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ON FINDING SOLUTIONS
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(Communicated by Joachim Krieger)

Abstract. Consider the Kirchhoff type problem

(P)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(
a+ b

∫
BR

|∇u|2dx
)
Δu = λuq−1 + μup−1, in BR,

u > 0, in BR,

u = 0, on ∂BR,

where BR ⊂ RN (N ≥ 3) is a ball, 2 ≤ q < p ≤ 2∗ := 2N
N−2

and a, b, λ, μ are

positive parameters. By introducing some new ideas and using the well-known
results of the problem (P) in the cases of a = μ = 1 and b = 0, we obtain some
special kinds of solutions to (P) for all N ≥ 3 with precise expressions on the
parameters a, b, λ, μ, which reveals some new phenomenons of the solutions to
the problem (P). It is also worth pointing out that it seems to be the first time
that the solutions of (P) can be expressed precisely on the parameters a, b,
λ, μ, and our results in dimension four also give a partial answer to Naimen’s
open problems [J. Differential Equations 257 (2014), 1168–1193]. Furthermore,
our results in dimension four seem to be almost “optimal”.

1. Introduction

In this paper, we study the Kirchhoff type problem

(Pa,b,λ,μ)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(
a+ b

∫
Ω

|∇u|2dx
)
Δu = λuq−1 + μup−1, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

where Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary, 2 ≤ q <

p ≤ 2∗ := 2N
N−2 , 2∗ is the critical Sobolev exponent and a, b, λ, μ are positive

parameters.
The elliptic type Kirchhoff problem (Kirchhoff type problem for short) in a do-

main Ω ⊂ RN (1 ≤ N ≤ 3) has a nice background in physics. Indeed, such a
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problem is related to the stationary analogue of the following model:

(1.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt −
(
a+ b

∫
Ω

|∇u|2dx
)
Δu = h(x, u), in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u∗(x),

where T > 0 is a constant and u0, u
∗ are continuous functions. Such a model was

first proposed by Kirchhoff in 1883 as an extension of the classical D’Alembert’s
wave equations for free vibration of elastic strings. Kirchhoff’s model takes into
account the changes in length of the string produced by transverse vibrations. In
(1.1), u denotes the displacement, the nonlinearity h(x, u) denotes the external force
and the parameter a denotes the initial tension while the parameter b is related to
the intrinsic properties of the string (such as Young’s modulus). For more details on
the physical background of Kirchhoff type problems, we refer the readers to [1,17].

Under some suitable assumptions on the nonlinearities, the Kirchhoff type prob-
lem has a variational structure in some proper Hilbert spaces. Thus, it is natural
to study the Kirchhoff type problem by the variational method. However, since
the Kirchhoff term −b(

∫
Ω
|∇u|2dx)Δu is nonlocal and u �→ −b(

∫
Ω
|∇u|2dx)Δu is

not weakly continuous, a typical difficulty of such a problem using the variational
method is that the weak limit of the (PS) sequence to the corresponding func-
tional is not trivially the weak solution of the equation. In order to overcome this
difficulty, several methods have been developed and various existence and multi-
plicity results of nontrivial solutions for the Kirchhoff type problem in a domain
Ω ⊂ RN (1 ≤ N ≤ 3) have been established by the variational method in the lit-
erature; see for example [2, 8, 11, 12, 20, 22, 24, 26, 30, 33] and the references therein
for the bounded Ω and [11, 13, 14, 19, 21, 23, 27, 28] and the references therein for
Ω = R

N .
Recently, the Kirchhoff type problem in higher dimensions (N ≥ 4) has begun

to attract much attention. From the viewpoint of calculus of variation, such a
problem is much more complex and difficult since the order of the Kirchhoff type
nonlocal term −b(

∫
Ω
|∇u|2dx)Δu in the corresponding functional is 4, which equals

the critical Sobolev exponent 2∗ in the case of N = 4 and is greater than 2∗ in
the case of N ≥ 5. This fact leads to difficulty in obtaining the boundedness of
the (PS) sequence for the corresponding functional. By making some very careful
and complex analyses on the (PS ) sequence, several existence and multiplicity
results of nontrivial solutions have been established by the variational method in
the literature; see for example [2, 7, 16, 25, 33] and the references therein. Based on
the above facts, it is natural to ask: Can we find some other simple methods to deal
with the Kirchhoff type problem? In this paper, we will introduce some new ideas
to treat the Kirchhoff type problem (Pa,b,λ,μ), which seem to be simpler than that
of variation. Our results will also give the precise expressions of the solutions to
(Pa,b,λ,μ) on the parameters a, b, λ, μ and reveal some new phenomenons of the
solutions to (Pa,b,λ,μ).

Our main idea is to establish a relation between solutions of (Pa,b,λ,μ) and the
following equation (Pα) by means of a scaling technique:

(Pα)

⎧⎪⎨
⎪⎩

−Δu = αuq−1 + up−1, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω.
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This relation can be stated as follows and its proof will be given in Section 2.

