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SKOROHOD’S REPRESENTATION THEOREM

FOR SETS OF PROBABILITIES

MARTIN DUMAV AND MAXWELL B. STINCHCOMBE

(Communicated by David Asher Levin)

Abstract. We characterize sets of probabilities, Π, on a measure space
(Ω,F), with the following representation property: for every measurable set
of Borel probabilities, A, on a complete separable metric space, (M,d), there
exists a measurable X : Ω → M with A = {X(P ) : P ∈ Π}. If Π has
this representation property, then: if Kn → K0 is a sequence of compact
sets of probabilities on M , there exists a sequence of measurable functions,
Xn : Ω → M such that Xn(Π) ≡ Kn and for all P ∈ Π, P ({ω : Xn(ω) →
X0(ω)}) = 1; if the Kn are convex as well as compact, there exists a jointly
measurable (K,ω) �→ H(K,ω) such that H(Kn,Π) ≡ Kn and for all P ∈ Π,
P ({ω : H(Kn, ω) → H(K0, ω)}) = 1.

1. Introduction

Throughout, (M,d) is a complete separable metric (Polish) space, M is its Borel
σ-field, Δ(M) is the set of countably additive probabilities on M, and Cb(M) the
continuous and bounded R-valued functions on M . Let ρ(·, ·) be a metric on Δ(M)
making (Δ(M), ρ) Polish and inducing the weak∗ topology, that is, ρ(μn, μ0) → 0
iff

∫
u dμn →

∫
u dμ0 for every u ∈ Cb(M). Let DM denote the Borel σ-field on

the set of probabilities Δ(M); equivalently DM is the minimal σ-field containing
the sets {μ : μ(E) ≤ r}, E ∈ M, r ∈ [0, 1] (which follows from μ �→

∫
f dμ being

DM-measurable if f is measurable [4, Theorem III.62]).
Throughout, all probabilities are assumed countably additive. The set of prob-

abilities on a measure space (Ω,F) is always given the minimal σ-field containing
the sets {P : P (E) ≤ r}, E ∈ F , and r ∈ [0, 1]. For any measurable mapping, f ,
between measure spaces (Ω,F) and (Ω′,F ′) and any probability Q on (Ω,F), the
image law of Q under f is denoted f(Q) and defined as the probability on (Ω′,F ′)
giving mass Q(f−1(E′)) to every E′ ∈ F ′. If Π is a set of probabilities, then f(Π)
denotes {f(Q) : Q ∈ Π}. This paper will give a set of necessary and sufficient
conditions for a set of probabilities to have the following property.

Definition 1. A set of probabilities, Π, on a measure space (Ω,F) is descriptively
complete if for every Polish space (M,d) and every non-empty measurable A ⊂
Δ(M), there exists a measurable X : Ω → M such that X(Π) = A.
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Descriptive completeness is a set-valued version of the first part of Skorohod’s
representation theorem [10, Thm. 3.1.1]: if λ is Lebesgue measure (aka the uniform
distribution) on [0, 1] with its usual Borel σ-field and ρ(μn, μ0) → 0 in Δ(M), then
there exist measurable functions, Xn, X0 : [0, 1] → M such that

Sko(a) Xn(λ) = μn, X0(λ) = μ0, and
Sko(b) λ({s ∈ [0, 1] : Xn(s) → X0(s)}) = 1.

Blackwell and Dubins [2] give the following simultaneous Skorohod theorem:1

There exists a jointly measurable h : Δ(M)× [0, 1] → M such that

Bl-Du(a) for all μ ∈ Δ(M), h(μ, λ) = μ, and
Bl-Du(b) if ρ(μn, μ0) → 0, then λ({s ∈ [0, 1] : h(μn, s) → h(μ0, s)}) = 1.

Taking Xn(s) = h(μn, s) in Bl-Du(a) and Bl-Du(b) recovers Sko(a) and Sko(b).
Since the composition of measurable functions is measurable, we can replace the

probability λ on [0, 1] with any non-atomic P on any measure space (Ω,F): because
P is non-atomic, there exists a measurable f : Ω → [0, 1] such that f(P ) = λ;
if X : [0, 1] → M is measurable and X(λ) = μ, then the composition X ◦ f
is measurable and X(f(P )) = μ; if (μ, s) �→ h(μ, s) is jointly measurable and
h(μ, λ) = μ, then (μ, ω) �→ h(μ, f(ω)) is jointly measurable and h(μ, f(P )) = μ.

A useful example of a descriptively complete set of probabilities has Ω◦ = [0, 1]×
[0, 1], F◦ its usual Borel σ-field, and Π◦ = {λr : r ∈ [0, 1]} where for each r ∈ [0, 1],
λr denotes the uniform distribution on {r} × [0, 1].

