
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 144, Number 7, July 2016, Pages 2959–2969
http://dx.doi.org/10.1090/proc/12939

Article electronically published on November 4, 2015

CYCLINE SUBALGEBRAS OF k-GRAPH C*-ALGEBRAS
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(Communicated by Adrian Ioana)

Abstract. In this paper, we prove that the cycline subalgbra of a k-graph
C*-algebra is maximal abelian, and show when it is a Cartan subalgebra (in
the sense of Renault).

1. Introduction

Higher rank graph algebras (or k-graph algebras) have been attracting a lot of
attention recently. See, for example, [Rae05] and the references therein. They were
first introduced by Kumjian-Pask in 2000 [KP00] in order to generalize directed
graph algebras and higher rank Cuntz-Krieger algebras studied by Robertson and
Steger [RS99]. For a given k-graph Λ, its graph C*-algebra C∗(Λ) is the universal
C*-algebra among Cuntz-Krieger Λ-families.

One of the most important and central topics on k-graph algebras is to determine
when a given representation π from C∗(Λ) to a C*-algebra A is injective. This is
closely related to so-called “uniqueness theorems” in the literature. There are two
such theorems: the gauge invariant uniqueness theorem (GIUT) and the Cuntz-
Krieger uniqueness theorem (CKUT), which have been known for some time. Both
GIUT and CKUT conclude that π is injective if and only if its restriction π|DΛ

of π
onto the diagonal algebra DΛ of C∗(Λ) is injective, under the following conditions:
the GIUT requires the existence of an action θ of Tk on A such that π is equivariant
between θ and the canonical gauge action γ of T

k on C∗(Λ), while the CKUT
requires that Λ is aperiodic.

It is well known that the aperiodicity is a very stringent condition, and that it is
very hard to check (even in single-vertex 2-graphs [DPY08,DY09a,DY09b,Yan10,
Yan12]). Thus, a very important and necessary task is to find a more general
version of the CKUT. This has been successfully achieved by Brown-Nagy-Reznikoff
recently in [BNR14]. The most natural candidate of DΛ in the general case is the
so called cycline subalgebra MΛ (whose definition will be precisely given later).
Brown-Nagy-Reznikoff proved the following generalized CKUT : For any row-finite
source-free k-graph Λ, a representation π of C∗(Λ) is injective if and only if the
restriction π|MΛ

is injective.
Returning to an aperiodic k-graph Λ, it is known that DΛ is a MASA (maximal

abelian subalgebra) in C∗(Λ), and that there is a faithful conditional expectation
from C∗(Λ) onto DΛ. Besides, in general, for a given abelian C*-subalgebra B of
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a C*-algebra A, it is always nice and interesting to know if B is a MASA in A
and if there is a faithful conditional expectation from A onto B. So Brown-Nagy-
Reznikoff asked the following two natural questions on MΛ (cf. p. 2591 and p. 2601
in [BNR14]):

Q1. Is MΛ a MASA in C∗(Λ)?
Q2. Is there a faithful conditional expectation from C∗(Λ) onto MΛ?

Our goal in this note is the following: (a) we answer Q1 affirmatively; (b) we study
when Q2 has a positive answer, and so provide a condition which guarantees MΛ

is a Cartan subalgebra in C∗(Λ) (in the sense of Renault [Ren08]).
The remainder of this paper is organized as follows. In the next section, some

necessary background is given. Q1 above is completely answered in Section 3. In
Section 4 we study when MΛ is Cartan, and so, in particular, answer Q2.

2. Preliminaries

In this section, we give some necessary background which will be used later. At
the same time, we fix our notation. See [BNR14,CKSS14,KP00,Rae05,Yan14] for
more information.

