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SUBELLIPTIC AND PARAMETRIC EQUATIONS

ON CARNOT GROUPS

GIOVANNI MOLICA BISCI AND MASSIMILIANO FERRARA

(Communicated by Svitlana Mayboroda)

Abstract. This article concerns a class of elliptic equations on Carnot groups
depending on one real parameter. Our approach is based on variational meth-
ods. More precisely, we establish the existence of at least two weak solutions
for the treated problem by using a direct consequence of the celebrated Pucci-

Serrin theorem and of a local minimum result for differentiable functionals due
to Ricceri.

1. Introduction

It is well known that a great deal of attention has been focused by many authors
on the study of subelliptic equations on Carnot groups and in particular on the
Heisenberg group Hn. See, among others, the papers [2, 4, 8, 10, 12] and references
therein.

Motivated by this large interest in the literature, we study here the existence of
weak solutions for the following problem

(P f
λ )

{
−ΔGu = λf(ξ, u) in D
u|∂D = 0,

where D is a smooth bounded domain of the Carnot group G, ΔG is the subelliptic
Laplacian on G, and λ is a positive real parameter.

More precisely, inspired by [1] and [14], we prove that, for small values of λ,

problem (P f
λ ) admits at least two weak solutions requiring that the continuous

and subcritical nonlinear term f satisfies the celebrated Ambrosetti-Rabinowitz
condition without the usual additional assumption at zero, that is,

(1) lim
t→0

f(ξ, t)

t
= 0,

uniformly in D.
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A special case of our result reads as follows.

Theorem 1.1. Let D be a smooth and bounded domain of the Heisenberg group
Hn and f : R → R be a continuous function for which

(f ′
1) there exist a1, a2 > 0 and q ∈

(
2, 2

(
n+ 1

n

))
such that

|f(t)| ≤ a1 + a2|t|q−1,

for every t ∈ R;
(f ′

2) there are α > 2 and r0 > 0 such that

0 < α

∫ t

0

f(τ )dτ ≤ tf(t),

for any |t| ≥ r0.

Then, there exists an open interval Λ ⊂ (0,+∞) such that, for every λ ∈ Λ, the
following problem {

−ΔHnu = λf(u) in D
u|∂D = 0,

admits at least two (distinct) weak solutions in the Folland-Stein space S1
0(D).

The interval Λ in the above result can be explicitly determined. Precisely, setting

cs := sup
u∈S1

0(D)\{0}

‖u‖Ls(D)

‖u‖S1
0(D)

, (with s ∈ {1, q}),

one has

Λ :=

(
0,

q

2
max
�>0

√
�

a1c1q + a2c
q
q�

q−1
2

)
;

see Remark 4.2 for details.
Our abstract tool for proving the main result is the following abstract theorem

that we recall here in a convenient form.

Theorem 1.2. Let E be a reflexive real Banach space, and let Φ,Ψ : E → R be two
continuously Gâteaux differentiable functionals such that Φ is sequentially weakly
lower semicontinuous and coercive. Further, assume that Ψ is sequentially weakly
continuous. In addition, assume that, for each μ > 0, the functional Jμ := μΦ−Ψ
satisfies the classical compactness Palais-Smale (briefly (PS)) condition. Then, for
each � > inf

E
Φ and each

μ > inf
u∈Φ−1

(
(−∞,�)

)
sup

v∈Φ−1
(
(−∞,�)

)Ψ(v)−Ψ(u)

�− Φ(u)
,

the following alternative holds: either the functional Jμ has a strict global minimum
which lies in Φ−1

(
(−∞, �)), or Jμ has at least two critical points one of which lies

in Φ−1
(
(−∞, �)).