Lemma 1. Π◦ is descriptively complete.

Throughout, we use the Borel isomorphism theorem: if B is a measurable subset
of a Polish space (M,d) and B′ a measurable subset of a Polish space (M ′, d′), then
there is a measurable bijection with measurable inverse between B and B′ iff they
have the same cardinality (e.g. [4, Theorem III.20] or [5, Theorem 13.1.1]).

Proof. For any non-empty measurable A ⊂ Δ(M), the Borel isomorphism theorem
guarantees the existence of a measurable onto function, ψA : [0, 1] → A. Let
h(·, ·) be the Blackwell-Dubins function. The mapping X(r, s) := h(ψA(r), s) is
measurable, and for each r ∈ [0, 1], X(λr) = ψA(r) so that X(Π◦) = A. �

Lemma 1 contains a characterization of descriptive completeness. Because Ω◦

is a Polish space, a necessary condition for Π to be descriptively complete is the
existence of a measurableX : Ω → Ω◦ such thatX(Π) = Π◦. Since the composition
of measurable functions is measurable, by Lemma 1, the existence of such an X is
also sufficient for Π to be descriptively complete. We will show that there exists a
measurable X with X(Π) = Π◦ iff Π satisfies the following.

Definition 2. A set of probabilities, Π, on a measure space (Ω,F) is measurably
mutually orthogonal and simultaneously Skorohod (mmosS) if

(a) there exists a measurable, onto d : Π → [0, 1] and a measurable, onto ϕ :
Ω → [0, 1] such that for all r ∈ [0, 1], for all P ∈ d−1(r), P (ϕ−1(r)) = 1, and

(b) for every Polish space (M,d) and every μ ∈ Δ(M), there exists a measurable
f : Ω → M such that for all P ∈ Π, f(P ) = μ.

1After replacing filter (filtre) with sequence (suite), a slightly stronger statement and complete
proof is in Théorème 1.3.2. in [6]
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The condition in Definition 2(a) is a measurable version of the requirement that
Π can be partitioned into sets of mutually orthogonal probabilities: if Pr ∈ d−1(r)
and Ps ∈ d−1(s), r �= s, then Pr and Ps are mutually orthogonal (have disjoint
carriers) because ϕ−1(r) and ϕ−1(s) are disjoint. The condition in Definition 2(b)
requires that each P ∈ Π be non-atomic, which guarantees that for every P and μ ∈
Δ(M) there exists a measurable fP : Ω → M with fP (P ) = μ. The simultaneity
condition is that a single measurable f serve for all of the P ∈ Π.

The weak∗ Hausdorff metric is given

dH(A,B) = inf{ε ≥ 0 : (∀μ ∈ A)(∃ν ∈ B)[ρ(μ, ν) < ε],(1)

(∀ν ∈ B)(∃μ ∈ A)[ρ(μ, ν) < ε]},
for A,B ∈ K(Δ(M)), the class of non-empty, compact subsets of Δ(M). Let
KCon(Δ(M)) denote the dH -closed subclass of non-empty, compact, and convex
subsets of Δ(M). Restricted to the compact subsets, the Hausdorff metric is equiv-
alent for equivalent metrics on Δ(M). Give K(Δ(M)) the Borel σ-field generated
by the weak∗ Hausdorff metric, and give every product of measurable spaces the
product σ-field.

Theorem 1. A set of probabilities, Π, on (Ω,F) is descriptively complete iff it is
mmosS, and if Π is descriptively complete, then

(a) for any sequence Kn,K0 of compact subsets of Δ(M) with dH(Kn,K0) → 0,
there exists a sequence of measurable functions, Xn, X0 : Ω → M such that
Xn(Π) = Kn, X0(Π) = K0, and for all P ∈ Π, P ({ω : Xn(ω) → X0(ω)}) =
1, and

(b) there exists a jointly measurable H : KCon(Δ(M)) × Ω → M such that for
all K ∈ KCon(Δ(M)), H(K,Π) = K, and if dH(Kn,K0) → 0, then for all
P ∈ Π, P ({ω : H(Kn, ω) → H(K0, ω)}) = 1.

Theorem 1(a) is the extension of Skorohod’s representation theorem to compact
sets of probabilities while Theorem 1(b) is the extension of the Blackwell-Dubins
simultaneous Skorohod theorem to compact convex sets of probabilities. The next
section gives the proof, the following discusses related work and extensions.

2. Proof

Theorem 1 concerns a representation result for measurable sets and two continu-
ity results: the extension of the Skorohod continuity result to arbitrary compact sets
of probabilities; and the extension of the simultaneous Skorohod result to compact
and convex sets of probabilities. We cover these in turn.