Proposition 1.1. Let uα be a solution of (Pα) and let

fa,b,λ,μ(α) := a

(
αμ

q−2
p−2

λ

) p−2
p−q

+ b

(
αμ

q−2
p−2

λ

) p−4
p−q

μ
2

2−p

∫
Ω

|∇uα|2dx.

Then (Pa,b,λ,μ) has a solution

(
λ
αμ

) 1
p−q

uα if and only if fa,b,λ,μ(α) = 1.

Remark 1.1. (a) By Proposition 1.1, we can obtain some special kinds of solu-
tions to (Pa,b,λ,μ) with precise expressions on the parameters a, b, λ, μ by
solving the equation fa,b,λ,μ(α) = 1 for α. Furthermore, unlike the varia-
tional method, our method does not need to analyze the (PS ) sequence of
the corresponding functional to (Pa,b,λ,μ).

(b) The proof of Proposition 1.1 is based upon ideas used in [2] and [29], which
can trace back to [5,6]. In [2] and [29], the following two kinds of Kirchhoff
type problems were treated:

(1.2)

⎧⎨
⎩−

(
a+ b

∫
Ω

|∇u|2dx
)
Δu = f(x), in Ω,

u = 0, on ∂Ω,

and

(1.3)

⎧⎪⎨
⎪⎩

(
α

∫
RN

(|∇u|2 + u2)dx+ β

)
(−Δu+ u) = |u|p−2u, in R

N ,

u ∈ H1(RN ),

where 2 < p < 2∗. Since the local terms of (1.2) and (1.3) are homogeneous,
by using a scaling technique, one can obtain solutions of (1.2) and (1.3) by
solving two equations whose properties are very clear (cf. [2, 29]). Unlike
(1.2) and (1.3), the local term of (Pa,b,λ,μ) is inhomogeneous, so we need
to solve a more difficult equation fa,b,λ,μ(α) = 1 to obtain solutions of
(Pa,b,λ,μ) due to the function

∫
Ω
|∇uα|2dx.

(c) Our method can also be used to deal with the Kirchhoff type problem with
the nonlinearities

∑n
i=1 θiu

pi , where θi are constants and 2 ≤ pi ≤ 2∗ for
all i = 1, 2, · · · , n. In this case, in order to observe a similar result to
Proposition 1.1, a more complex n–components nonlinear system needs to
be studied.

According to Proposition 1.1, in order to obtain solutions of (Pa,b,λ,μ), we need to
solve the equation fa,b,λ,μ(α) = 1 in R. However, due to the function

∫
Ω
|∇uα|2dx,

this equation is not easy to solve on a general bounded domain Ω (more reasons
will be given in (a) of Remark 1.3). For the sake of demonstrating our ideas, we
mainly consider the problem (Pa,b,λ,μ) with Ω = BR, i.e.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−
(
a+ b

∫
BR

|∇u|2dx
)
Δu = λuq−1 + μup−1, in BR,

u > 0, in BR,

u = 0, on ∂BR,

where BR ⊂ RN (N ≥ 3) is a ball.
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Before we state results, we shall give some notation. Let E(u) := 1
2‖∇u‖2L2(BR)−

1
p‖u‖

p
Lp(BR), where ‖ · ‖Lr(BR)(r ≥ 1) is the usual norm in Lr(BR). Then it is easy

to see that E(u) is of C2 in H1
0 (BR). Furthermore, positive critical points of E(u)

are solutions of (P0). Let

N := {u ∈ H1
0 (BR) | E ′(u)u = 0}

and define m0 := infu∈N E(u). Now, our main results in this paper can be stated
as follows.

Theorem 1.1. Let a, b, λ, μ > 0, Ω = BR and 2 = q < p < 2∗.

(1) (Pa,b,λ,μ) has a radial solution if one of the following four cases holds:
(i) p > 4 and λ < aλ1;

(ii) p = 4, λ < aλ1 and 2p
p−2m0bμ

−1 < 1;

(iii) p = 4, λ > aλ1 and 2p
p−2m0bμ

−1 > 1;

(iv) p < 4 and λ > aλ1.
(2) If

2

(p− 2)μ

(
(p− 2)a

4− p

) 4−p
2
(
bλ1|BR|

p−2
p

(
2p

p− 2
m0

) 2
p

+ b
2p

p− 2
m0

) p−2
2

< 1,

then (Pa,b,λ,μ) has two radial solutions in the case p < 4 and λ < aλ1.

Theorem 1.2. Let a, b, λ, μ > 0, Ω = BR and 2 < q < p < 2∗.

(1) (Pa,b,λ,μ) has a radial solution if one of the following two cases holds:
(i) N = 3, p > 4 and (q − 1)(p+ 1) ≤ 3

2 ;

(ii) N = 3, p = 4, (q − 1)(p+ 1) ≤ 3
2 and 2p

p−2m0bμ
−1 < 1.

