uniformly and independently at random in 7.
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We will prove the following estimate for all 1 < k <n — 1:

(2.3) E[Vi|Ex] > k B L4
To complete the proof of the theorem from (23] we use inclusion/exclusion to
bound E[V3] =1 — (1 —p)* < kp — (’;)p2 + (g)pg, and so

E[Vi|Ex] — E[Vi] > (’;)ﬁ <1 _ (i = il‘); k - 2p>

which is non-negative when p < 4174/,
To prove (Z3]) we use inclusion/exclusion and linearity of expectation to get the
lower bound

. k
BV > by~ BV (L)1 =k — BV (L 2)IEL
i<j
where V (i, §) is the volume covered by the balls of radius r around both centers i
and j, i.e., their overlap volume.
Now let  be a fixed point in 79 (say the origin), AL? the event that z is covered

by the balls of radius r around both centers 1 and 2, and Fs the event that centers
1 and 2 are at distance greater than r. Then we have

E[V(1,2)|Ex] = Pr[A;?|Ex]

. PI‘[A;/,’2 N Ek]

Pr[Ej]

_ Pr[AL% N By - Pr[Ey|AL? N Es)

- Pr[E3] - Pr[Ey|E2]
PrEx|AL2 O By

Pr(Ey| B

First note that Pr[Ex|AL2 N Ey] < Pr[Ej_s]. Next, write
Pr[Ek_g] Pr[Ek|Ek_2]

= Pr{A}?|Ey]

PI‘[Ek; ‘EQ] =

PI‘[EQ]
> pr(py o) LS 2)1’))_(;_ (k= D)
> pri-o 2

where we have used the inequalities Pr[Fy_1|Ey_2] > 1—(k—2)p and Pr[Ey|Ex_1] >
1 — (k — 1)p which follow from the union bound: the volume of the union of balls
of radius r around k — 2 centers is at most (k — 2)p.

This gives

Pr[EyAY2 N By _ 1-p
Pr[Egx|Es]  — (1—kp)?’
Finally we upper bound Pr[ALl2|E,]. We write
p? = Pr[AL2] = p Pr[AL2[E5] + (1 — p) Pr{AL2| By,

The probability that three given points form a triangle in the random geometric
graph with connection radius 7 is p- Pr[AL?|Es]. A lower bound for the probability
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of forming a triangle is the probability that the first two points fall in a ball of
radius /2 around the third, which has probability p?4~¢. Putting this together we
have

2 24—d
PrjAl?|E,) < TP 7
1-p
and
1—4-¢
E[V(1,2)|E:] < p* —-—=
VLB <0 s,
which gives (Z3). O

Our next result is that the birthday inequality does not hold in general. We show
this in dimension 24, using the fact that there is a sphere packing of particularly
high density.

Theorem 2.8. In dimension 24, the birthday inequality fails for large enough n at
densities o € ((.79)%* - p, p), where p = .001929.

This theorem implies that the repulsion inequality fails at some density in di-
mension 24:

Corollary 2.9. For large enough n, there exists some r so that when n spheres
with centers x1, ..., T, are placed uniformly at random in T34,

vol (HB T, ))] ,

where B(x;,r) is the closed ball of radius r around the center x;.

UOZ(UB Tiy T ) |d(z,25) > r for allz;éj} <E

In other words, conditioning on the pairwise repulsion of the centers of the
spheres can decrease the expected volume of their union!

Note that working in the torus is not essential to the result: the same holds if
the centers of the spheres are chosen at random in a box in R?* large enough so
that boundary effects are negligible.

Proof of Theorem 28, Consider some packing of n spheres of radius r,, in 7% with
density p. Place a sphere of radius (1 — ¢)r, for 0 < ¢ < 1 around each center
of the packing. If we place a new set of centers, one in each of these spheres
of radius (1 — ¢)r,, then the spheres of radius ¢r, =: r/2 around them will be
disjoint. The density of such a configuration is o = m)d(trp)d = t9p, or in other
words, t = (a/p)*/?. We can lower bound the probability that n random centers of
spheres of radius r/2 will be disjoint by the probability that each of the n centers
falls into a distinct sphere of radius (1 — ¢)r, around the centers of the packing:

Pr{Gan, ) is empty] > (1 1)) = " (1~ (a/p) /)" o
and
—% log Pr[G4(n, ) is empty] < 1 — dlog <1 - (oz/p)l/d) —logp+o(1).
The birthday inequality, however, asserts that