Throughout, in a metric space (X, d), for ε > 0 and x ∈ X, Bε(x) := {y ∈ X :
d(x, y) < ε}, is the open ball of radius ε around x. The following alternative notion
of the convergence of sets will appear frequently below.

Definition 3. For a sequence Fn of closed subsets of a metric space (X, d), x is
a limit point of Fn if for all ε > 0, {n : Bε(x) ∩ Fn �= ∅} has finite complement
and x is an accumulation point of Fn if for all ε > 0, {n : Bε(x) ∩ Fn �= ∅} is
infinite. The set of limit points is the lower closed limit, denoted Li(Fn), the set
of accumulation points is the upper closed limit, denoted Ls(Fn). The sequence
Fn converges to F0 in the Kuratowski-Painlevé sense, written F0 = KP - limn Fn,
if Li(Fn) = Ls(Fn) = F0.
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2.1. Representation. Since the composition of measurable functions is measur-
able, by Lemma 1, it is sufficient to show that Π is mmosS iff there exists a mea-
surable X : Ω → Ω◦ such that X(Π) = Π◦. Suppose first that Π is mmosS, let
f : Ω → [0, 1] have the property that for all P ∈ Π, f(P ) = λ, and let ϕ and d be the
functions given in Definition 2. Define X(ω) ∈ Ω◦ by X(ω) = (ϕ(ω), f(ω)). Defin-
ing Πr = d−1(r), for r ∈ [0, 1] and all P ∈ Πr, X(P ) = λr so that X(Π) = Π◦.

Now suppose that there exists a measurable X : Ω → Ω◦ such that X(Π) = Π◦.
For each ω, X(ω) is a vector in [0, 1]×[0, 1], denotedX(ω) = (Xr(ω), Xs(ω)). Define
ϕ(ω) = Xr(ω). We first verify the measurable mutual orthogonality. The mapping
Q �→ X(Q) from probabilities on (Ω,F) to probabilities on Ω◦ is measurable, and
the mapping from Π◦ to [0, 1] defined by γ(λr) = r is measurable. For P ∈ Π,
define d(P ) = γ(X(P )). If d(P ) = r, then P (X−1({r} × [0, 1])) = P (ϕ−1(r)) = 1.
We now verify the simultaneous Skorohod property. Skorohod’s representation
theorem implies that for any μ ∈ Δ(M), there exists a measurable g : [0, 1] → M
such that g(λ) = μ. Define f(ω) = g(Xs(ω)). Since Xs(P ) = λ for all P ∈ Π,
f(P ) = μ for all P ∈ Π. �

2.2. Compact sets of probabilities. We now turn to the proof of Theorem 1(a).
Let Kn,K0 be a sequence of compact subsets of Δ(M) with dH(Kn,K0) → 0.
Since the composition of measurable functions is measurable, it is sufficient to prove
the result for Π◦, that is, it is sufficient to show that there exists a sequence of
measurable functions, Xn, X0 : Ω◦ → M such that Xn(Π

◦) = Kn, X0(Π
◦) = K0,

and for all λr ∈ Π◦, λr({(r, s) : Xn(r, s) → X0(r, s)}) = 1.
If dH(Kn,K0) → 0, then K0 = Li(Kn) = Ls(Kn), i.e. K0 = KP - limn Kn.

2

Because (Δ(M), ρ) is complete, a sequence in Δ(M) converges iff it is Cauchy. Let
X = ×∞

n=1Kn and let XC denote the set of x = (μn)
∞
n=1 ∈ X such that n �→ μn is a

Cauchy sequence in Δ(M). Because x = (μn)
∞
n=1 being a Cauchy sequence puts no

restriction on the value of any particular μn, projn XC = Kn for each n ∈ {1, 2, . . .}.
Therefore, since K0 = KP - limn Kn, K0 is the set of limits of sequences in XC .

Because eachKn is compact, X is compact, hence Polish, when given the product
topology. The set XC is measurable,3 hence by the Borel isomorphism theorem,
there exists a measurable onto ψ : [0, 1] → XC . For n ≥ 1, letXn(r, s) = h(ψn(r), s)
where h(·, ·) is the Blackwell-Dubins function and ψn(r) = projn(ψ(r)). For each n,
Xn(λr) = ψn(r) so that Xn(Π

◦) = Kn. For each r, limn ψn(r) exists because ψ(r)
is a Cauchy sequence. Let ψ0(r) = limn ψn(r) and note that ψ0([0, 1]) = K0 so that
X0(r, s) := h(ψ0(r), s) has the property that X0(Π

◦) = K0. By the continuity of
the Blackwell-Dubins functions, Bl-Du(b), for each λr ∈ Π◦, λr({(r, s) : Xn(r, s) →
X0(r, s)}) = 1. �

2.3. Compact convex sets of probabilities. We now turn to Theorem 1(b). Let
Kn belong to KCon(Δ(M)), the class of non-empty, compact, and convex subsets
of Δ(M) and suppose that dH(Kn,K0) → 0. As above, it is sufficient to prove the
result for Π◦. The following simultaneous retract result is useful.