(2) If p < 4 and

2

(p− 2)μ

(
(p− 2)a

(4− p)

) 4−p
2
(
2qm0b

q − 2

) p−2
2

< 1,

then (Pa,b,λ,μ) has two radial solutions under one of the following two cases:

(i) 3 ≤ N ≤ 5 and (q − 1)(p+ 1) ≤ N
2 ;

(ii) N ≥ 6.

Theorem 1.3. Let a, b, λ, μ > 0, Ω = BR and 2 = q < p = 2∗.

(1) (Pa,b,λ,μ) has a radial solution if one of the following five cases holds:

(i) 0 < λ < aλ1 and a
4 + bS

3
2

2μ
1
2
> 1 in the case N = 3;

(ii) λ > aλ1 and a
4 + bS

3
2

2μ
1
2
< 1 in the case N = 3;

(iii) 0 < λ < aλ1 and μ > bS2 in the case N = 4;
(iv) λ > aλ1 and μ < bS2 in the case N = 4;
(v) λ > aλ1 in the case N ≥ 5,
where S > 0 is the usual Sobolev constant given by

S = inf{‖∇u‖2L2(Ω) | u ∈ H1
0 (Ω), ‖u‖2L2∗(Ω) = 1}.
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(2) If

N − 2

2μ

(
2a

N − 4

)N−4
N−2

(
bλ1|BR|

2
N S

N−2
2 + bS N

2

) 2
N−2

< 1,

then (Pa,b,λ,μ) has two radial solutions in the case 0 < λ < aλ1 and N ≥ 5.

Theorem 1.4. Let a, b, λ, μ > 0, Ω = BR and 2 < q < p = 2∗.

(1) (Pa,b,λ,μ) has a radial solution if one of the following two cases holds:

(i) N=3 and a

(
λ0

λ

) 4
6−q

μ
q−2
6−q +bC

(
λ0

λ

) 2
6−q

μ
q−4
6−q <1, where C= 2q

N(q−2)S
N
2

and λ0 > 0 is a constant given in [9];
(ii) N = 4 and μ > bS2.

(2) If

N − 2

2μ

(
2a

N − 4

)N−4
N−2

(
2qb

N(q − 2)

) 2
N−2

S N
N−2 < 1,

then (Pa,b,λ,μ) has two radial solutions in the case N ≥ 5.

Remark 1.2. (a) Some existence results of Theorems 1.1–1.4 in the cases N =
3, 4 have been obtained in the literature; see for example [12,16,24,25] and
the references therein. Compared to these papers, the novelty of Theo-
rems 1.1–1.4 in the cases N = 3, 4 is that we can precisely give the range of
the parameters a, b, λ, μ, and the solutions found in Theorems 1.1–1.4 have
precise expressions on the parameters a, b, λ, μ due to Proposition 1.1.

(b) A new and interesting phenomenon revealed by Theorems 1.1 and 1.3 is
that the Kirchhoff type problem (Pa,b,λ,μ) with q = 2 still has solutions if
λ > aλ1 and some further conditions hold, which is quite different from
the related local problem (P1,0,λ,1) with q = 2, for example the well-known
Breźıs–Nirenberg problem.

(c) In [25], Naimen obtained the following results by using the variational
method:

Theorem A. Let N = 4 and 2 < q < 4. If bS2 < μ < 2bS2 and Ω ⊂ R4

is strictly star-shaped, then problem (Pa,b,λ,μ) has a solution under one of
the following three cases:
(C1) a > 0, λ > 0 is small enough,
(C2) λ > 0, a > 0 is large enough,
(C3) a > 0, λ > 0 and μ

b > S2 is sufficiently close to S2.

Naimen also asked whether the conditions that μ < 2bS2, Ω ⊂ R4 is
strictly star-shaped and (C1)–(C3) are necessary in Theorem A. In our
paper [16], we give a partial answer to Naimen’s open question, where, by
using the variational method, it has been proved that the conditions that
μ < 2bS2 and Ω ⊂ R4 is strictly star-shaped are not necessary in Theorem A
if the parameter b > 0 is sufficiently small. Now, by Theorem 1.4, we can
give another partial answer to Naimen’s open question, that is, in the case
Ω = BR the conditions μ < 2bS2 and (C1)–(C3) are not necessary in
Theorem A.

(d) To the best of our knowledge, Theorems 1.1–1.4 in the case N ≥ 5 are
totally new.
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Remark 1.3. (a) The proofs of Theorems 1.1–1.4 depend heavily on the conti-
nuity of the function fa,b,λ,μ(α) given in Proposition 1.1 on some intervals
of R, which is ensured by the assumption Ω = BR. For a general bounded
domain Ω, if we can find a continuous curve L in the set S on some intervals
of R, then fa,b,λ,μ(α) is still continuous on these intervals and the proofs of
Theorems 1.1–1.4 do work, where S = {(uα, α) | uα is a solution of (Pα)}.
It follows that the answer to Naimen’s open question may be positive since
it can be solved by finding a continuous curve L in the set S in the case
N = 4 and 2 < q < p = 2∗ = 4. However, we can only obtain such a con-
tinuous curve in S in the case N ≥ 3 and 2 = q < p < 2∗ by the Rabinowitz
global bifurcation theorem (see more details in the Appendix).