2.1. k-graphs. Let k ≥ 1 be a natural number. Regard N
k (containing 0) as a

small category with one object, and denote its standard generators as e1, . . . , ek.
A k-graph (also known as rank k graph, or higher rank graph) is a countable small
category Λ with a functor d : Λ → N

k satisfying the following factorization property:
Whenever ξ ∈ Λ satisfies d(ξ) = m + n, there are unique elements η, ζ ∈ Λ such
that d(η) = m, d(ζ) = n, and ξ = ηζ. For n ∈ N

k, let Λn = d−1(n), and so Λ0

is the vertex set of Λ. There are source and range maps s, r : Λ → Λ0 such that
r(ξ)ξs(ξ) = ξ for all ξ ∈ Λ. For v ∈ Λ0, vΛ = {ξ ∈ Λ : r(ξ) = v}. We say that a
k-graph Λ is row-finite and source-free if 0 < |vΛn| < ∞ for all v ∈ Λ0 and n ∈ N

k.
Let

Ωk =
{
(m,n) ∈ N

k × N
k | m ≤ n

}
.

Define d, s, r : Ωk → N
k by d(m,n) = n −m, s(m,n) = n, and r(m,n) = m. One

can check that Ωk is a row-finite and source-free k-graph.
Let Λ and Γ be two k-graphs. A k-graph morphism between Λ and Γ is a functor

x : Λ → Γ such that dΓ(x(λ)) = dΛ(λ) for all λ ∈ Λ. The infinite path space of Λ
is defined as

Λ∞ =
{
x : Ωk → Λ | x is a k-graph morphism

}
.

If Λ is row-finite and source-free, it is often useful to think of every element of
Λ∞ as an infinite path, which contains infinitely many edges of degree ei for each
i ∈ {1, . . . , k}. For x ∈ Λ∞ and n ∈ N

k, there is a unique element σn(x) ∈ Λ∞

defined by

σn(x)(q, r) = x(n+ q, n+ r).

That is, σn is a shift map on Λ∞. If μ ∈ Λ and x ∈ s(μ)Λ∞, then μx is defined to
be the unique infinite path such that μx(0, n) = μ · x(0, n − d(μ)) for any n ∈ N

k

with n ≥ d(μ). If σm(x) = σn(x) for some m �= n in N
k, x is said to be (eventually)

periodic.

Definition 2.1. A k-graph Λ is said to be periodic if there is v ∈ Λ0 such that
every x ∈ vΛ∞ is periodic. Otherwise, Λ is called aperiodic.
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2.2. k-graph C*-algebras. For a given row-finite and source-free k-graph Λ, we
associate to it a universal C*-algebra C∗(Λ) as follows.

Definition 2.2. Let Λ be a row-finite and source-free k-graph. A Cuntz-Krieger
Λ-family in a C*-algebra A is a family {Sλ : λ ∈ Λ} in A such that

(CK1) {Sv | v ∈ Λ0} is a set of mutually orthogonal projections,
(CK2) SμSν = Sμν whenever s(μ) = r(ν),
(CK3) S∗

μSν = δμ,ν Ss(μ) for all μ, ν ∈ Λ with d(μ) = d(ν),

(CK4) Sv =
∑

λ∈vΛn SλS
∗
λ for all v ∈ Λ0 and n ∈ N

k.

The k-graph C*-algebra C∗(Λ) is the universal C*-algebra among Cuntz-Krieger Λ-
families. In this paper, we use {sμ | μ ∈ Λ} to denote the universal Cuntz-Krieger
Λ-family of C∗(Λ).

It is known that

C∗(Λ) = span{sμs∗ν : μ, ν ∈ Λ}.
By the universal property of C∗(Λ), there is a natural gauge action γ of Tk on
C∗(Λ) defined by

γt(sλ) = td(λ)sλ for all t ∈ T
k, λ ∈ Λ.

Here tn = tn1
1 · · · tnk

k for all n = (n1, . . . , nk) ∈ Z
k. Averaging over γ gives a faithful

conditional expectation Φ from C∗(Λ) onto the fixed point algebra C∗(Λ)γ , known
as the core of C∗(Λ). It turns out that C∗(Λ)γ is an AF algebra and

FΛ := C∗(Λ)γ = span{sμs∗ν : d(μ) = d(ν)}.
For the sake of simplicity, put

Pμ := sμs
∗
μ for all μ ∈ Λ.

The diagonal algebra DΛ of C∗(Λ) is defined as

DΛ = span{sμs∗μ : μ ∈ Λ} = span{Pμ : μ ∈ Λ},
which is a MASA in FΛ, but, generally not a MASA in C∗(Λ).