Lemma 2. There exists a jointly continuous (K,μ) �→ fK(μ) from KCon(Δ(M))×
Δ(M) to Δ(M) such that for all (K,μ), fK(μ) ∈ K, and if μ ∈ K, then fK(μ) = μ.

2If x ∈ K0, then for all ε > 0, Bε(x) ∩ Kn �= ∅ for all large n. If x �∈ K0, pick ε > 0 so that
B2·ε(x) ∩K0 = ∅. For n large enough that dH(Kn,K0) < ε, Bε(x) ∩Kn = ∅.

3XC = ∩m ∪N ∩j,k≥NG(m, j, k) where G(m, j, k) = {(μn)∞n=1 ∈ X : ρ(μj , μk) < 1/m}.
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Proof. The following �2-based metric on Δ(M) induces weak∗ convergence and has
strictly convex closed balls: let {ui : i ∈ N} be a set of continuous functions with
|ui(x)| ≤ 1 for all x ∈ M such that μn weak∗ converges to μ0 iff

∫
ui dμn →

∫
ui dμ0

for all i ∈ N; define ρ2(μ, ν) =
(∑

i
1
2i (

∫
ui dμ−

∫
ui dν)

2
) 1

2 . For each μ ∈ Δ(M)
and each non-empty, compact, convex K ⊂ Δ(M), there exists a minimizer for
the problem minν∈K ρ2(μ, ν) because K is compact and the distance function is
continuous, and the minimizer is unique because K is convex and ρ2 has strictly
convex closed balls. Let fK(μ) be that minimizer. �

Returning to the proof of Theorem 1(b), because Δ(M) is an uncountable Pol-
ish space, there exists a measurable bijection with measurable inverse, ψ : [0, 1] ↔
Δ(M). Define H(K, (r, s)) = h(fK(ψ(r)), s) where h(·, ·) is the Blackwell-Dubins
function. The joint measurability is clear, and for any λr ∈ Π◦ and any K ∈
KCon(Δ(M)), H(K,λr) = fK(ψ(r)) so H(K,Π◦) = K. Finally, dH(Kn,K0) →
0 implies that fKn

(μ) → fK0
(μ) for every μ, so λr({(r, s) : H(Kn, (r, s)) →

H(K0, (r, s))}) = 1. �

3. Related work and extensions

We first discuss how interest in both the representation and the continuity parts
of Theorem 1 arose from models of choice in the presence of ambiguity. We then
discuss the relation between descriptive completeness and a necessary and sufficient
condition for the existence of consistent estimators in statistics. Finally, we turn
to the possibilities of generalizing the continuity parts of Theorem 1 from compact
sets to closed sets. This is related to the continuity of the cores of random closed
sets and leads to a counter-example to [11, Theorem 1].

3.1. On the relation with decision theory. Decision theory in the face of un-
certainty has two main models, related by change of variables, one due to von
Neumann and Morgenstern [12], the other to Savage [9]. Both models use a space
of consequences, usually a Polish space in applications, and one of them also has a
measure space of states, (Ω,F).

Seventy years ago, von Neumann and Morgenstern [12, Ch. 3.6] gave a short
axiomatic foundation for preferences over distributions on M . A preference, �, on
Δ(M) is a complete, transitive, binary relation on Δ(M). Preferences satisfying
their axioms can be represented by μ � ν iff

(2)

∫
M

u(x) dμ(x) ≥
∫
M

u(x) dν(x),

where u ∈ Cb(M) is unique up to positive affine transformations. A decade later,
Savage’s [9] work provided an axiomatic foundation for preference over measurable
functions (random variables) from a state space, (Ω,F), to M . Preferences over
measurable functions satisfying his axioms can be represented by X � Y iff

(3)

∫
Ω

u(X(ω)) dP (ω) ≥
∫
Ω

u(Y (ω)) dP (ω),

where P is a unique non-atomic probability, often interpreted as a Bayesian prior
distribution, and u ∈ Cb(M) is unique up to positive affine transformations.

The approaches are directly related by change of variables, taking μ = X(P )
and ν = Y (P ), the integrals on both sides of the inequalities in (2) and (3) are
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the same. If M is a Polish space and P is non-atomic, then Sko(a) implies do-
main equivalence, i.e. the set of choice situations that can be modeled by the two
approaches is the same, and the continuity result, Sko(b), implies that problems
involving convergence in distribution μn → μ0 can be analyzed using the stronger
convergence condition Xn → X0 a.e.