(b) The conditions of Theorems 1.3 and 1.4 in the case N = 4 seem to be almost
“optimal”. Indeed, in our paper [16], we have shown that aλ1 − λ ≥ 0 and
bS2 − μ ≥ 0 cannot hold simultaneously if (Pa,b,λ,μ) has a solution in the
case q = 2 and (Pa,b,λ,μ) has no solution in the case bS2 − μ > 0 if a is
sufficiently large or λ is sufficiently small in the case 2 < q. However, we
do not know whether the conditions of Theorems 1.3 and 1.4 in the cases
N = 3 and N ≥ 5 are almost “optimal”.

(c) Theorems 1.1–1.4 give no information of (Pa,b,λ,μ) for λ = aλ1 in the case
q = 2 and bS2 = μ in all cases. On the other hand, due to the above (b),
(Pa,b,λ,μ) has no solution even in a general bounded domain in the case
λ = aλ1, q = 2 and bS2 = μ.

(d) Due to the Kirchhoff type nonlocal term −b(
∫
Ω
|∇u|2dx)Δu, we can see

from Theorems 1.1–1.4 that the Kirchhoff type problem (Pa,b,λ,μ) has two
solutions in some cases even Ω = BR. It seems that the branch of solutions
to the Kirchhoff type problem (Pa,b,λ,μ) is more complex than the related
local problem (P1,0,λ,μ). On the other hand, some concentration behaviors
of the solutions to (Pa,b,λ,μ) can be observed by studying the properties
of the function α(a, b, λ, μ), where α(a, b, λ, μ) is given by Proposition 1.1.
However, we will not go further in this direction in the current paper.

Throughout this paper, on(1) will always denote the quantities tending towards
zero as n → ∞.

2. Setting of the problem

In this section, we first give the proof of Proposition 1.1.

Proof of Proposition 1.1. Let ψ = tuα. Since uα is a solution of (Pα), it follows
that

−Δψ = t(αuq−1
α + up−1

α ) = αt2−qψq−1 + t2−pψp−1.

Set tμ = μ
1

2−p . Then ψα,μ = μ
1

2−puα is a solution of the following equation:

(Pα,μ)

⎧⎪⎨
⎪⎩

−Δu = αμ
q−2
p−2 uq−1 + μup−1, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω.
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Let ϕ = sψα,μ; then we have

−
(
a+ b

∫
Ω

|∇ϕ|2dx
)
Δϕ

= s

(
a+ s2b

∫
Ω

|∇ψα,μ|2dx
)
(αμ

q−2
p−2ψq−1

α,μ + μψp−1
α,μ )

=

(
a+ s2b

∫
Ω

|∇ψα,μ|2dx
)
(s2−qαμ

q−2
p−2ϕq−1 + s2−pμϕp−1).

Therefore ϕ = sψα,μ is a solution of (Pa,b,λ,μ) if and only if (s, α) satisfies the
following system:⎧⎪⎪⎨

⎪⎪⎩

(
a+ s2b

∫
Ω

|∇ψα,μ|2dx
)
s2−qαμ

q−2
p−2 = λ,(

a+ s2b

∫
Ω

|∇ψα,μ|2dx
)
s2−p = 1,

which is equivalent to that (s, α) satisfies the following system:⎧⎪⎪⎨
⎪⎪⎩

sp−qαμ
q−2
p−2 = λ,

a

(
αμ

q−2
p−2

λ

) p−2
p−q

+

(
αμ

q−2
p−2

λ

) p−4
p−q

b

∫
Ω

|∇ψα,μ|2dx = 1.

Thus ϕa,b,λ,μ =

(
λ

αμ
q−2
p−2

) 1
p−q

μ
1

2−puα =

(
λ
αμ

) 1
p−q

uα is a solution of (Pa,b,λ,μ) if

and only if fa,b,λ,μ(α) = 1. �

Next we will consider the continuity of fa,b,λ,μ(α) as a function of α on some
subset of R. In order to do this, let us respectively denote the corresponding
functional and the Nehari manifold of (Pα) in H1

0 (Ω) by Iα(u) and Nα, that is,

Iα(u) :=
1

2
‖∇u‖2L2(Ω) −

α

q
‖u‖qLq(Ω) −

1

p
‖u‖pLp(Ω)

and

Nα := {u ∈ H1
0 (Ω) | I ′α(u)u = 0}.

Define

D := {α | (Pα) has a unique solution uα with Iα(uα) = mα},
where mα := infu∈Nα

Iα(u). Then we have the following.

Lemma 2.1. If p < 2∗, then the function fa,b,λ,μ(α) is continuous on D.