For each n = (n1, . . . , nk) ∈ Z
k, define a mapping Φn on C∗(Λ) via

Φn(x) =

∫
Tk

t−nγt(x)dt for all x ∈ C∗(Λ).

Then Φn acts on the standard generators via

Φn(sμs
∗
ν) =

{
sμs

∗
ν , if d(μ)− d(ν) = n,

0, otherwise.

So FΛ coincides with RanΦ0, and RanΦn is spanned by the standard generators
in C∗(Λ) of “degree n”. Also, as directed graph algebras [HPP05], every x ∈ C∗(Λ)
has a (unique) formal series

x ∼
∑
n∈Zk

Φn(x),

which is Abel summable (refer to [Taylo] for information on Abel summable). It is
often useful heuristically to work directly with the series of x.

Row-finite and source-free k-graph C*-algebras can also be constructed via sec-
ond countable, étale locally compact groupoids

GΛ =
{
(x,m− n, y) ∈ Λ∞ × Z

k × Λ∞ : σm(x) = σn(y)
}
,
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(cf. [KP00]). The following facts are well known: A basis for the topology of GΛ is
given by the open compact cylinder sets

Z(α, β) =
{
(αx, d(α)− d(β), βx) : x ∈ s(α)Λ∞}

,

where α, β ∈ Λ with s(α) = s(β), GΛ is amenable, and C∗(Λ) ∼= C∗(GΛ) ∼= C∗
r(GΛ).

From [Ren80], C∗(GΛ) consists of some elements of C0(GΛ), the continuous functions
on GΛ vanishing at infinity. But also notice that C∗(GΛ) contains Cc(GΛ), the
continuous functions on GΛ with compact support.

2.3. Periodicity. Let Λ be a row-finite and source-free k-graph. Define an equiv-
alence relation ∼ on Λ as follows,

μ ∼ ν ⇐⇒ s(μ) = s(ν) and μx = νx for all x ∈ s(μ)Λ∞.(2.1)

If μ ∼ ν, obviously one also has r(μ) = r(ν) automatically. So ∼ respects sources
and ranges.

Associate to the equivalence relation ∼ an important set—the periodicity PerΛ
of Λ,

PerΛ =
{
d(μ)− d(ν) : ξ, η ∈ Λ, μ ∼ ν

}
⊆ Z

k.

In general, Per Λ is a subset of Zk containing 0. Furthermore, Λ is aperiodic if and
only if PerΛ = {0} (cf., e.g., [Yan14]).

The subalgebra we are particularly interested in here is

MΛ = C∗(sμs
∗
ν : μ ∼ ν ∈ Λ),

which plays a vital role in this paper. MΛ is called the cycline subalgebra of C∗(Λ)
in [BNR14], since it is related to generalized cycles introduced in [ES12]. Actually,
it is defined in terms of cycline pairs in [BNR14]. But it is the same as the one
defined above by [BNR14, Proposition 4.1] and the definition of ∼ in (2.1). Clearly,
MΛ contains DΛ. Furthermore, MΛ = DΛ if and only if Λ is aperiodic by the
characterization of aperiodicity mentioned above. It is also shown in [BNR14] that
the relative commutant D′

Λ of DΛ in C∗(Λ) is abelian, and that MΛ ⊆ M′
Λ = D′

Λ.
Let us finish off this section with the following conventions.

Conventions. Throughout the rest of this paper,

all k-graphs are assumed to be row-finite and source-free

without any further mention.
For simplicity, we write D′

Λ to really mean the relative commutant

D′
Λ =

{
A ∈ C∗(Λ) : AD = DA for all D ∈ DΛ

}
.

3. Cycline subalgebras are MASA

Let Λ be a k-graph, and MΛ be the cycline subalgebra of C∗(Λ). Recall from
[BNR14] that

MΛ = C∗(sμs
∗
ν : μ ∼ ν) = span

{
sμs

∗
ν : μ ∼ ν

}
.

Our main goal in this section is to prove MΛ = D′
Λ, which in particular affir-

matively answers Q1 mentioned in the Introduction: MΛ is always a MASA. But
four auxiliary lemmas are needed. The first one is directly from [BNR14].
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Lemma 3.1. [BNR14, Proposition 4.1] Let μ, ν ∈ Λ with s(μ) = s(ν). The follow-
ing are equivalent:

(i) sμs
∗
ν is normal and commutes with DΛ.