Over the last several decades, the systematic inability of either approach to ex-
plain behavior in the face of ambiguity, understood as partially known probabilities,
has led many to replace Savage’s single prior, P , with a set of priors, Π (see e.g.
the monograph [7]). A well-studied class of preferences over functions is given by
X � Y iff

α inf
P∈Π

∫
u(X) dP (ω) + (1− α) sup

Q∈Π

∫
u(X) dQ(ω) ≥(4)

α inf
P∈Π

∫
u(Y ) dP (ω) + (1− α) sup

Q∈Π

∫
u(Y ) dQ(ω).

The parallel von Neumann and Morgenstern approach works with preferences over
the sets of probabilities, X(Π) and Y (Π). The motivating question for the present
paper in the context of decision theoretic models is “What conditions on Π yield
both domain equivalence and continuity?”

3.2. On the relation with consistent estimators. Breiman et al. [3] show that
the following condition is necessary and sufficient for the existence of consistent
estimators.

Definition 4. A set of probabilities Π on a measure space (Ω,F) is strongly
zero-one if there exists a measurable Ω′ ⊂ Ω and an onto Φ : Ω′ → Π such that
for all P ∈ Π, P (ϕ−1(P )) = 1.

If Π is mmosS and the function d : Π → [0, 1] in Definition 2(a) is one-to-one
as well as onto, then Π is strongly zero-one. For any measurable E, the mapping
ω �→ Φ(ω)(E) is measurable and C = {E ∈ F : ω �→ Φ(ω)(E) is constant} is a sub-
σ-field of F . Since ∅ and Ω belong to C, the set of constant values of the functions
ω �→ Φ(ω)(E) always contains both 0 and 1. The simultaneous Skorohod condition
of Definition 2(b) is equivalent to the set of constant values being all of [0, 1].

A canonical example illustrates the connection between strongly zero-one sets of
probabilities and consistent estimators.

Example 1. Let Ω = {0, 1}N, let F be the product σ-field, and for each n ∈ N, let
Fn be the minimal sub-σ-field making the mapping ω �→ (ω1, . . . , ωn) measurable.
Define φ(ω) = lim infn

1
n#{k ≤ n : ωk = 1} ∈ [0, 1]. For each r ∈ (0, 1), let Pr

be the distribution on Ω of an independent and identically distributed sequence of
Bernoulli(r) random variables, set Π = {Pr : r ∈ (0, 1)}, and define Φ(ω) = Pφ(ω).

By the strong law of large numbers, for each r, Pr(φ
−1(r)) = 1 so that Π is strongly

zero-one. If ω is distributed according to one of the Pr ∈ Π, interest centers on
finding consistent estimators of r, that is, a sequence of Fn-measurable functions
r̂n : Ω → [0, 1] such that for each Pr ∈ Π, Pr({ω : r̂n(ω) → r}) = 1. An obvious
choice is r̂n = 1

n#{k ≤ n : ωk = 1}.

A measure space is standard if it is measurably isomorphic to an uncountable
Borel measurable subset of a Polish space. It can be shown that every uncountable,
measurable, strongly zero-one set of non-atomic probabilities on a standard space is
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descriptively complete. Thus, the set {Pr : r ∈ (0, 1)} in Example 1 is descriptively
complete.

3.3. Relaxing compactness to closedness. The strategy of proof for Theo-
rem 1(a) can be adapted to sequences of closed sets. There are, however, some
subtle issues of the choice of topology on the class of closed sets that must be con-
sidered. It seems difficult to adapt the strategy of proof for Theorem 1(b) to closed
convex sets. For a metric space (X, d), let Cl(X) denote the set of non-empty
closed subsets of X. Of interest are the relations between Cl(M) and Cl(Δ(M)).

3.3.1. Sequences of Closed Sets. The following is a direct parallel to Theorem 1(a).

Corollary 1(a). If Π is descriptively complete, then for any sequence Fn, F0 of
closed subsets of Δ(M) with F0 = KP - limn Fn, there exists a sequence of measur-
able functions, Xn, X0 : Ω → M such that Xn(Π) = Fn, X0(Π) = F0, and for all
P ∈ Π, P ({ω : Xn(ω) → X0(ω)}) = 1.