Proof. Let α0 ∈ D and {αn} ⊂ D satisfy αn = α0 + on(1). By a similar argument
used in the proof of [15, Lemma 5.1], we can see that mαn

= mα0
+on(1). It follows

that {uαn
} is bounded in H1

0 (Ω). Without loss of generality, we may assume that
uαn

⇀ u∗
α0

weakly in H1
0 (Ω) for some u∗

α0
∈ H1

0 (Ω) as n → ∞. It is easy to show

that I ′α0
(u∗

α0
) = 0 in H−1(Ω), where H−1(Ω) is the dual space of H1

0 (Ω). This,
together with the Sobolev embedding theorem and the fact that I ′αn

(uαn
) = 0 in

H−1(Ω), implies that uαn
= u∗

α0
+on(1) strongly in H1

0 (Ω). Since uαn
> 0 in Ω, by

the strong maximum principle, we also have u∗
α0

> 0 in Ω. Thus, u∗
α0

is a solution

of (Pα0
) with Iα0

(u∗
α0
) = mα0

. Since α0 ∈ D, we must have u∗
α0

= uα0
in H1

0 (Ω).
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It follows from the arbitrariness of α0 ∈ D that the function α �→
∫
Ω
|∇uα|2dx is

continuous on D, from which we deduce that fa,b,λ,μ(α) is continuous on D. �
Lemma 2.2. If p = 2∗, then the function fa,b,λ,μ(α) is continuous on D∩F , where

F = {α | mα < 1
N S

N
2 }.

Proof. Let α0 ∈ D∩F and {αn} ⊂ D∩F satisfy αn = α0+on(1). Since Iαn
(uαn

) <
1
N S N

2 and uαn
is a solution of (Pαn

), by using standard arguments, we can show

that {uαn
} is bounded in H1

0 (Ω). Going if necessary to a subsequence, we can
assume that uαn

⇀ u∗
α0

weakly in H1
0 (Ω) for some u∗

α0
∈ H1

0 (Ω) as n → ∞.

Clearly, I ′α0
(u∗

α0
) = 0 in H−1(Ω). The strong maximum principle and the fact that

uαn
> 0 in Ω ensure that u∗

α0
> 0 in Ω. On the other hand, a similar argument

in the proof of [15, Lemma 5.1] also gives that mαn
= mα0

+ on(1). Noting that

αn = α0 + on(1) and mα0
< 1

N S N
2 , we can use the Brézis-Lieb lemma and the

Sobolev embedding theorem in a standard way to show that uαn
= u∗

α0
+ on(1)

strongly in H1
0 (Ω). Therefore, u∗

α0
is a solution of (Pα0

) with Iα0
(u∗

α0
) = mα0

.

Since α0 ∈ D, we must have u∗
α0

= uα0
in H1

0 (Ω). Thus, we have proved that

the function α �→
∫
Ω
|∇uα|2dx is continuous on D ∩ F and so that fa,b,λ,μ(α) is

continuous on D ∩ F . �

3. The existence of solutions

In this section, with the help of Proposition 1.1, we will give the proofs of our
results on the existence of solutions to (Pa,b,λ,μ) in the case of Ω = BR.

3.1. The case of 2 = q < p < 2∗. It is well known that (0, λ1) ⊂ D in this case
and uα is radial (cf. [18]). In order to apply Proposition 1.1, we need the following
lemma.

Lemma 3.1. It holds that limα↑λ1

∫
BR

|∇uα|2dx = 0 and limα↓0
∫
BR

|∇uα|2dx =
2p
p−2m0.

Proof. We first prove the former. Suppose that αn ↑ λ1 as n → ∞; then by a
similar argument used in the proof of [15, Lemma 5.2], we can see that mαn

↓ mλ1

as n → ∞. It follows from a standard argument that {uαn
} is bounded in H1

0 (BR).
Without loss of generality, we may assume that uαn

⇀ uλ1
weakly in H1

0 (BR)
for some uλ1

∈ H1
0 (BR) as n → ∞. Similarly as in the proof of Lemma 2.1,

we obtain that uαn
= uλ1

+ on(1) strongly in H1
0 (BR) and uλ1

is a solution of
(Pλ1

) if uλ1
�= 0. Note that (Pλ1

) has no solution, so we must have uλ1
= 0,

which means that limα↑λ1

∫
BR

|∇uα|2dx = 0. To prove the latter, let us assume

that αn ↓ 0 as n → ∞. Similarly as in the above, we can imply that uαn
=

u0 + on(1) strongly in H1
0 (BR), where u0 is the ground state solution of (P0), so

that limα↓0
∫
BR

|∇uα|2dx = 2p
p−2m0. �

With Lemma 3.1 in hand, we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.1, we have

lim
α↓0

fa,b,λ,μ(α) =

⎧⎪⎪⎨
⎪⎪⎩

+∞, if p < 4,

2p

p− 2
m0bμ

−1, if p = 4,

0, if p > 4,
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and

lim
α↑λ1

fa,b,λ,μ(α) =
aλ1

λ
.

