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EXPLICIT COMPUTATIONS WITH THE DIVIDED
SYMMETRIZATION OPERATOR

TEWODROS AMDEBERHAN

(Communicated by Ken Ono)

ABSTRACT. Given a multi-variable polynomial, there is an associated divided
symmetrization (in particular turning it into a symmetric function). Postinkov
has found the volume of a permutohedron as a divided symmetrization (DS)
of the power of a certain linear form. The main task in this paper is to
exhibit and prove closed form DS-formulas for a variety of polynomials and
some rational functions. We hope the results to be valuable and available to
research practitioners in these areas. In addition, the methods of proof utilized
here are simple and amenable to many more analogous computations.

Throughout, let .S,, denote the symmetric group of permutations of the n-element
set {1,2,...,n}. Given a function f(A1,...,\,), the divided symmetrization (DS)
of f is defined by

<f>n::ZU, 7]:91\1,...,)\")

o€S,, jm1 (Al = Akg1)
= f()‘a(l)v s a(n
U;n H s Ao(k) = Ao(ht1)

For starters, a very good reference on the subject would be the monograph by Alain
Lascoux [I]. Our motivation comes from a beautiful work [2] of Alexander Postnikov
who has found the volume of a permutohedron in terms of divided symmetrization
of (Mz1+ -+ 4+ Apr1Zn4+1)™; in addition, he offers a combinatorial interpretation
of the resulting coefficients. To put in context, we recall:

Proposition 0 (Postnikov). If f is a polynomial of degree n — 1 in the variables
Aly. -y An, then its divided symmetrization (f) is a constant. If deg f < n—1, then

(f) =0.

Proof. Write (f) = g/A where A = [],_.(A; — A;) is the antisymmetric Van-
dermonde determinant and g is a some antisymmetric polynomial. Since (f) is
symmetric, g is divisible by A. Because degg = deg A = (g), their quotient must
be a constant. A similar argument shows that if degg < n — 1, then degg < deg A
and, hence, g = 0. The proof is complete. O
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This proposition is applicable to (most) identities discussed in this note. But
then, we ask:

Is it possible to obtain the actual values of these constants?
If so, then:

Do these constants have a closed form?
In this paper, we answer both questions for a variety of functions. Many more
can be found at arXiv:1406.0447. The selection of these results is not meant to
be representative, but rather reflects the author’s personal taste. As a warm-up,
we invite the reader to ponder on proving the following three numerical identities
before continuing further on.

Involving products:

O'ESn+1k=1
“oo(1) —o(k+1)
nm =1m42m 1
> o] ) ot D) + 2" + (n+1)
O'ESn+1 k=1

Involving sums:

“o(1)+ - +o(k) n+1\
= 5 )7
which equals the numbers of edges in the Hasse diagram of the weak Bruhat order
on Spy1.
From here on, as promised, we state and prove numerous symmetrization for-
mulas.

Lemma 1. If A\, Ao, ... are variables, then
Z Z a(k) . (n + 1) nl
0€Sp41 k=1 U a(k+1) 2

Proof. Break up the sum according to a(k:) =1i,0(k+1) = j so that

n n+l n n+l

ety 1=(n—1)
GESZR+1 I; A o (k) —A o(k+1) ;ijl A - o”ESZ; 1 ;Z,]Zl A a A
i#£] i<j
(1) <n+1)z":1 <n+1) )
k=1

Corollary 2. If \i, Ao, ... are variables, then

0€Sn+1 k=1 U(kJrl)

Ao (4) _
0ESni1 Nam ety = 0. Thus by Lemma 1,

Ao(1) t o+ Aoy a'(k; B (n + 1)
Z Z Z Z o) — Aotirn) 9 nl. O

A A
O’ESn+1k' 1 U(k) U(k+1) g€Sy +1 k=1

Proof. If j # k,k + 1, then )
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Lemma 3. IfY, A, \o,... are variables, then

<H()\k—Y)> =1  and <H(Y—)\k+1)> =1
k=1 n+1 k=1 n+1

Proof. We prove the first identity only; the same argument works for the other.
When n = 1, the vacuous product confirms the assertion. We induct on n. The
base case n = 1 is easily verifiable too, since )’\\1 Y 4 )’\\22 = L Suppose the
statement holds for n — 1. For the next step n, observe that the polynomial on the
left-hand side is of degree at most n, in Y. Let’s compute its values at the n + 1

points Y € {\q,..., )\n+1} as follows: for each 1 < j <mn+1,

ZH ot 2 :ZA

cr(kJrl)

—XN M A — N

o’(n) — a'(nJrl) e )\a"(k) - >\cr’(k+1)