(ii) μ ∼ ν.

By Lemma 3.1, one hasMΛ ⊆ D′
Λ. So in order to proveMΛ = D′

Λ, it is sufficient
to verify D′

Λ ⊆ MΛ. Our first step is to prove that the standard generators in D′
Λ

belong to MΛ. The following gives a strengthened version of Lemma 3.1, which
will be very useful in what follows.

Lemma 3.2. Let μ, ν ∈ Λ with s(μ) = s(ν). Then

sμs
∗
ν ∈ D′

Λ ⇐⇒ μ ∼ ν.

Proof. By Lemma 3.1, it is enough to prove that sμs
∗
ν ∈ D′

Λ implies that sμs
∗
ν is

automatically normal, namely,

sμs
∗
μ = sνs

∗
ν , i.e., Pμ = Pν .

Assume now that μ, ν ∈ Λ with s(μ) = s(ν) satisfies sμs
∗
ν ∈ D′

Λ. Then one has
the following implications:

sμs
∗
μ · sμs∗ν = sμs

∗
ν · sμs∗μ

⇒ sμs
∗
ν = sμs

∗
νsμs

∗
μ

⇒ s∗μsμs
∗
ν = s∗μsμs

∗
νsμs

∗
μ

⇒ ss(μ)s
∗
ν = ss(μ)s

∗
νPμ

⇒ s∗ν = s∗νPμ

⇒ sνs
∗
ν = sνs

∗
νPμ

⇒ Pν = PνPμ.

Clearly, sμs
∗
ν ∈ D′

Λ implies sνs
∗
μ ∈ D′

Λ. So switching μ and ν in the above process
gives Pμ = PμPν . Hence Pμ = Pν as PμPν = PνPμ. This ends our proof. �

Roughly speaking, the next lemma says that, for our purpose, it is enough to
consider the elements of D′

Λ of degree n ∈ Z
k.

Lemma 3.3. Let A ∈ C∗(Λ). Then A ∈ D′
Λ if and only if Φn(A) ∈ D′

Λ for all
n ∈ Z

k.

Proof. It suffices to show the “only if” part. Let D ∈ DΛ. Then for all n ∈ Z
k one

has

Φn(A)D =

∫
Tk

t−nγt(A) dtD

=

∫
Tk

t−nγt(A)γt(D) dt (as γt(D) = D)

=

∫
Tk

t−nγt(AD) dt

=

∫
Tk

t−nγt(DA) dt (as A ∈ D′
Λ)

= D

∫
Tk

t−nγt(A) dt (as γt(D) = D)

= DΦn(A).
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This proves Φn(A) ∈ D′
Λ. �

It turns out that, for n ∈ Z
k, any element in D′

Λ of degree n in a certain
“canonical” form is very special: It essentially has only one term. This is not
surprising if one keeps the uniqueness result [Yan14, Lemma 4.1] in mind.

Lemma 3.4. Let m,n ∈ N
k and

A =
∑

d(μ)=m, d(ν)=n, s(μ)=s(ν)

aμ,ν sμs
∗
ν ∈ C∗(Λ).

Then the following hold true:

(i) If A ∈ D′
Λ, then, for each μ ∈ Λm, there is a unique ν ∈ Λn such that

aμ,ν �= 0.
(ii) If A ∈ D′

Λ, then, for each ν ∈ Λn, there is a unique μ ∈ Λm such that
aμ,ν �= 0.

Proof. It suffices to show (i), since once (i) is established, (ii) follows by applying
(i) to A∗.

Let

A =
∑

d(μ)=m, d(ν)=n, s(μ)=s(ν)

aμ,ν sμs
∗
ν ∈ D

′
Λ.

Notice that sμs
∗
ν �= 0 as s(μ) = s(ν). Assume that μ0 ∈ Λm is such that aμ0,ν0

�= 0
for some ν0 ∈ Λn. Then we must show the uniqueness of ν0.

Since A ∈ D′
Λ, we have

sμ0
s∗μ0

A = Asμ0
s∗μ0

.