1
— = log Pr[Gy(n,r) is empty] > 2% 1a.
n
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For d = 24, there is a sphere packing of R?* of density % via the Leech lattice
[5L15]. For any € > 0, and all large enough n, we can find a packing of 72* with n

7T12

non-overlapping spheres which has density at least 757 —e. Choosing p = .001929 ~

71’—; —5-10~7, we can compare the birthday inequality lower bound on the free energy
BlI(p,t) to the cell model upper bound CM(p,t),

F(t) := BI(p,t) — CM(p,t) = §(2t)24 — 1+ 24log(1 —t) + log(p).

A calculation gives F/(.79) > 0 and F'(t) > 0 for t € (.79, 1). This proves Theorem
28 Corollary follows immediately since the sequence of repulsion inequalities
implies the birthday inequality. ]

The hard square model is the hard sphere model under [, distance: configura-
tions of disjoint d-dimensional axis-parallel cubes. Cubes pack particularly nicely,
with a maximum packing density of 1. We use this to show that the birthday
inequality fails in all sufficiently high dimensions.

Theorem 2.10. The birthday inequality fails in the hard square model for some
range of densities in dimension d > 6. For d = 6, the inequality fails for a €
(:4,.95). For d > 6, the inequality fails for o € (n,,74), wheren  ~ 21=41og(2) - d
asd — 00, j; —+ 1 as d — oo.

Proof. Here we ask for a given d if there is some o € (0,1) so that
1 —dlog(1 — a¥/?) > 24 1q,

A numerical calculation for d = 6 and some calculus give the theorem. ]

3. THE HARD-CORE MODEL

Assume 7 is such that n'/? is an even integer. Let Zg(n) be the d-dimensional
discrete torus of sidelength n'/¢ (with a total of n sites). Assume « is such that
an is an integer. We define a fixed-density hard-core model as follows:

Definition 3.1. The fixed-density hard-core model HCy(n,«) for o € [0,1/2]
consists of a uniformly chosen random independent set of k = an sites in Z4(n).

This model is a natural discretization of the hard sphere model. It is closely
related to the hard-core model with an activity parameter \: an independent set
I C Z4(n) chosen with probability proportional to Al/l. By conditioning on |I| = an
we obtain the fixed-density hard-core model defined above. In the terminology of
statistical physics, the fixed-density model is the canonical ensemble, while the
activity parameter model is the grand canonical ensemble.

We can define the partition function and free energy of the hard-core model:

Definition 3.2. The partition function, Z;(n, k), of the hard-core model is defined
as:

(3.1) Za(n, k) =1S(k) := # of independent sets of size k in Z4(n).

We can write Z4(n, k) = ’}C—T Pr[X}, is an independent set] where X, is a (multi)-
set of k independent and uniformly chosen sites from Zg4(n).

Definition 3.3. The free energy of the hard-core model at density « is:

.1
(3.2) Fy(a) = nll_)ngo - log Z4(n, an).
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Note that we do not take the negative of the log partition function here, and so
while we obtained lower bounds on the free energy of the hard sphere model, here
we will obtain upper bounds.

We can write the free energy in terms of the probability that X is an independent
set:

1
(3.3) Fy(a) = a—aloga+ lim —logPr[X,, is an independent set] .
n—oo N

We can also define the fixed-size hard-core model on the d-dimensional Hamming
cube @4, with vertex set {0, 1} and edges between vectors that differ in exactly one
coordinate. The partition function and free energy are defined as in the hard-core
model on Z4(n).

Our first theorem of this section is that the repulsion inequality (and thus the
birthday inequality) holds in the hard-core model at a sufficiently low density on
any d-regular graph. We consider a d-regular graph G on n vertices, and select a
set of k vertices X}, uniformly at random with replacement. We use the convention
that two vertices in X form an edge if they are neighbors in G or if they are
identical; so if X has no edges, it is an independent set of size k in G. Thus we

have p = %, the probability that two randomly chosen vertices form an edge.

Theorem 3.4. For the the hard-core model on any d-regular graph G on n vertices,
at densities a < (d + 1)72, the repulsion inequality (L2)) holds.

As a corollary via the birthday inequality we get an improved upper bound on
the number of independent sets of size an in all d-regular graphs, for a < (d+1)~2.