The above critical point result comes from a joint application of the classical
Pucci-Serrin theorem (see [13]) and a local minimum result due to Ricceri (see
[15]). For a proof of Theorem 1.2 see, for instance, [14, Theorem 6]. We refer
the interested reader to [11,16,17] and references therein for recent applications of
Ricceri’s variational principle.
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The plan of the paper is as follows. Section 2 is devoted to our abstract frame-
work and preliminaries. Successively, in Section 3, Theorem 3.1 and some prepara-
tory results concerning the compactness Palais-Smale condition (see Lemmas 3.3
and 3.4) are presented.

In the last section, Theorem 3.1 is proved, and a concrete example of an appli-
cation is presented in Example 4.3.

2. Abstract framework

In this section we briefly recall some basic facts on Carnot groups and the func-
tional space S1

0(D). Let (Rn, ◦) be a Lie Group equipped with a family of group
automorphisms, namely dilatations, F := {δη}η>0 such that, for every η > 0, the
map

δη :

r∏
k=1

R
nk →

r∏
k=1

R
nk

is given by

δη(ξ
(1), . . . , ξ(r)) := (ηξ(1), η2ξ(2), . . . , ηrξ(r)),

where ξ(k) ∈ R
nk for every k ∈ {1, . . . , r} and

r∑
k=1

nk = n.

The structure G := (Rn, ◦,F) is called a homogeneous group with homogeneous
dimension

(2) dimhG :=

r∑
k=1

knk.

From now on, we shall assume dimhG ≥ 3. We remark that, if dimhG ≤ 3, then
necessarily G = (RdimhG,+). Note that the number dimhG is naturally associated
to the family F since, for every η > 0, the Jacobian of the map

ξ �→ δη(ξ), ∀ ξ ∈ R
n

equals ηdimhG. Now, let g be the Lie algebra of left invariant vector fields on G and
assume that g is stratified, that is,

g =

r⊕
k=1

Vk,

where the integer r is called the step of G, Vk is a linear subspace of g, for every
k ∈ {1, . . . , r}, and

dimVk = nk, for every k ∈ {1, . . . , r},
[V1, Vk] = Vk+1, for 1 ≤ k ≤ r − 1, and [V1, Vr] = {0}.

In this setting the symbol [V1, Vk] denotes the subspace of g generated by the
commutators [X,Y ], where X ∈ V1 and Y ∈ Vk.

ACarnot group is a homogeneous group G such that the Lie algebra g, associated
to G, is stratified. Moreover, the subelliptic Laplacian operator on G is the second-
order differential operator, given by

ΔG :=

n1∑
k=1

X2
k ,
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where {X1, . . . , Xn1
} is a basis of V1. We shall denote by

∇G := (X1, . . . , Xn1
)

the related horizontal gradient.
A crucial role in the functional analysis on Carnot groups is played by the fol-

lowing Sobolev-type inequality:

(3)

∫
D

|u(ξ)|2∗ dξ ≤ C

∫
D

|∇Gu(ξ)|2 dξ, ∀u ∈ C∞
0 (D),

due to Folland (see [6]). In the above expression C is a positive constant (indepen-
dent on u) and

2∗ :=
2dimhG

dimhG− 2

is the critical Sobolev exponent. Inequality (3) ensures that if D is a bounded open
(smooth) subset of G, then the function

(4) u �→ ‖u‖S1
0(D) :=

(∫
D

|∇Gu(ξ)|2 dξ
)1/2

is a norm in C∞
0 (D).

We shall denote by S1
0(D) the Folland-Stein space defined as the completion of

C∞
0 (D) with respect to the norm ‖·‖S1

0(D). The exponent 2
∗ is critical for ΔG since,

as in the classical Laplacian setting, the embedding S1
0(D) ↪→ Lq(D) is compact

when 1 ≤ q < 2∗, while it is only continuous if q = 2∗ (see Folland and Stein [7]).
The simplest example of a Carnot group is provided by the Heisenberg group

Hn := (R2n+1, ◦), where, for every
p := (p1, . . . , p2n, p2n+1) and q := (q1, . . . , q2n, q2n+1) ∈ H

n,

the usual group operation ◦ : Hn ×Hn → Hn is given by

p ◦ q :=

(
p1 + q1, . . . , p2n + q2n, p2n+1 + q2n+1 +

1

2

2n∑
k=1

(pkqk+n − pk+nqk)

)
,

and the family of dilatations has the following form:

δη(p) := (ηp1, . . . , ηp2n, η
2p2n+1), ∀ η > 0.