O’ESn+1k 1 o’eSy
=S Ao'(n) = Aj H Aot (k) —
o'€S,, Aa’(n) - A - o" (k+1)
= H —/(k Ny
o et ko1 N () T At e)

where we used the induction assumption. So, the polynomial is a constant and the
proof follows. |

Lemma 4. As a direct consequence, we obtain the following partial fraction de-
composition:

n+1
1
= (=117 e {1,... 1}.
<AJ——Y>”+1 (1) (j_l)HA S R (Y

Proof. We rewrite the assertion into an equivalent formulation and show that

As(nt1) = Ao(k) — _ n+1—j< n )
= (-1 . :
2 Aoy =Y H/\ Ao (k41) =1 j—1

0ESnt1

Denote the sum on the left-hand side by ¥, ;(Y'). The case j = n+ 1 is simply
the content of Lemma 3. So, assume o(n + 1) # o(j) (or j < n). By dropping off
vanishing terms along the way, we compute at Y = \;:

j—1
U, (\) = Z H o(k-'rl -y H yw a(i)

Snt1 k=3 U(k)

j—2
J(kJrl
Z H o(k+1) U >\ -

UESn+1 k—]+1
o(j)=

cr(kJrl)

a’(k+1) '

Now, form a disjoint partition of the underlying set of permutations as
{0€ Ss1 i 0(j) = £}

= 4 {0 € Sni1|o(j) =L and {o(1),...,0(j — 1)} = A}.
Ac{1,...,n+1}—{¢}
(7 — 1)-subset
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With this setup and by Lemma 3, the above summation becomes

Taj) == 3 ZHA"LZHA”

AC{L 1} — {0} Sn_s41 k=1 "7 () Ao(h+1) § (k) = Ao(k+1)
(]71) subset

== > (—1>"-f-1=<—1>"-f+1(‘”).

j—1
AC{1,...,n+1}—{¢}
(73— 1) subset

The polynomial ¥,, ;(Y'), being of degree at most n and attaining the same value
at the n 4+ 1 points A1, ..., Ap+1, must be constant. The proof follows. |

Lemma 5. If Y, A1, Ao, ..., then

ST -

j=1k=1
k#j

Proof. This may be derived from the Lagrange interpolation formula. O
Lemma 6. If Y, A\, )s,... and 1 < j <n+1, then

(O =Y)")0 = (177 (j : 1)'

Proof. Let j = 1. From Lemma 4 and Lemma 5 (in that order), we obtain

YO | FeaTR I, ) PR 1
aj
i i A o) 1T oich >k: Ao’ (k) = Aot (k+1)
n+1n+1
n 1 n n
=—( )" (-1)" =1
ZH ey

For the case j = n + 1, once more, Lemma 4 and Lemma 5 yield

n+1
Ao(i) — _
Do | B ZZ e Hw s
n+1n+1
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Suppose that 2 < j < n. By Lemma 4, Lemma 5, and Pascal’s recurrence we find
that

> s

el (5 >\ o(k+1)

n+1

Y — Yy m—r
¢=10'€S, o) — )‘5)()‘4 Aor(i+1) o Aer(k) T Aokt
kj,j—1

n+1 1 n 1
PN ferer b | R

paciicery o'(i-1) T Ao’ (1) oy Aor(k) — Aol(k+1)
k#j—1,j
n+1 n
(e — ] 1 1
¥ kr S —
gz; g; Ae = Ao (1) | Aor(i—1) = Ao (1) kl;[l Ao (k) = Ao’ (k+1)
k#j—1,j
n+1n+1
-1 fn—1 )\g -Y
~ o (2 ) - o (P2 D) ST
[ J—2 J=1) =0 A=
i
==yt " Y=y = ).
o () o= e ()1
The proof is complete. O
Corollary 7. If A\, A, ... are variables and e,,(\) is the n'"-elementary symmetric

function, then
<HA§> =en(M,e ooy Ang):
k=1 n+1

. . A
Proof. We prove the equivalent claim ¢ » ﬁnzil e =
n o(n

(k) ~ Ao (k+1)
n+l 1 .
> i 3+ To this end,

H )\ a(k)

U(n+1 - a(k+1)

Sn+1

n—1

0'71 >\U
_ZA (n) H (k)

o(n+1)Ao(n) = Aent1)) =5 Ao(k) = Ao(k+1)

_Z[g _1A

n+1) cr(n)

:| n—1 )\o'(k)
a(n+1) ] 125 Ao(k) = Ao(k+1)