Corollary 3.5. For a < (d+ 1)72, the number of independent sets of size an in
any d-regular graph G satisfies:

IS(an) < (Z:;! <1 - d;t 1)(?).

On the scale of the free energy, this gives:

—
For a < (d + 1)~2, Corollary improves the bound given by Carroll, Galvin,
and Tetali in [3}@ Specializing to Zg(n) and Qg we get upper bounds of

a(l—-loga—a(2d+1)/2)

1
(3.4) —log IS(an) < a — aloga — a
n

and

a(l—loga—a(d+1)/2)
respectively on the normalized logarithm of the number of independent sets of
size an. As far as we know these are the best bounds known on the number of
independent sets of a given size in Z4(n) and Qg at these densities.

Proof of Theorem [B4. The proof is essentially the same as the proof of Theorem
2.6 and this is one of the motivations of this work: to find methods for analyzing
the hard-core model that generalize to the hard sphere model.

2For this range of o, the best upper bound in [3] on IS(an) is the third bound given in Theorem
1.6, 2om (’;/nQ) On the scale of the free energy this is —alog(a) — (1/2 — a)log(l — 2a). Some
calculus shows that the bound ([B4) is lower for a < (d + 1)72.
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Let Vi be the fraction of vertices in G at distance at most 1 to a set of k randomly
chosen vertices. Let Ej be the event that the set of k random vertices is at pairwise
distance at least 2 in G. We can assume that & > 2 (and thus n > 2(d + 1)?)
since the case k = 1 is immediate. Let p = %, the probability that two randomly
chosen vertices in G coincide or are neighbors. We will prove the following estimate:

s i 2 D (4) D

where the randomness is in selecting the k vertices uniformly and independently at
random.
By inclusion/exclusion we have

EVi] =1—(1—p)* <kp— (g)pz + (Ig)p?’

k(d+1) (k) (d+1)2 (1_ (k —2)(d+ 1))

n 2 n? 3n

and using (B we get

g

(o) (- G e §),

This is non-negative when o = k/n < ﬁ: the RHS is decreasing in k, and

so it is enough to prove when k = n/(d + 1)?. This follows from an elementary
calculation and proves Theorem B.4] modulo the estimate (3.3]).
To prove ([BA), we use inclusion/exclusion again to bound

BVl > b (5 BV (L2

where V(1,2) is the fraction of vertices in G at distance 0 or 1 of the first and
second of the k randomly selected vertices. Let Al? be the event that vertex v
neighbors both of the first two selected vertices. We write

E[V(1,2) 1g,]
PI‘[Ek;]
_ —Z PI‘AIQQE;C]

E[V(1,2)[Ex] =

veG
_ 1 Z Pr Al 2 N EQ] Pr[Ek|A1 2 N Eg]
Pr[E] - Pr{Ey|Ey]

veG

1 Pr[Ey|AL2 N E,]
- P A1’2 E- - v
w2 PR T

If the neighbors of v form a clique, then that term in the sum is 0. We assume from
here that there is at least one edge missing from the subgraph of v’s neighbors.
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Consider %. Again we have Pr[Ey|AL% N Ey] < Pr[E)_»], and
Pr[Ek_Q] PI‘[Ek|Ek_2]

PI‘[EQ]

_ Pr{Bs](1— kp)?

> —p

Pr[Ey|E2] >

which gives
Pr[Ey|AL% N By < 1-p

3.6 .
(36) BB - (1= k)?
Next note that for any d-regular graph G,
d /o
- 3. C G —
(3.7) 1 3 Pr[AL? By = 1 on) > #{Csin G} _d d-1
e’ n (5) —dn/2 n n(l—p)
Inequalities (8] and B1) give
d(d—1)
< _
]E[V(17 2)|Ek] = 712(1 _ kp)g
and thus (30)). O

We now show that the birthday inequality fails in general for d-regular, bipartite
graphs with d > 6.

Theorem 3.6. For d > 6, there exist constants ol € (0,1/2) so that for n large
enough, the birthday inequality fails for the hard-core model on any d-reqular, bipar-
tite graph G on n vertices at densities o € [}, 1/2]. Asymptotically, o}, ~ 2log2/d
as d — oo.

Proof. For a lower bound on the number of independent sets of size an in G, we use
the parity lower bound: any subset of one side of the bipartition is an independent

set, and so
IS(an) > (n/2>
an

The corresponding bound on the free energy is
Fi(a) > —alog(2a) — (1/2 — a)log(1l — 2a) + o(1).
The birthday inequality asserts the upper bound:

Fila) <a (1 —loga — a%) +o(1).