Thus, by (2) it follows that

dimhH
n := 2n+ 2.

The Lie algebra of left invariant vector fields on H
n is denoted by h and its

standard basis is given by

Xk := ∂k − pn+k

2
∂2n+1, k ∈ {1, . . . , n},

Yk := ∂n+k −
pk
2
∂2n+1, k ∈ {1, . . . , n},

T := ∂2n+1.

In such a case, the only nontrivial commutator relations are

[Xk, Yk] = T, ∀ k ∈ {1, . . . , n}.
Finally, the stratification of h is given by

h = span{X1, . . . , Xn, Y1, . . . , Yn} ⊕ span{T}.
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We cite the monograph [3] for a nice introduction on Carnot groups and [9] for
related topics on variational methods used in this paper.

3. The main result and some technical lemmas

The aim of this section is to prove that, under natural assumptions on the

nonlinear term f , weak solutions to problem (P f
λ ) below do exist. With the above

notation the main result reads as follows.

Theorem 3.1. Let D be a smooth and bounded domain of a Carnot group G with
dimhG ≥ 3, and f : D̄ × R → R be a continuous function such that

(f1) there exist a1, a2 > 0 and q ∈ (2, 2∗) such that

|f(ξ, t)| ≤ a1 + a2|t|q−1,

for every ξ ∈ D and t ∈ R;
(f2) there are α > 2 and r0 > 0 such that

0 < α

∫ t

0

f(ξ, τ )dτ ≤ tf(ξ, t),

for any ξ ∈ D̄, and |t| ≥ r0.

Then, for every � > 0 and each

(5) 0 < λ <
q
√
�

2
(
a1c1q + a2c

q
q�

q−1
2

) ,
problem (P f

λ ) admits at least two weak solutions one of which lies in

B� :=
{
u ∈ S1

0(D) : ‖u‖2S1
0(D) < �

}
.

We recall that a weak solution for the problem (P f
λ ) is a function u : D → R

such that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
D

〈∇Gu(ξ),∇Gϕ(ξ)〉 dξ

= λ

∫
D

f(ξ, u(ξ))ϕ(ξ)dξ, ∀ϕ ∈ S1
0(D),

u ∈ S1
0(D).

Remark 3.2. Assuming the Ambrosetti-Rabinowitz condition (f2), standard com-

putations ensure that the potential F (ξ, t) :=

∫ t

0

f(ξ, τ )dτ is α-superhomogeneous

at infinity, i.e.,
F (ξ, tv) ≥ F (ξ, v)tα,

for every ξ ∈ D̄, (t, v) ∈ R2 with t ≥ 1 and |v| ≥ r0. Indeed, for t = 1, clearly
the equality holds. Otherwise, fix |v| ≥ r0 and define g(ξ, t) := F (ξ, tv), for every
x ∈ D̄ and t ∈ (1,+∞). By (f2) it follows that

g′(ξ, t)

g(ξ, t)
≥ α

t
,

for every ξ ∈ D̄ and t > 1. By integrating in (1, t] we get that∫ t

1

g′(ξ, s)

g(ξ, s)
ds = log

g(ξ, t)

g(ξ, 1)
≥ log tα.
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In conclusion, the claim is verified since one has

F (ξ, tv) =: g(ξ, t)

≥ g(ξ, 1)tα

= F (ξ, v)tα,

for every ξ ∈ D̄, |v| ≥ r0 and t > 1.