Next, we separate the last sum into two and apply Lemma 3 to the first summation
as follows:

n—1 n+1

POl P R IO DI S R I

o(n+1) ke 1>\ (k) — A o(k+1) =1 J S, k=1 a(k) — A o(k+1) j=
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Since f = Hz;ll Ak is of degree n — 1, Proposition 0 implies the vanishing of the
second sum:

n—1

Ao (k) - 1
= )\g(k) — =0.
;1 Ao(n) — >\a n+1) (o5 Ao(k) = Ao(k+1) Sg_:l 1};[1 k[[l Ao(k) = Ao(k+1)
The proof is complete. O

Corollary 8. IfY, A1, Aa,... are variables, then
<H()‘1+>\2_)\k+1_y)> =2t _pn—2
k=1 n+1

Proof. Rearrange the left-hand side (LHS, for short), apply Lemma 4, and proceed
as

LHS — "i:l ”“/\ +/\ — M\ Y 1 ﬁ 1
) JAi =Aj) = A = Aa(s) o Aek) — Aokt

i#]

n+1 n+1 n+1
TS >\ A= Ak — H 1
)()‘z - >‘j) Ak >‘j

i,j=1 k=1
i#£] k#i,j
n+1l n41 n+1
:—ZHAk—)\ +Y - A)H(Ak—x)—l
i,7=1k=1
i#j k#i k?éj
n+1 n+1 n+1 n+1 n+1
_ A —2M\ +Y
_—_Z [Tow=X+y =) w2+ > [ — vy
i,j=1 k=1 k=1 Jj=1k=1
k#i k#j k#j

= L,(Y) + Iy (V).

To determine the second sum, we induct on n. Let’s evaluate IT,,11(\¢) for each
1<i<n+1:

n+l n+1

A —2X + A
() = 14 302 [T P52 = 12 (),
j;ﬁ% k75=];

After consulting initial conditions, this recurrence implies 11, 41(\¢) = 2" — 1.
Since deg 11,11 < n, as a polynomial in Y, it must be a constant. Next, we employ
Proposition 0 which permits us to work with Ay = k (even ignoring V') and thus
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obtain

- E (127

ij=1

n+1 n+1 . .
5 <n{r1>(_1)n+1_jz (z+] - 1)

= J = n+1

n+1

n+1 n+1+k

S (T ()

j=1 J k=0 k

n+1 .
, 1 1
=y (~yrt PER(TITY) S
= J J—1

The last identity is a consequence of the expansions of (1 —2)~?73(1 — x

(1 — 2)~2 which yield Z?ZO(—l)"_j (Z+;+2) (ijl) = n + 1, then simply replace

)7+ =

Z = n here. In conclusion, we have —I,, 1 1(Y) + 1,1 1(Y) = —n — 1 +2""1 — 1 as
required. The proof is complete. O
Lemma 9. Let Y, Z, A1, x1, Ao, T2, ... be variables. Then, we have
1 n n n+1
e Ay =Y =ll- A Ne—Z) 71
<>\1 — 11! + Ak, )> 1 kl_[1( (T1+- - +a) )kHl( k—2)
- et - -

Proof. We proceed by induction. Assume the statement is valid for n. So, for n+1,
we find that

23

Zl o'zxz_
ZH 1 (

Smtt o(1) a’(k+1)
n+1
_Z)\xl sz 2 a(‘)fEi—(Y—)\jl”l)
Aj =2 S Ao AJ Pt Ao(k) = Ao(k+1)
n+1 n—1 n+1
Y - Az _
= Z . Zl H(Y —AjT1 — Z%H/\j) TTOw =)
k=1 i=1 k=1
k#j
n+1 1 n n+1
= b\ _ZH(Y—Z.’L'iA)H()\k—A)_l
j=1"Y k=1 i=1 k=1
k#j
n k n+1
=[[v-> =) [[w-2)7"
k=1 i=1 k=1

The last equality results from the standard partial fraction decomposition applied
to the rational function [[,_, (Y — Ele . Z) 112 (A — Z) 1, in the variable Z.
The proof is complete. O

Corollary 10. Let Y, A1,z Ao, Z2,... be variables. Then, we have

k=1 nt1l k=1
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Proof. A reduction of the sum to S, and a use of Lemma 9 (with Z — X;,Y —
Y — \jzq) yields

anl 1 Ae@Ti =Y

e = Ao(k+1)
n+1
S o Aoy — (Y = Njay)
= Z Y — Xz Z )\0(2) A H Ao(k) = Ao(k+1)
n+1 n—1 n+1
= > (V= Na) [J(V = N —Z$i+1>\j) [T =27
j=1 k=1 i=1 z;jl
n+l n k n+1 n
=S T - Sea Tl = [T+
=t k=1 =t "Zj =