Multiplying s∗μ0
from the left at both sides in the above identity induces

s∗μ0
A = s∗μ0

Asμ0
s∗μ0

,

as sμ0
is a partial isometry. Then we expand it using the formula of A and then

calculate both sides to obtain∑
ν∈Λns(μ0)

aμ0,ν s
∗
ν =

∑
ν∈Λns(μ0)

aμ0,ν s
∗
νsμ0

s∗μ0
.(3.1)

Multiplying sν0
from right at both sides of (3.1) and using (CK3) yields

aμ0,ν0
s∗ν0

sν0
=

∑
ν∈Λns(μ0)

aμ0,ν s
∗
νsμ0

s∗μ0
sν0

⇒ aμ0,ν0
sν0

· s∗ν0
sν0

· s∗ν0
=

∑
ν∈Λns(μ0)

aμ0,ν sν0
· s∗νsμ0

s∗μ0
sν0

· s∗ν0

⇒ aμ0,ν0
sν0

s∗ν0
=

∑
ν∈Λns(μ0)

aμ0,ν sν0
s∗νsν0

s∗ν0
sμ0

s∗μ0
(as Pμ0

Pν0
= Pν0

Pμ0
)

⇒ aμ0,ν0
sν0

s∗ν0
= aμ0,ν0

sν0
s∗ν0

sμ0
s∗μ0

⇒ Pν0
= Pν0

Pμ0
(by (CK3) and aμ0,ν0

�= 0).

Completely similar reasoning (by considering A∗ instead of A) gives Pμ0
=

Pμ0
Pν0

. Therefore, we so far have shown that, for any μ0, ν0 such that aμ0,ν0
�= 0,

we have

Pμ0
= Pν0

.(3.2)
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From (3.1) one also induces that⎛
⎝ ∑

ν∈Λns(μ0)

aμ0,ν s
∗
ν

⎞
⎠

⎛
⎝ ∑

ν∈Λns(μ0)

aμ0,ν s
∗
ν

⎞
⎠

∗

=

⎛
⎝ ∑

ν∈Λns(μ0)

aμ0,ν s
∗
νsμ0

s∗μ0

⎞
⎠

⎛
⎝ ∑

ν∈Λns(μ0)

aμ0,ν s
∗
νsμ0

s∗μ0

⎞
⎠

∗

.

Expanding both sides and then using (3.2) and (CK3), we obtain∑
ν∈Λns(μ0)

|aμ0,ν |2ss(ν) =
∑

ν1, ν2∈Λns(μ0)

aμ0,ν1
aμ0,ν2

s∗ν1
sμ0

s∗μ0
sμ0

s∗μ0
sν2

=
∑

ν1, ν2∈Λns(μ0)

aμ0,ν1
aμ0,ν2

s∗ν1
· sμ0

s∗μ0
· sν2

=
∑

ν1, ν2∈Λns(μ0)

aμ0,ν1
aμ0,ν2

s∗ν1
· sν0

s∗ν0
· sν2

(by (3.2))

= |aμ0,ν0
|2s∗ν0

sν0
s∗ν0

sν0
(from (CK3))

= |aμ0,ν0
|2ss(ν0).

Therefore, aμ0,ν = 0 for all ν �= ν0, proving the uniqueness of ν0. �

We are now ready to prove our main result in this section.

Theorem 3.5. Let Λ be a k-graph, and MΛ be the cycline algebra of C∗(Λ). Then
MΛ = D′

Λ. In particular, MΛ is a MASA in C∗(Λ).

Proof. We first prove MΛ = D′
Λ. The inclusion MΛ ⊆ D′

Λ is clearly from Lemma
3.1 (ii) ⇒ (i). So we must show D′

Λ ⊆ MΛ in what follows.
It is easy to verify that D′

Λ is a gauge invariant DΛ-bimodule. Using an ar-
gument similar to [HPP05, Theorem 3.1] (also cf. [Hop05]), one can show that
D′

Λ is generated by the standard generators sμs
∗
ν which it contains. Let A be the

“algebraic” part of D′
Λ. That is, A is the algebra of the finite linear span of those

standard generators. Then A is dense in D′
Λ. So, for our purpose, it suffices to

show that A ⊆ MΛ. For this, let A ∈ A. By Lemma 3.3, without loss of generality,
let us assume that A is of degree n for some n ∈ Z

k: A = Φn(A). Recall that A is
just a (finite) linear combination of some generators sμs