It follows from Lemma 2.1 that fa,b,λ,μ(α) = 1 has a solution α0 > 0 under one
of the following four cases:

(i) p > 4 and λ < aλ1;
(ii) p = 4, λ < aλ1 and 2p

p−2m0bμ
−1 < 1;

(iii) p = 4, λ > aλ1 and 2p
p−2m0bμ

−1 > 1;

(iii) p < 4 and λ > aλ1.

Furthermore, a similar argument used in the proof of [15, Lemma 5.2] shows that
mα < m0 for all α ∈ (0, λ1). It follows from the Hölder inequality that∫

BR

|∇uα|2dx ≤ λ1|BR|
p−2
p

(
2p

p− 2
m0

) 2
p

+
2p

p− 2
m0 for all α ∈ (0, λ1),

which implies that

fa,b,λ,μ(α) ≤
aα

λ
+ b

(
λ1|BR|

p−2
p

(
2p

p− 2
m0

) 2
p

+
2p

p− 2
m0

)(
α

λ

) p−4
p−2

μ
2

2−p .

By a direct calculation, we can see that

fa,b,λ,μ

(
λ

μ

(
(4− p)bC
a(p− 2)

) p−2
2
)

< 1

under the condition

2

(p− 2)μ

(
(p− 2)a

4− p

) 4−p
2

(bC)
p−2
2 < 1,

where C = λ1|BR|
p−2
p

(
2p
p−2m0

) 2
p

+ 2p
p−2m0. Thus, in the case p < 4 and λ < aλ1,

the equation fa,b,λ,μ(α) = 1 has two solutions 0 < α1 < α2. By Proposition 1.1, we
complete the proof. �

3.2. The case of 2 < q < p < 2∗. In this case, it is well known that (0,+∞) ⊂ D
and uα is radial if one of the following two conditions holds:

(i) 3 ≤ N ≤ 5 and (q − 1)(p+ 1) ≤ N/2 (cf. [32]);
(ii) N ≥ 6 (cf. [10]).

Proof of Theorem 1.2. By a similar argument used in the proof of Lemma 3.1, we
also have limα↓0

∫
BR

|∇uα|2dx = 2p
p−2m0, which implies

lim
α↓0

fa,b,λ,μ(α) =

⎧⎪⎪⎨
⎪⎪⎩

+∞, if p < 4,

2p

p− 2
m0bμ

−1, if p = 4,

0, if p > 4.

It is easy to check that limα↑+∞ fa,b,λ,μ(α) = +∞, so we deduce from Lemma 2.1
that fa,b,λ,μ(α) = 1 has a solution α0 > 0 under one of the following two cases:

(i) N = 3, p > 4 and (q − 1)(p+ 1) ≤ 3/2;
(ii) N = 3, p = 4, (q − 1)(p+ 1) ≤ 3/2 and 2p

p−2m0bμ
−1 < 1.
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Furthermore, similarly as in the proof of Theorem 1.1, we can see that

fa,b,λ,μ

(
λ

μ

(
(4− p)bC1
(p− 2)a

) p−q
2
)

< 1

under the condition

2

(p− 2)μ

(
(p− 2)a

4− p

) 4−p
2

(C1b)
p−2
2 < 1,

where C1 = 2q
q−2m0. Thus, fa,b,λ,μ(α) = 1 has two solutions 0 < α1 < α2 under one

of the following two cases:

(i) p < 4, 3 ≤ N ≤ 5 and (q − 1)(p+ 1) ≤ N/2;
(ii) p < 4, N ≥ 6.

Now, the conclusions of Theorem 1.2 follow from Proposition 1.1. �

3.3. The case of 2 = q < p = 2∗. In this case, it is well known that (0, λ1) ⊂ D∩F
and uα is radial if N ≥ 4 and ( 14λ1, λ1) ⊂ D ∩ F and uα is radial if N = 3 (cf.
[4, 31]). Similarly as in the previous subsection, we need to establish the following
lemma before proving Theorem 1.3.

Lemma 3.2. If N = 3, then limα↓ 1
4λ1

∫
BR

|∇uα|2dx = S 3
2 ; if N ≥ 4, then

limα↓0
∫
BR

|∇uα|2dx = S N
2 and it holds that limα↑λ1

∫
BR

|∇uα|2dx = 0 for all
N ≥ 3.

Proof. We first show that limα↓ 1
4λ1

∫
BR

|∇uα|2dx = S 3
2 if N = 3. Indeed, by a

direct calculation, we have

1

3
(1− α

λ1
)S 3

2 < Iα(uα) <
1

3
S 3

2 for
1

4
λ1 < α < λ1.

Let αn ↓ λ1

4 . Similarly as in the proof of Lemma 2.2, we can see that uαn
⇀ u0

weakly in H1
0 (BR) for some u0 ∈ H1

0 (BR) as n → ∞ and I ′1
4λ1

(u0) = 0 in H−1(BR).