To justify the last equality, rearrange the partial fraction seen in the proof of Lemma
9 as

= n+1 N .
)m+1 — H le H (Mg — )\j)ﬂ _ H %’
a k#] k=1

and take the limit Z — oo on both sides. The proof follows. O

Corollary 11. We have the identity (including its q-analogue)
> (7)o =

i
i=0

Proof. Although this result is well known, we present a different approach from the
more general relation that we saw in the proof of Corollary 10; that is,

n+l n n+1
ST =kx) [T = A) " =nl.
j=1 k=1 k=1
=
Now, replace Y = 0 and A\; = j 4+ a — 1 to arrive at the desired conclusion. O

Lemma 12. Let Y, Z, A1, Ao, ... be variables. Then, we have

1 n n n+1
—— [ =M= = Aag) =[[v-k2) [T -2)7".
Antl = Z i1 k=1 k=1

Proof. This might be considered a “dual” version with a similar proof to Lemma

9. |
Lemma 13. Let Y, A\, Ao, ... be variables and H,, := Zzzl % the harmonic num-
bers. Then,

12[)\1+...+)\k—Y (= Hy) A+ 4+ A1 = Y)
)\k—Y +1_ n+1>\k_ .

k=1
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Proof. We convert the left-hand side into an equivalent form and prove that

. Y n+1
Z o(n+1) — E[T—n'(l—]{n) (;Ak—Y>

Snt1 a(k+1)

The second half of the last identity follows from Corollary 10, so we only consider
the first half with the help of Lemma 12 (use Sp41 — Sn, Z = A, Y = A=Y — ;)
where || := S\, Namely,

Z Ao (n+1) H Zz(; S

o(k+1)
n+1

n+1
Z \ H (JA[ =Y) — Zi:_k+1 /\G(i)
o(ntl) Ao(k) = Ao(k+1)

Snt1
n+1 n
)\ )\ i) — i— Ao’i
_Z/\ZH H|| Aj) = 2icki1 Ao(i)
Ao(n) — o(k) — Ao(k+1)
n+1 n+1
=2 A=Y =) H(W =Y = (k+ DA [TOw =)™
j=1 =1 k=1
k£
n+1 n n+1
Z T =Y = k) [TOw =)
j=1 k=1 k=1
k#j
Expand the polynomial P,(Z) := Z[[,_,(]\| =Y — kZ) + n! Hn+1(/\k — 7)), of
degree n, in the Lagrange interpolating basis:
n+1 n n+1
:ZAJHW Y — k) HAk_
Jj=1 k=1
k#a

Extracting the coefficients of Z™ from both sides leads to n!(1 — H,)|A| + n!H, Y.
The proof is complete. O

Lemma 14. Let Y, Z, A1, Ao, ... be variables. Then, we have

1 fass 1
(o7 e >n+l B | Foveaoveyst
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Proof. We proceed by induction on n. For n + 1, the sum over S,,;1 is established
by

n+1 n—1
~1 1 1
LHS, 1 =
i 1;1 (A =Y)(N; = 2) g;l (Ao@) = A) Aoy — X)) ,};[2 Ao(k) = Ao(k+1)

i#
n+1 n+1

=21 -0l

(- /\—Z) (A — A /\k_/\)

gy Wi
nt1 n+1 n+1

izlx— )\—Z HAk—A H)\k—
N o

n+1 1

Bl | FovengToveyyt

The last equality is a consequence of partial fraction decompositions applied to the
rational function (Z — )" [[72] (A —Y) " (\x — Z) 7, separately, in the variables
Y and Z. |

Lemma 15. Denote the Eulerian polynomials by A, (t). Let A1, Ao, ... be variables.
Then, we have

<H()"f —~ t/\k+1)> =Api1(t) =D A +1,5)t/
k=1 n+1 Jj=0

Proof. Rewrite the left-hand side (denoted Fj,;+1) and apply Lemma 3 for a pro-
gressive expansion:

Fpy = ZH( w)

ot Ao(k) = Ao(k+1)

= ﬁ <1+ (1 _?Aa(lﬁ‘l) )

)‘a'(k) )\a(kJrl)

S-,L+1 k=2
( 0'(2) - ( 1 - )‘a'(kJrl) )
+ 14 2 rotHh
Snz,;l Ao(1) — kl;[z Ao (k) = Ao(k+1)
t))‘a(Q) (1 =1)As3)
=n+1)F, + 1+
;1 Aa(1) = Ao(2) Aa(2) = Ao(3)