Proof. As before, it is sufficient to prove this for Π◦. Let X = ×∞
n=1Fn and let XC

denote the set of x = (μn)
∞
n=1 ∈ X such that n �→ μn is a Cauchy sequence. Being

the product of Polish spaces, X is Polish when given the product topology, XC is
a measurable subset, hence there exists a measurable onto ψ : [0, 1] → XC . Define
Xn(r, s) = h(ψn(r), s) and X0(r, s) = h(ψ0(r), s) where ψ0(r) := limn ψn(r) and
h(·, ·) is the Blackwell-Dubins function. �

In the compact case, K0 = KP - limn Kn if dH(Kn,K0) → 0, so Theorem 1(a) is
useful for problems in which compactness of the sets of probabilities and continuity
with respect to the Hausdorff topology can be used. For Corollary 1(a) to have
a similar utility, we need a topology on Cl(Δ(M)) yielding Kuratowski-Painlevé
convergence of closed sets. However, Kuratowski-Painlevé convergence of closed
subsets of (X, d) is not topological unless X is locally compact (e.g. [8]), and Δ(M)
is locally compact in the weak∗ topology iff Δ(M) is compact,4 in which case closed
sets are compact and there is no extra value to Corollary 1(a). Alternative choices
of topology include the Wijsman, the Fell, and the Vietoris topology, all three of
which agree when Δ(M) is (locally) compact.

The Wijsman topology is Polish and can be metrized by the (generally non-
complete) metric ρW (F, F ′) =

∑
i

1
2i min{1, |ρ(μi, F ) − ρ(μi, F

′)|} where {μi : i ∈
N} is a dense subset of Δ(M). Unlike the Hausdorff topology for compact sets,
the Wijsman topology depends on the metric: metrics on Δ(M) with the same
uniformity can lead to different Wijsman topologies; metrics leading to the same
Wijsman topology can have different uniformities. However, if ρW (Fn, F0) → 0,
then F0 = KP - limn Fn (see [1, Sections 2.1, 2.2, and 2.5] for these). Thus, Corollary
1(a) is useful for problems in which closedness of the sets of probabilities and
continuity with respect to one of the Wijsman topologies can be used.

The Vietoris and the Fell topologies are unsatisfactory for different reasons. A
sequence Fn converges to F0 in Cl(Δ(M)) in the Vietoris topology iff it converges in
each Wijsman topology generated by a metric on Δ(M) inducing the weak∗ topol-
ogy. This kind of convergence is extremely demanding, sequences that “should”
converge in applications often do not when M , hence Δ(M), fails to be compact.

4If Δ(M) is locally compact, then for any μ ∈ M , there exists an open neighborhood Gμ of μ
with compact closure. For small enough r > 0, Ar := ((1− r)p+ rΔ(M)) ⊂ Gμ. For the closure

of Ar to be compact, Δ(M) must be compact.
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While the Vietoris topology is larger (has more open sets) than the Wijsman topol-
ogy, the Fell topology is smaller. The Fell topology is not metrizable: the sequential
closure of a class of sets does not imply closure of the class; and Fell-continuity of
functions on Cl(Δ(M)) is not determined by sequences of closed sets. This means
that Fell continuity is not a good match with Corollary 1(a) even though, for se-
quences, not nets, if Fn converges in the Fell topology to F0, then F0 = KP - limn Fn

as well (see [1, Section 5.1-2] for these).

3.3.2. Sequences of closed convex sets. The essential problem in extending the proof
strategy used for the simultaneous Skorohod result, Theorem 1(b), to closed sets
is finding a substitute for the simultaneous retract result given in Lemma 2. The
continuous linear imbedding of Δ(M) in a Hilbert space works for compact convex
sets because compactness survives the imbedding, and this guarantees that a dis-
tance minimizer exists. For closed convex sets of probabilities that imbed not only
as relatively closed subsets of the range but as closed subsets of the entire Hilbert
space, one can guarantee the existence of minimizers, but not all closed convex sets
belong to this class. Our attempts at alternative proof strategies for Lemma 2 have
foundered on this point, but we do not have a counterexample.

3.3.3. The closed sets Δ(B). For B a non-empty, measurable subset ofM , the set of
probabilities with μ(B) = 1 is denoted Δ(B), and Δ(B) is a closed subset of Δ(M)
iff B is a closed subset of M . In choice problems, knowing only that the probability
belongs to Δ(B) corresponds to knowing that the true distribution concentrates
on B but having no knowledge of the relative likelihoods of different subsets of B.
When the Bn are compact, B0 = KP - limn Bn iff Δ(Bn) = KP - limn Δ(Bn). The
relation is more delicate when the Bn are closed but not necessarily compact.

If we replace the metric d(x, y) by the equivalent metric d′(x, y) = d(x, y)/
(1 + d(x, y)), the metric space (M,d′) is also Polish and the Wijsman topology on
Cl(M) is unchanged (see [1, Theorem 2.1.10]). Associated with the metric d′ on
M is the Prohorov metric ρ′ on Δ(M), given by

(5) ρ′(μ, ν) = inf{ε > 0 : (∀E ∈ X )[μ(E) ≤ ν(Eε) + ε]},

where Eε := ∪x∈E{y ∈ X : d′(x, y) < ε} is the ε-enlargement of the set E using the
metric d′(·, ·).