Since (Pλ1
4
) has no solution, by the strong maximum principle, we must have that

u0 = 0 in H1
0 (BR). Noting that Iαn

(uαn
) < 1

3S
3
2 for all n ∈ N, we get from the

Sobolev embedding theorem that either

(a) ‖∇uαn
‖2L2(BR) = on(1) or

(b) ‖∇uαn
‖2L2(BR) = S 3

2 + on(1).

Clearly case (b) must occur since 1
3 (1−

αn

λ1
)S 3

2 < Iαn
(uαn

) and αn ↓ λ1

4 . It follows

from the arbitrariness of {αn} that limα↓ 1
4λ1

∫
BR

|∇uα|2dx = S 3
2 if N = 3.

Next, we shall prove that limα↓0
∫
BR

|∇uα|2dx = S N
2 in the case N ≥ 4. In fact,

since (Pα) has no solution for α ≤ 0 and

1

N
(1− α

λ1
)S N

2 < Iα(uα) <
1

N
S N

2 for 0 < α < λ1 in the case N ≥ 4,

similar arguments used above show that if N ≥ 4, then ‖∇uαn
‖2L2(BR) = S N

2 +on(1)

for each sequence {αn} satisfying αn ↓ 0 as n → ∞, so that limα↓0
∫
BR

|∇uα|2dx =

S N
2 if N ≥ 4.
Finally, we will prove that limα↑λ1

∫
BR

|∇uα|2dx = 0. Let αn ↑ λ1. By using a

similar argument as in the proof of the first equality above, we reach that uαn
⇀ u0



ON FINDING SOLUTIONS OF A KIRCHHOFF TYPE PROBLEM 3029

weakly in H1
0 (BR) for some u0 ∈ H1

0 (BR) as n → ∞. Since (Pλ1
) has no solution,

it follows from the strong maximum principle that u0 = 0 in H1
0 (BR). Noting that

αn ↑ λ1, we can see from similar arguments used in the proof of [15, Lemma 5.2]
that

Iαn+1
(uαn+1

) ≤ Iαn
(uαn

) for all n ∈ N.

Now, it implies from Iα1
(uα1

) < 1
N S N

2 and the Sobolev embedding theorem that

‖∇uαn
‖2L2(BR) = on(1), so that limα↑λ1

∫
BR

|∇uα|2dx = 0. �

Proof of Theorem 1.3. By Lemma 3.2, we can see that

lim
α↑λ1

fa,b,λ,μ(α) =
aλ1

λ
and lim

α↓ λ1
4

fa,b,λ,μ(α) =
a

4
+

bS 3
2

2μ
1
2

if N = 3,

lim
α↑λ1

fa,b,λ,μ(α) =
aλ1

λ
and lim

α↓0
fa,b,λ,μ(α) =

bS2

μ

if N = 4 and

lim
α↓0

fa,b,λ,μ(α) = +∞ and lim
α↑λ1

fa,b,λ,μ(α) =
aλ1

λ

if N ≥ 5. It follows from Lemma 2.2 that fa,b,λ,μ(α) = 1 has a solution α0 > 0
under one of the following five cases:

(i) 0 < λ < aλ1 and a
4 + bS

3
2

2μ
1
2
< 1 in the case N = 3;

(ii) λ > aλ1 and a
4 + bS

3
2

2μ
1
2
> 1 in the case N = 3;

(iii) 0 < λ < aλ1 and μ > bS2 in the case N = 4;
(iv) λ > aλ1 and μ < bS2 in the case N = 4;
(v) λ > aλ1 in the case N ≥ 5.

Now, similarly as in the proof of Theorem 1.1, we can see that

fa,b,λ,μ

(
λ

μ

(
(N − 4)bC2

2a

) 2
N−2

)
< 1

under the condition

N − 2

2μ

(
2a

N − 4

)N−4
N−2

(bC2)
2

N−2 < 1,

where C2 = λ1|BR|
2
N S N−2

2 + S N
2 . Thus, in the case N ≥ 5 and 0 < λ < aλ1,

fa,b,λ,μ(α) = 1 has two solutions 0 < α1 < α2. Therefore, the conclusions of
Theorem 1.3 remain true from Proposition 1.1. �

3.4. The case of 2 < q < p = 2∗. In this case, it is well known that (0,+∞) ⊂
D∩F and uα is radial if N ≥ 4 (cf. [9,10]) and (λ0,+∞) ⊂ D∩F and uα is radial
for some λ0 > 0 if N = 3 (cf. [9]).
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Proof of Theorem 1.4. By using a similar argument as in the proof of Lemma 3.2,

we can see that limα↓0
∫
BR

|∇uα|2dx = S N
2 if N ≥ 4, which implies

lim
α↓0

fa,b,λ,μ(α) =

⎧⎨
⎩

+∞, if N ≥ 5,

bS2

μ
, if N = 4.