∗
ν ’s. Using the defect-free

property (CK4), one can now simply write A as follows:

A =
∑

d(μ)=m, d(ν)=n, s(μ)=s(ν)

aμ,ν sμs
∗
ν ,

where m,n are two fixed elements in N
k, and aμ,ν �= 0. It then follows from Lemma

3.4 for a fixed ν ∈ Λn, that there is a unique μ ∈ Λm such that aμ, ν �= 0. Then

Asνs
∗
ν =

(∑
aμ,ν sμs

∗
ν

)
sνs

∗
ν = aμ,νsμs

∗
ν .

Clearly, Asνs
∗
ν ∈ D′

Λ as A ∈ D′
Λ and sνs

∗
ν ∈ DΛ. So sμs

∗
ν ∈ D′

Λ. By Lemma 3.2,
μ ∼ ν, which implies that A ∈ MΛ. Therefore, MΛ = D′

Λ.
The second part of the theorem follows immediately, since it is known that D′

Λ

is abelian and M′
Λ = D′

Λ ([BNR14, Proposition 7.3]). �



2966 D. YANG

By Theorem 3.5, one can easily recover the following characterization of aperi-
odicity, one of the main theorems in [Hop05].

Corollary 3.6. A k-graph Λ is aperiodic if and only if the diagonal algebra DΛ is
a MASA in C∗(Λ).

Proof. DΛ is a MASA in C∗(Λ), if and only if D′
Λ = DΛ, if and only if MΛ = DΛ

by Theorem 3.5, if and only if no μ �= ν such that μ ∼ ν by definition of MΛ, if
and only if PerΛ = {0} by definition of PerΛ, if and only if Λ is aperiodic (see,
e.g., [RS07] or [Yan14]). �

4. When are Cycline subalgebras Cartan?

Let B be an abelian C*-subalgebra of a given C*-algebra A. Recall from [Ren08]
that B is a Cartan subalgebra in A if the following properties hold:

(Ci) B contains an approximate unit in A;
(Cii) B is a MASA;
(Ciii) B is regular, i.e., the normalizer set N(B) = {x ∈ A : xBx∗ ∪ x∗Bx ⊆ B}

generates A;
(Civ) there is a faithful conditional expectation E from A onto B.
Let Λ be a k-graph. In this section, we prove that the cycline subalgebra MΛ

of C∗(Λ) is Cartan under the condition that the (bimodule) spectrum of MΛ (the
definition will be given later) is closed, which is used to obtain property (Civ).

Proposition 4.1. Let Λ be a k-graph, and MΛ be the cycline subalgebra of C∗(Λ).
Then MΛ is regular.

Proof. Since C∗(Λ) is generated by its standard generators sαs
∗
β’s (α, β ∈ Λ), it

suffices to show that every sαs
∗
β is a normalizer of MΛ. But MΛ is generated by

sμs
∗
ν with μ ∼ ν. Hence, one only needs to show that

sαs
∗
βsμs

∗
νsβs

∗
α ∈ MΛ.

To this end, let us assume that

s∗βsμ =
∑

βμ′=μβ′

sμ′s∗β′ and s∗νsβ =
∑

βν′=νβ′′

sβ′′s∗ν′ .

Then

sαs
∗
βsμs

∗
νsβs

∗
α

= sα

⎛
⎝ ∑

βμ′=μβ′

sμ′s∗β′

⎞
⎠

⎛
⎝ ∑

βν′=νβ′′

sβ′′s∗ν′

⎞
⎠ s∗α

= sα

⎛
⎝ ∑

βμ′=μβ′, βν′=νβ′

sμ′s∗ν′

⎞
⎠ s∗α

(
as d(β′) = d(β′′) ⇒ s∗β′sβ′′ = δβ′,β′′ ss(β′)

)
=

∑
βμ′=μβ′, βν′=νβ′

sαμ′s∗αν′ .(4.1)

Clearly μβ′ ∼ νβ′ as μ ∼ ν. It follows from βμ′ = μβ′, βν′ = νβ′ that βμ′ ∼ βν′.
This easily implies μ′ ∼ ν′ and so αμ′ ∼ αν′. Therefore, one has sαs