Now, for the sake of completeness, we recall that a C1-functional J : E → R,
where E is a real Banach space with topological dual E∗, satisfies the Palais-Smale
condition at level ζ ∈ R, (abbreviated (PS)ζ) when

(PS)ζ Every sequence {uj}j∈N in E such that

J(uj) → ζ, and ‖J ′(uj)‖E∗ → 0,

as j → +∞, possesses a convergent subsequence.

We say that J satisfies the Palais-Smale condition (abbreviated (PS)) if (PS)ζ
holds for every ζ ∈ R.

For our goal, in the next two lemmas we shall verify the compactness (PS)
condition for the functional Jλ : S1

0(D) → R defined by

(6) Jλ(u) :=
1

2λ
‖u‖2S1

0(D) −
∫
D

F (ξ, u(ξ))dξ, ∀u ∈ S1
0(D),

where λ ∈ R and, as usual, we set F (ξ, t) :=

∫ t

0

f(ξ, τ )dτ .

Note that the functional Jλ ∈ C1(S1
0(D)) and its derivative at u ∈ S1

0(D) is
given by

〈J ′
λ(u), ϕ〉 =

1

λ

∫
D

〈∇Gu(ξ),∇Gϕ(ξ)〉 dξ

−
∫
D

f(ξ, u(ξ))ϕ(ξ)dξ,

for every ϕ ∈ S1
0(D).

Lemma 3.3. Assume that conditions (f1) and (f2) are verified. Then, every
Palais-Smale sequence for the functional Jλ is bounded in S1

0(D).

Proof. Let {uj}j∈N ⊂ S1
0(D) be a Palais-Smale sequence, i.e.,

(7) Jλ(uj) → ζ,

for ζ ∈ R and

(8) ‖J ′
λ(uj)‖S−1 → 0,

as j → ∞, where

‖J ′
λ(uj)‖S−1 := sup

{∣∣〈 J ′
λ(uj), ϕ 〉

∣∣ : ϕ ∈ S1
0(D), ‖ϕ‖S1

0(D) = 1
}
.

We argue by contradiction. So, suppose to the contrary that the conclusion were
not true. Passing to a subsequence if necessary, we may assume that

‖uj‖S1
0(D) → +∞,
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as j → +∞. It follows that there exists j0 ∈ N such that

Jλ(uj) − 〈J ′
λ(uj), uj〉

α

=
1

2λ

(
α− 2

α

)
‖uj‖2S1

0(D)

+

∫
D

[
f(ξ, uj(ξ))uj(ξ)

α
− F (ξ, uj(ξ))

]
dξ,

for every j ≥ j0.
Thus

1

2λ

(
α− 2

α

)
‖uj‖2S1

0(D) ≤ Jλ(uj)−
〈J ′

λ(uj), uj〉
α

−
∫
|uj(ξ)|>r0

[
f(ξ, uj(ξ))uj(ξ)

α
− F (ξ, uj(ξ))

]
dξ

+ κ1|D|, ∀ j ≥ j0,

where |D| denotes the measure of D and

κ1 := sup

{∣∣∣∣f(ξ, t)tα
− F (ξ, t)

∣∣∣∣ : ξ ∈ D̄, |t| ≤ r0

}
.

Now, we observe that condition (f2) yields∫
|uj(ξ)|>r0

[
f(ξ, uj(ξ))uj(ξ)

α
− F (ξ, uj(ξ))

]
dξ ≥ 0.

So, we deduce that

1

2λ

(
α− 2

α

)
‖uj‖2S1

0(D) ≤ Jλ(uj)−
〈J ′

λ(uj), uj〉
α

+ κ1|D|,

for every j ≥ j0. Then, for every j ≥ j0 one has

1

2λ

(
α− 2

α

)
‖uj‖2S1

0(D) ≤ Jλ(uj) +
1

α
‖J ′

λ(uj)‖S−1‖uj‖S1
0(D) + κ1|D|.