Some calculus shows that these bounds cross for d > 6, and that asymptotically
as d — oo, the crossing point is o}, ~ 2log2/d. |

4. MATCHINGS

In this section we use the repulsion inequality to give bounds on the number of
matchings of size k in a d-regular graph G on n vertices. Such a graph has nd/2
edges, and each edge shares a vertex with 2d — 2 other edges. We let p = %721, the
probability that two uniformly chosen random edges (with replacement) coincide or
intersect at a vertex. Then the birthday inequality asserts that Pr[Ej] < (1— p)(g),
where E}, is the event that k& edges chosen uniformly at random from G form a
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matching of size k. The repulsion inequality states that E[Vy|Ex] > E[V4], where
Vi is the fraction of edges covered by a set of k edges: the fraction of edges that
are contained in or intersect the set. Since a matching in G is an independent set
in the line graph of G, we could apply Theorem 3.4 to get a bound, but we can do
better working directly, since for d > 3, the line graph of a d-regular graph contains
many triangles. Let M (k) be the number of matchings consisting of k edges in G.
We show:

Theorem 4.1. For a < %, the repulsion inequality holds for matchings of size ag
in a d-regular graph on n vertices, and as a consequence

cxn/Q)

. (nd/2)°m2 (- 2d—1\("
Man/2) < =2 ) (1 nd/2>

On a logarithmic scale, this gives

2 22d -1

(4.1) ElogM(an/Q)Salogd—aloga—i—a—%T.
For o = O(d~'/3), Theorem Bl improves the bound given by Ilinca and Kahn
in [I1]B Together Theorem B and [L1] show that the birthday inequality holds

for matchings of all sizes in d-regular graphs.

Corollary 4.2. The birthday inequality holds for matchings of size k, for all k, in
every d-reqular graph on n vertices.

In would be nice to prove that in fact the repulsion inequality holds for matchings
of any size in a d-regular graph.

Proof of Theorem EIL Let m = nd/2 be the number of edges of G, and p = 21,
We want to show that E[Vy|Ey] > E[Vi]. Let Ly be the number of edges of G that
are covered by two edges of a matching of size k& but are not part of the matching
themselves. Then

E[Vi|EW] = k+ (2 — 2)k — E[Lo|Ey) = m (pk — E[Lo/m|Ey]).

By inclusion/exclusion we have

E[Vi] =m(1 = (1 - p)*) < mpk —mp (I;) +mp? (g)

ol () 5)

So it is enough to show that

E[Ls| Ex] < m@)p? (1 - ’;—p) :

3The bound in [I1], translated to natural logarithms, is % log M(an/2) < alogd — aloga —
2(1 — a)log(l — &) — a+ (logd)/(d — 1). Subtracting the first two matching terms then power
expanding around o = 0 gives a —a? + (logd)/(d— 1) —a3/3 —. .. for the Ilinca-Kahn bound and
a—a?+4a?/(2d) for the birthday inequality bound [@I]). These cross when a = O(((log d)/d)/3).
In particular, for all larger o, the Ilinca-Kahn bound is stronger than the birthday inequality, giving
Corollary
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We can write
k
BlLali] = Y () Prl4}*1e
eeG

where Al? is the event that edge e is covered by edges 1 and 2. Now it is enough
to show that Pr[Ay?|Ey] < p2(1 — kp/3). As in the proofs above we write

Pr[Ej|AL O By

Pr[A?|Ey] = Pr[AL2|E,] -
I‘[ 2 | k?] I‘[ e 2] PI’[EHEQ]
1—p
< Pr[A?|Ey) - — s
< PriAc| ] (1—kp)?
We calculate ,
2(d—1
Pr[A?|Ey) = #
m?(1—p)
which gives
2(d —1)?
Pr[A}?|Ey) < ——L—.
I‘[ 2 | k] — mg(l_kp)g
Our assumption that o < 3/28 implies that kp < %, and so
2(d —1)? (2d — 1) kp
Pr[A}?|Ey] < < 1— =) =p*(1 — kp/3
1"[ 2 | k]—mg(l_kp)g— m2 3 p( p/)
which shows that the repulsion inequality holds. O

5. CONCLUSIONS AND CONJECTURES

We conjecture that the lower bounds on the density at which the birthday in-
equality holds in Theorem and Theorem [3.4] can be extended to the entire fluid
phase of the hard sphere and hard-core models.