Ay
" H <1 L U= DAy )

Ao(k) = Ao(k+1)

:(n+1)Fn+(”;1)27“‘_)%(2) S (HM)

Ae(1) = Aa(2) Ao(k) = Ao(k+1)

Sn—1 k=3
(1 —1)2X 20\ n 1—t)A,
N Z (2) Ao (3) I <1+ (1 =)Ao (rt1) >
7 Qo) = 20@) Aoz = Aom) 15 Ao(k) = Ao(kt1)
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=(n+1)F, + (n; 1) (t=1)F

+ZH_—"““IE[(1+%)

Sk Ao(k) = Ao(k+1) jy Ao(k) = Ao(k+1)

N Z H o(k) ﬁ (1 n (1 _t_))‘a(k-'rl) )

ol Ao(k) = Ao(k+1) 105 Ao(k) = Ao(k+1)

- ("“; I)Fn—l- (t — 1)(”;1)17”_1

(”“)ZHW SR

Ao(k) = Ao(k+1)

Ss k=1 o(k+1) g 7, k=
a(k) & (1- t))‘a(k+1) )
+ 14 rotrh
%:1 kHl )‘a(k) o (k+1) ,61_[4 ( Ao(k) = Ao(k+1)

T T At

(1))

This process terminates with Fj,11(t) = Z;L:O(t —1)nk (”Zl)F,LH_k(t). So, the

polynomials F,(t) fulfill the same recurrence as the Eulerian polynomials A, (t)
and also the same (check!) initial conditions. Hence, F,, = A,, and the proof is
complete. |

Lemma 16. Let Y, A1, Ao, ... be variables. Then, we have

<]z[(/\1 - tAn+1)>n+1 = zn: (Z)th.

k=1 k=0

Note: Let A, be the root lattice generated as a monoid by {e; —e; : 0 < 4,5 <
n+1,and i # j}. If P(A,) is the polytope formed by the convex hull of this gen-
erating set, then the coefficients of Zk( ) t* are the h-vectors of a unimodular
triangulation of P(A,).

Proof. Single out the values o(1) = i,0(n + 1) = j and apply Lemma 14 to obtain

n+1 n—1

1 1
LHS = S (A —tA)"
UZ::1 o gi (A = Ao@) (Ao(n) — Aj) kll Ao(k) = Ao(k+1)
i#j
n+1 n+1
— _ A _ )\ n—2
121 H (A — )\k - A -)
z'j;éj k#w
n+1 n+1 n+1

,]1k1

Iy
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We now invoke Proposition 0 to utilize invariance and replace A\ = k. Some
simpliﬁcation leads to

e ”J( ) (j) 41—t + )]G — )"

i,j=0

Denote the double-sum by W(n, k). We prove W(n — 1,k) + W(n — 1,k —1) =
W(n, k) (the Pascal recurrence):

W(n—1,k +Wmn—1k—1)

LHS

D DYV e G i C Y TSV EUPORS)

730 ijln—i—1ln—j—-1)!
_ Z (—1)F+ith G+DPE+ D" - Z)n
= (+ DIG+ D —i=Dln—j—1)!
_ Z (_1)i+j+k =)
114 — ! _
2 LR T
) ) .k .n_k s
= Syt U S gy
= gl (n — i)l (n —7)!
where in the last equality once more we took the liberty (due to Proposition 0)
of substituting A\y = k + z for a free parameter z. In the present case, z = —1 is
chosen. Together with the matching (check!) initial conditions, we conclude that
W(n, k) = (Z) and, hence, the proof is complete. O

Question. Is there a combinatorial or geometrical interpretation (as in [2]) to any
of the formulas?

ACKNOWLEDGMENT

The author is grateful to the referee whose suggestions greatly improved the
presentation of this paper as well as its contents.

REFERENCES

[1] Alain Lascoux, Symmetric functions and combinatorial operators on polynomials, CBMS Re-
gional Conference Series in Mathematics, vol. 99, Published for the Conference Board of the
Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence,
RI, 2003. MR2017492(2005b:05217)

[2] Alexander Postnikov, Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN 6
(2009), 1026-1106, DOI 10.1093/imrn/rnn153. MR2487491(2010g:05399)

DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LOUISIANA 70118
E-mail address: tamdeber@tulane.edu


http://www.ams.org/mathscinet-getitem?mr=2017492
http://www.ams.org/mathscinet-getitem?mr=2017492
http://www.ams.org/mathscinet-getitem?mr=2487491
http://www.ams.org/mathscinet-getitem?mr=2487491

	Acknowledgment
	References