In conclusion, dividing by ‖uj‖S1
0(D) and letting j → +∞, we obtain a contra-

diction. �

Lemma 3.4. Assume that conditions (f1) and (f2) are verified. Then, the func-
tional Jλ satisfies the compactness (PS) condition.

Proof. Let {uj}j∈N ⊂ S1
0(D) be a Palais-Smale sequence. By Lemma 3.3, the

sequence {uj}j∈N is necessarily bounded in S1
0(D). Since S1

0(D) is reflexive, we can
extract a subsequence which for simplicity we shall call again {uj}j∈N, such that
uj ⇀ u∞ in S1

0(D). This means that

(9)

∫
D

〈∇Guj(ξ),∇Gϕ(ξ)〉 dξ →∫
D

〈∇Gu∞(ξ),∇Gϕ(ξ)〉 dξ,

for any ϕ ∈ S1
0(D), as j → +∞.
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We will prove that uj strongly converges to u∞ ∈ S1
0(D). Exploiting the deriv-

ative J ′
λ(uj)(uj − u∞), we obtain

〈a(uj), uj − u∞〉 = 〈J ′
λ(uj), uj − u∞〉(10)

+

∫
D

f(ξ, uj(ξ))(uj − u∞)(ξ)dξ,

where we set

〈a(uj), uj − u∞〉 :=
1

λ

(
‖uj‖2S1

0(D) −
∫
D

〈∇Guj(ξ),∇Gu∞(ξ)〉 dξ
)
.

Since ‖J ′
λ(uj)‖S−1 → 0 and (by Lemma 3.3) the sequence {uj−u∞}j∈N is bounded

in S1
0(D), taking into account that

|〈J ′
λ(uj), uj − u∞〉| ≤ ‖J ′

λ(uj)‖S−1‖uj − u∞‖S1
0(D),

one gets

〈J ′
λ(uj), uj − u∞〉 → 0,(11)

as j → +∞.
Now, since the embedding S1

0(D) ↪→ Lq(D) is compact, clearly uj → u∞ strongly
in Lq(D). So, by condition (f1), we obtain∫

D

|f(ξ, uj(ξ))||uj ||(ξ)− u∞(ξ)|dξ → 0.(12)

By (10) relations (11) and (12) yield

〈a(uj), uj − u∞〉 → 0,(13)

when j → +∞.
Hence by (13) we can write∫

D

|∇Guj(ξ)|2 dξ −
∫
D

〈∇Guj(ξ),∇Gu∞(ξ)〉 dξ → 0,(14)

when j → +∞.
Thus, by (14) and (9) it follows that

lim sup
j→∞

∫
D

|∇Guj(ξ)|2 dξ =

∫
D

|∇Gu∞(ξ)|2 dξ.

In conclusion, thanks to [5, Proposition III.30], uj → u∞ in S1
0(D). The proof

is thus complete. �

4. Proof of Theorem 3.1

For the proof of our result, we observe that problem (P f
λ ) has a variational

structure, indeed it is the Euler-Lagrange equation of the functional Jλ. Note that
the functional Jλ is continuously Gâteaux differentiable in u ∈ S1

0(D) and one has

〈J ′
λ(u), ϕ〉 =

1

λ

∫
D

〈∇Gu(ξ),∇Gϕ(ξ)〉 dξ

−
∫
D

f(ξ, u(ξ))ϕ(ξ)dξ,

for every ϕ ∈ S1
0(D). Thus, the critical points of Jλ are exactly the weak solutions

to problem (P f
λ ). Let � > 0 and set μ := 1/2λ, with λ as in the statement.
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Hence, let us apply Theorem 1.2, taking E := S1
0(D), endowed by the norm (4),

Jμ := Jλ, and setting

Φ(u) := ‖u‖2S1
0(D),

as well as

Ψ(u) :=

∫
D

F (ξ, u(ξ))dξ,

for every u ∈ S1
0(D).