We describe two notions of the fluid phase of the hard sphere and fixed-size
hard-core model. The first is decay of correlations:

Definition 5.1. Let x¢, x, x; be positions in 7% or lattice sites on Zg(n). Let Ag
(resp. Aj, A:) be the event that the position xg (z(,x:) is covered by a sphere in
the hard sphere model or occupied by a particle in the hard-core model. Then the
model exhibits decay of correlations at density « if there is some constant ¢, > 0
so that

[Pr[Ad] Ao] — Pr[AdAg] | < glcads/r)

where d; = min{d(z¢, x+),d(z(, z¢)} and g(s) is some function so that lims_, g(s)
= 0. (For the hard-core model, we take » = 1.) The model exhibits exponentially
fast decay of correlations if we can take g(s) < e~ for some ¢ > 0.

The second notion is the rapid mixing of a specific Markov chain with the hard
sphere or hard-core distribution as its stationary distribution. One such chain is the
single-particle, global-move dynamics (see e.g. [9]). A single move of the Markov
chain consists of selecting one center of a sphere or one particle on the lattice
uniformly at random, then selecting a position or a site uniformly at random from
T4 or Z4(n) and moving the center or the particle to the new position as long as it
does not violate the hard constraints of the model. We say the chain mixes rapidly
if the mixing time is a polynomial in 7.
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Conjecture 5.2. If the hard sphere or hard-core model is in the fluid phase (say
it exhibits exponentially fast decay of correlations or the Markov chain above mizes
rapidly), then the repulsion inequality (and thus the birthday inequality) holds.

The intuition behind Conjecture is that at a sufficiently low density, condi-
tioning on particles being repulsed from each other should have an essentially local
effect, and locally, conditioning on repulsion increases the volume covered by the
union of balls around the particles. However, beyond the fluid/solid phase transi-
tion, long-range correlations come into play, and conditioning on the repulsion of
particles can force them into global lattice-like configurations with holes, and thus
the volume covered may actually decrease. Note that a model of random matchings
of a given size on the d-dimensional lattice, the monomer-dimer model, does not
exhibit a phase transition [10], and Corollary -2 shows that the birthday inequality
holds at all densities.

Conjecture has several consequences. First, it would give a mathematical
proof that the hard sphere model in dimension 24 undergoes a phase transition,
which to the best of our knowledge has not been proved yet in any dimension. The
density at which the birthday inequality fails would mark an upper bound on the
critical density for the model, as exponential decay of correlations (or fast mixing)
could not hold.

Second, it would imply that the critical density in the fixed-size hard-core model
is upper bounded by afj from Theorem [3.6] in particular showing that a phase
transition occurs at densities O(1/d) on Zg(n). The best known analogous bounds
in the hard-core model with fugacity parameter A are A\, = O(d’l/ 3) given by
Peled and Samotij [I7] improving the bound of O(d~'/*) from Galvin and Kahn
[8]. Proving Conjecture would give the optimal bound up to a constant factor
A = O(d™1) as the typical particle density « in the hard-core model with fugacity
A is bounded below by ﬁ.

The next conjecture concerns independent sets in d-regular graphs.

Conjecture 5.3. Suppose 2d divides n. Let Hg,, be the graph consisting of n/(2d)
disjoint copies of Kq 4, the complete bipartite graph on two sets of d vertices. Then
forall1 <k <n, Hy, minimizes the expected number of neighbors of a uniformly
random independent set of size k over all d-regular graphs on n vertices.

In the notation above, Conjecture 5.3 states Ep, , [Vi|Er] < Eg[Vi|Ey| for any
d-regular G on n vertices. Conjecture immediately implies a theorem of Kahn
[12] and Zhao [22] that Hg,, maximizes the total number of independent sets in any
d-regular graph on n vertices, and implies the conjecture of Kahn [12] that Hg,, in
fact maximizes the number of independent sets of size k, for every k. Conjecture (5.3l
is in fact much stronger: it states that Hg , maximizes the ratio of the number of
independent sets of size k to the number of independent sets of size k — 1 for all k.
The elementary proof of Corollary suggests that proving Conjecture 5.3 may in
fact be easier than trying to bound the number of independent sets of a given size
directly.
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