The proof of Lemma 3 will use the following observations: ρ′(μn, μ) → 0 iff∫
u dμn →

∫
u dμ for all bounded continuous u : M → R, that is, iff μn converges

to μ in the weak∗ topology ([5, Theorem 11.3.3]); working with complements, one
can show that μ(E) ≤ ν(Eε) + ε for all measurable E iff ν(E) ≤ μ(Eε) + ε for all
measurable E ([5, Theorem 11.3.1]); Eε = (cl(E))ε so one can replace measurable
sets with closed ones in (5); (Δ(M), ρ′) is Polish because (M,d′) is Polish ([5,
Corollary 11.5.5]); for x ∈ X, letting δx(E) = 1E(x) ∈ Δ(X) denote point mass on
x, ρ′(δx, δy) = d′(x, y), and consequently, for F ∈ Cl(M), ρ′(δx,Δ(F )) = d′(x, F );
and finally, if g : M → M is a measurable function satisfying d′(x, g(x)) < r for
all x ∈ M , then for any μ ∈ Δ(M), if ν = g(μ), then ρ′(μ, ν) ≤ r because for all
measurable E, g−1(E) ⊂ Er.

Let “→τW (d′)” denote convergence in the Wijsman topology on Cl(M) generated
by the metric d′, and “→τW (ρ′)” denote convergence in the Wijsman topology on
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Cl(Δ(M)) generated by the metric ρ′. We have the following relation between
these two modes of convergence.5

Lemma 3. Δ(Bn) →τW (ρ′) Δ(B0) iff Bn →τW (d′) B0.

Proof. Suppose first that Δ(Bn) →τW (ρ′) Δ(B0). Pick an arbitrary x ∈ X and let
δx denote point mass on x. By assumption, ρ′(δx,Δ(Bn)) → ρ′(δx,Δ(B0)). This
implies that d′(x,Bn) → d′(x,B0), that is, Bn →τW (d′) B0.

Now suppose that Bn →τW (d′) B0 and fix an arbitrary μ ∈ Δ(M). We show that

(6) lim sup
n

ρ′(μ,Δ(Bn))≤(1)ρ
′(μ,Δ(B0))≤(2) lim inf

n
ρ′(μ,Δ(Bn)).

Let r = ρ′(μ,Δ(B0)).
(1) Picking arbitrary ε > 0, it is sufficient to show that lim supn ρ

′(μ,Δ(Bn)) <
r + ε. The denseness of the compactly supported probabilities in Δ(B0) implies
that there is a compact K ⊂ B0 and a γ ∈ Δ(B0) with γ(K) = 1 such that
|r−ρ′(μ, γ)| < ε/2. By the assumption that Bn →τW (d) B0, in particular, for every
x ∈ K, d′(x,Bn) → d′(x,B0). Because K ⊂ B0, d

′(x,B0) = 0. The functions x �→
d′(x,Bn) on K have Lipschitz constant 1, hence converge uniformly to 0 on K. Pick
N such that for all n ≥ N , |d′(x,Bn)| < ε/4. By measurable selection, for each n ≥
N , there exists a measurable function gn : K → Bn such that d′(x, gn(x)) < ε/2 for
all x ∈ K, and this can be extended to M by setting gn(x) = x for x �∈ K. Letting
γn = gn(γ), we have ρ′(γ, γn) ≤ ε/2. Since γn ∈ Δ(Bn), we have ρ′(μ,Δ(B0)) ≤
ρ′(μ, γn) and |ρ′(μ, γn)− r| < ε/2 + ε/2, we have lim sup ρ′(μ,Δ(Bn)) < r + ε.
(2) Picking arbitrary ε > 0, it is sufficient to show that lim infn ρ

′(μ,Δ(Bn)) >
r − ε. The denseness of the probabilities with finite support implies that there is

no loss in assuming that μ is of the form
∑I

i=1 αiδxi
. We first show that (a) there

is a finitely supported γ =
∑I

i=1 αiδyi
, yi ∈ B0, such that |ρ′(μ, γ)− r| < ε/2, and

then show that (b) for large n, there exists γn ∈ Δ(Bn) such that ρ′(γ, γn) < ε/2.
These two imply that for large n, ρ′(μ,Δ(Bn)) > r − (ε/2 + ε/2), completing the
proof.

(a) The Ky Fan metric for measurable functions g, hmapping a probability space
(Ω,F , P ) to (M,d) is αd′(g, h) = inf{δ > 0 : P ({d′(f, g) > δ}) < δ}. Strassen’s
Theorem [5, Corollary 11.6.4] connects the metric αd′(·, ·) to the metric ρ′(·, ·) as
follows: if (Ω,F , P ) is non-atomic and (M,d) is Polish, then for any two proba-
bilities μ, ν ∈ Δ(M), there exist measurable functions g, h : Ω → M such that
g(P ) = μ, h(P ) = ν, and αd′(g, h) = ρ(μ, ν). If g(P ) is equal to μ, that is,

g(P ) =
∑I

i=1 αiδxi
, then (ignoring sets of measure 0) there exists a measurable par-

tition, {Ei : i = 1, . . . , I}, of Ω such that g(ω) =
∑I

i=1 xi1Ei
(ω) with P (Ei) = αi.