Now, Φ is sequentially weakly lower semicontinuous and coercive and Ψ is se-
quentially weakly continuous thanks to the Rellich-Kondrachov theorem. Hence,
the regularity assumptions on the functional Jμ are verified.

Now, we observe that there exists u0 ∈ S1
0(D) such that

(15) Jμ(tu0) → −∞,

as t → +∞.
Indeed, bearing in mind Remark 3.2, it follows that

Jμ(tu0) = μΦ(tu0)−Ψ(tu0)

≤ μt2Φ(u0)− tα
∫
{ξ∈D:|u0(ξ)|≥r0}

F (ξ, u0(ξ))dξ + κ2|D|,

where
κ2 := sup{|F (ξ, t)| : ξ ∈ D̄ and |t| ≤ r0}.

Since α > 2, choosing u0 ∈ S1
0(D) such that

|{ξ ∈ D : |u0(ξ)| ≥ r0}| > 0,

we deduce that (15) holds.
Hence, the functional Jμ is unbounded from below and, by Lemma 3.4, the

compactness (PS) condition is verified.
We claim that

(16) μ > χ(�) := inf
u∈B�

sup
v∈B�

∫
D

F (ξ, v(ξ))dξ −
∫
D

F (ξ, u(ξ))dξ

�− ‖u‖2
S1
0(D)

,

for every � > 0. For our goal, let us fix � > 0. Since 0 ∈ B�, it follows that

(17) χ(�) ≤
sup
v∈B�

∫
D

F (ξ, v(ξ))dξ

�
.

On the other hand, it is easy to see that

(18)

sup
v∈B�

∫
D

F (ξ, v(ξ))dξ

�
≤ c1√

�
a1 +

cqqa2

q
�

q
2−1.

Indeed, by (f1) it follows that

(19) F (ξ, t) ≤ a1|t|+
a2
q
|t|q, ∀(ξ, t) ∈ D × R.

Therefore, inequality (19) yields

(20)

∫
D

F (ξ, v(ξ))dξ ≤ a1‖v‖L1(D) +
a2
q
‖v‖qLq(D),
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for every v ∈ S1
0(D). Then, by (20), since

sup
v∈B�

∫
D

F (ξ, v(ξ))dξ ≤ c1
√
�a1 +

cqqa2

q
�

q
2 ,

inequality (18) immediately holds.
Since (5) holds, conditions (17) and (18) yield

χ(�) ≤ c1√
�
a1 +

cqqa2

q
�

q
2−1 <

1

2λ
= μ.

Thus, inequality (16) is proved.

Then, owing to Theorem 1.2, problem (P f
λ ) admits at least two weak solutions

one of which lies in B�. This completes the proof.

Remark 4.1. Theorem 3.1 can be viewed as a subelliptic counterpart of [14, Theo-
rem 4].

Remark 4.2. We emphasize that Theorem 3.1 ensures the existence of at least two
weak solutions whenever

λ ∈ Λ :=

(
0,

q

2
max
�>0

h(�)

)
,

where h : [0,+∞) → [0,+∞) is the continuous function given by

h(�) :=

√
�

a1c1q + a2c
q
q�

q−1
2

.

Note that max
�>0

h(�) < +∞, since q > 2.

Hence, Proposition 1.1 in the Introduction is an immediate consequence of Theorem
3.1 taking into account Section 2. Moreover, we also point out that, in Theorem 1.1,
due to the presence of the parameter λ, contrary to [8, Theorem 3.1], no conditions
at zero on the nonlinear term f are requested.

In conclusion, we present a direct application of the main result.

Example 4.3. Let D be a smooth and bounded domain of a Carnot group G with
dimhG = 3. Then, owing to Theorem 3.1, there exists an open interval Λ ⊂ (0,+∞)
such that, for every λ ∈ Λ, the following problem{

−ΔGu = λ(1 + u3) in D
u|∂D = 0,

admits at least two distinct and nontrivial weak solutions in S1
0(D). Note that in

our setting, condition (1) is clearly not verified.
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