For the case of N = 3, a similar argument as in the proof of Theorem 1.1 shows

that
∫
BR

|∇uα|2dx ≤ 2q
N(q−2)S

N
2 for all α > λ0. It follows that

lim
α↓λ0

fa,b,λ,μ(α) ≤ a

(
λ0

λ

) 4
6−q

μ
q−2
6−q + bC3

(
λ0

λ

) 2
6−q

μ
q−4
6−q ,

where C3 = 2q
N(q−2)S

N
2 . Also, we can easily check that limα↑+∞ fa,b,λ,μ(α) = +∞,

so that, by Lemma 2.2, we get that fa,b,λ,μ(α) = 1 has a solution α0 > 0 under one
of the following two cases:

(i) N = 3 and a

(
λ0

λ

) 4
6−q

μ
q−2
6−q + bC3

(
λ0

λ

) 2
6−q

μ
q−4
6−q < 1;

(ii) N = 4 and μ > bS2.

Furthermore, similarly as in the proof of Theorem 1.1, we can obtain that

fa,b,λ,μ

(
λμ

(2−q)(N−2)
4

(
(N − 4)bC3

2a

) (2−q)N+2q
2(N−2)

)
< 1

under the condition

N − 2

2μ

(
2a

N − 4

)N−4
N−2

(C3b)
2

N−2 < 1.

Thus, if N ≥ 5, then fa,b,λ,μ(α) = 1 has two solutions 0 < α1 < α2. Now, the
conclusions of Theorem 1.4 hold from Proposition 1.1. �

4. Appendix

In this section, we will find special kinds of solutions to (Pa,b,λ,μ) on a general
bounded domain Ω in the case 2 = q < p < 2∗. It is well known that (Pα) has a
ground state solution if and only if α < λ1, where λ1 is the first eigenvalue of −Δ
on Ω. In order to apply Proposition 1.1, we will observe some bifurcation results of
uα. We believe that our observations are not new but since we could not find any
convenient reference, we give their proofs below by Rabinowitz’s global bifurcation
theorem.

Lemma 4.1. There exists λ̃0 ∈ (0, λ1) such that uα is the unique ground state

solution of (Pα) for α ∈ (λ̃0, λ1).

Proof. Suppose αn ↑ λ1 as n → ∞ and ũαn
is a ground state solution of (Pαn

).
Similarly as in the proof of Lemma 3.1, we obtain that ũαn

→ 0 strongly in H1
0 (Ω)

as n → ∞. Thus, {(ũα, α)} are nontrivial branches of solutions to (Pα) bifur-
cated from the trivial branch of solutions {(0, α)} of (Pα) at (0, λ1). In particular,
{(uα, α)} is also a nontrivial branch of solutions to (Pα) bifurcated from the trivial
branch {(0, α)} of (Pα) at (0, λ1). Note that λ1 is the principal eigenvalue of the
linearized equation of (Pα) at 0. Hence, there is a unique continuous branch of
solutions for (Pα) bifurcated from the trivial branch of solutions {(0, α)} of (Pα)
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at (0, λ1) near λ1, say α ∈ (λ̃0, λ1) for some λ̃0 > 0. It follows that {(uα, α)} is the
unique continuous branch of solutions for (Pα) bifurcated from the trivial branch

of solutions {(0, α)} of (Pα) at (0, λ1) for α ∈ (λ̃0, λ1). �

Lemma 4.2. The interval (0, λ1) is contained in the branch {(uα, α)}. Further-
more, for every αn ↓ 0 as n → ∞, it holds that uαn

= u0 + on(1) strongly in
H1

0 (BR), where u0 is a ground state solution of (P0).

Proof. Denote L = {(uα, α)} and define λ0 = inf{α | (uα, α) ∈ L}. Then it is easy

to see that −∞ ≤ λ0 ≤ λ̃0. We first prove that λ0 ≤ 0. Suppose the contrary; then
by a similar argument as used in [15, Lemma 5.2], we can see that mα < m0 for

all α ∈ (λ0, λ1). It follows that ‖uα‖2L2(Ω) <

(
2p
p−2m0

) 2
p

|Ω|
p−2
p for all α ∈ (λ0, λ1).

Let U = {(u, α) | ‖uα‖2L2(Ω) <

(
2p
p−2m0

) 2
p

|Ω|
p−2
p and α ∈ R}; then U is an open

set in L2(Ω) × R, which contains the point (0, λ1). By Lemma 4.1, L is a branch
bifurcated from the point (0, λ1). Since λ1 is the principal eigenvalue of −Δ on
Ω and there is no solution for (Pα) if α ≥ λ1, we must get a contradiction due to
Rabinowitz’s global bifurcation theorem. Thus, the interval (0, λ1) is contained in
the branch L. Now, by a similar argument as in the proof of [15, Lemma 5.2], we
can see that uαn

= u0+ on(1) strongly in H1
0 (Ω) for every αn ↓ 0 as n → ∞, where

u0 is a ground state solution of (P0). �

By Lemma 4.2, we obtain a continuous curve in S :={(uα, α) | uα is a solution of
(Pα)}, so that we can get the kinds of solutions described in Proposition 1.1 by
using similar arguments as in the proof of Theorem 1.1.
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