Any measurable h : Ω → M gives rise to the function fh : Ω → R+ defined by
fh(ω) =

∑
i d

′(xi, h(ω))1Ei
(ω), and αd′(g, h) = inf{δ > 0 : P ({fh(ω) > δ)}) < δ}.

If h(ω) ∈ B0 for all ω, then 0 ≤
∑

i d
′(xi, B0)1Ei

(ω) ≤ fh(ω). Picking yi ∈ B0 such
that |d′(xi, yi)− d′(xi, B0)| < ε/2, setting h(ω) =

∑
i yi1Ei

(ω) and γ = h(P ) yields
γ ∈ Δ(B0) such that |ρ′(μ, γ)− r| < ε/2.

(b) By the assumption that Bn →τW (d) B0, there exists N such that for each
n ≥ N and each yi, i = 1, . . . , I, |d′(yi, Bn) − d′(yi, B0)| < ε/2. Since yi ∈ B0,
this implies that for all n ≥ N , there exists yn,i ∈ Bn such that d′(yi, yn,i) < ε/2.
Define γn ∈ Δ(Bn) by γn =

∑
i αiδyn,i

such that ρ′(γ, γn) < ε/2. �

5We thank Professor Pedro Terán for noticing that our earlier version of this lemma was not,
in fact, “immediate,” and that our result and [11, Theorem 1] could not simultaneously be true.
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3.3.4. On non-convergence in the Vietoris topology. If ω �→ B(ω) is a measurable
mapping from a non-atomic probability space (Ω,F , P ) to Cl(M), its closed core
can be defined as the closure of the set of ξ(P ) where ξ : Ω → M is measurable and
P ({ω : ξ(ω) ∈ B(ω)}) = 1. Theorem 1 in [11] claims that if P ({ω : Bn(ω) →τW (d0)

B0(ω)}) = 1, then the closed cores of the Bn converge, in the Vietoris topology
for weak∗-closed sets of probability measures in Δ(M), to the closed core of B0.
A sequence converges in the Vietoris topology on closed subsets of Δ(M) iff it
converges in every Wijsman topology generated by every metric equivalent to the
Prohorov metric.

In the special case that B(ω) = B for all ω ∈ Ω, the core of B is Δ(B). If
[11, Theorem 1] were true, we could reach the much stronger conclusion in Lemma 3
thatBn →τW (d′) B0 implies that Δ(Bn) converges to Δ(B0) in the Vietoris topology
for the weak∗-closed subsets of Δ(M). The following variant of [1, Example 2.1.3]
leads to a counter-example to that result.

Example 2. The metric spaceM = N = {1, 2, . . .} is complete under the equivalent
metrics d0(·, ·) and d1(·, ·) defined by

(7) d0(m,n) =

{
1 if m �= n

0 if m = n
and d1(m,n) =

⎧⎪⎨⎪⎩
1 if m = 1, n > 1

0.5 if 1 < m,n m �= m

0 if m = n

.

d0 and d1 are equivalent metrics, which implies that d′0 := d0/(1 + d0) and d′1 :=
d0/(1 + d1) are also equivalent, induce the same Wijsman topologies on Cl(M),
and their associated Prohorov metrics, ρ′0 and ρ′1, induce the same weak∗ topology
on Δ(M). Let B0 = {1} and let Bn = {1, n, n + 1, n + 2, . . .}. For every m > 1,
d′0(m,Bn) = 0.5 = d0(m,B0) for every n > m, and d′0(1, Bn) = d0(1, B0) = 0 so
Bn →τW (d′

0)
B0. However, d′1(2, Bn) = 0.5/1.5 for all n > 2 but d′1(2, B0) = 0.5.

By Lemma 3, Δ(Bn) →τW (ρ′
0)

Δ(B0) but Δ(Bn) �→τW (ρ′
1)

Δ(B0).
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[4] Claude Dellacherie and Paul-André Meyer, Probabilities and potential, North-Holland Mathe-
matics Studies, vol. 29, North-Holland Publishing Co., Amsterdam-New York; North-Holland
Publishing Co., Amsterdam-New York, 1978. MR521810 (80b:60004)

[5] R. M. Dudley, Real analysis and probability, Cambridge Studies in Advanced Mathematics,
vol. 74, Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989 original.
MR1932358 (2003h:60001)
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