∗
βsμs

∗
νsβs

∗
α ∈

MΛ from (4.1). This ends our proof. �
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In what follows, we identify C∗(Λ) with C∗(GΛ) under the isomorphism mapping
sαs

∗
β 
→ 1Z(α,β), where 1Z(α,β) is the characteristic function of the cylinder set

Z(α, β) (cf. [KP00]). Then the diagonal algebra DΛ is identified as C0(G(0)
Λ ), where

G(0)
Λ is the unit space of GΛ, and MΛ is generated by 1Z(μ,ν)’s with μ ∼ ν ∈ Λ.

Evidently, MΛ is a DΛ-bimodule. By definition [Hop05], its (bimodule) spectrum
is

σ(MΛ) =
{
(x, n, y) ∈ GΛ : f(x, n, y) �= 0 for some f ∈ MΛ

}
.

Clearly, σ(MΛ) is always an open subset of GΛ.

Proposition 4.2. Let Λ be a k-graph, and MΛ be the cycline subalgebra of C∗(Λ).
If σ(MΛ) is closed in GΛ, then there is a faithful conditional expectation from C∗(Λ)
onto MΛ.

Proof. It is easy to see that MΛ is a gauge invariant DΛ-bimodule. It then follows
from [Hop05, Spectral Theorem for Bimodules on p. 997] that one has

MΛ =
{
f ∈ C∗(GΛ) : f(x, n, y) = 0 for all (x, n, y) �∈ σ(MΛ)

}
.

Since σ(MΛ) is closed in GΛ, one now can define the restriction mapping E :
C∗(GΛ) → MΛ via E(f) = f |σ(MΛ) for all f ∈ C∗(GΛ). Clearly, E is a lin-

ear idempotent. Using the definition of the norm in C∗
r(GΛ),

1 one can see that
E is also contractive. Furthermore, it is known that the restriction mapping E
from C∗(GΛ) to DΛ yields a faithful conditional expectation onto DΛ (see, e.g.,
[BCS14,Ren08,Tho10]). In particular, ‖E‖ = 1. Then it follows from E = E ◦ E
that E has norm 1. Thus E is a conditional expectation onto MΛ ([Tom57] or
[Bla06, II.6.10]). Moreover, the faithfulness of E and E = E ◦ E imply that E is
faithful too. This ends the proof. �

Let us remark that the above proposition could be also proved by modifying
the proof of [Tho10, Lemma 2.21]. Notice that the mapping Q in (2.16) is our
restriction mapping. As our condition of σ(MΛ) is closed, the discreteness of the
isotropy group guarantees that Q is well defined. Also, one has MΛ = C∗

r(σ(MΛ))
by [Tho10, Lemma2.10].

Theorem 4.3. Let Λ be a k-graph. Suppose that the (bimodule) spectrum σ(MΛ)
is closed in GΛ. Then MΛ is a Cartan subalgebra in C∗(Λ).

Proof. The proof is now immediate: Property (Ci) follows from [BCS14, Lemma
2.1] (also cf. the proof of [Tho10, Theorem 2.23]); properties (Cii), (Ciii) and (Civ)
are from Theorem 3.5, Proposition 4.1, and Proposition 4.2, respectively. �
Remark 4.4. It is probably worthwhile to mention that Q1 and Q2 mentioned
in the Introduction were successfully attacked for directed graphs (i.e., 1-graphs)
in [NR12]. Unfortunately, the methods there cannot be applied to k-graphs, due
to the complexity caused by periodicity in higher-dimensional cases. Notice that

1Recall that the reduced C*-norm on Cc(GΛ) is given by

‖f‖ = sup
{
‖λu(f)‖ : u ∈ G(0)

Λ

}
for all f ∈ Cc(GΛ),

where λu is the regular representation of Cc(GΛ) on �2(s−1(u)),

λu(f)ξ(γ) =
∑

αβ=γ

f(α)ξ(β) for all u ∈ G(0), ξ ∈ �2(s−1(u)) and γ ∈ s−1(u).
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Theorem 4.3 is proved in [Yan14] for a special class of k-graphs as an application
of an embedding theorem.
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