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ABSTRACT. We suggest a measure of “Eulerianness” of a finite directed graph
and define a class of “coEulerian” graphs. These are the graphs whose Lapla-
cian lattice is as large as possible. As an application, we address a question in
chip-firing posed by Bjorner, Lovasz, and Shor in 1991, who asked for “a char-
acterization of those digraphs and initial chip configurations that guarantee
finite termination.” Bjorner and Lovész gave an exponential time algorithm
in 1992. We show that this can be improved to linear time if the graph is
coEulerian, and that the problem is NP-complete for general directed multi-
graphs.

1. INTRODUCTION

In this paper G = (V, E) will always denote a finite directed graph, with loops
and multiple edges permitted. We assume throughout that G is strongly connected:
for each v,w € V there are directed paths from v to w and from w to v. Trung
Van Pham [22] introduced the quantity

Mg = ged{k(v)|v € V},

where k(v) is the number of spanning trees of G oriented toward v. We will see
that Mg, which we will call the Pham index of the graph G, can be interpreted
as a measure of “Eulerianness”.

A finite directed multigraph G is called Eulerian if it has an Eulerian tour (a
closed path that traverses each directed edge exactly once). We are going to take
the view that Eulerianness is an algebraic property of the graph Laplacian A
acting on integer-valued functions f € Z" by

(1) Af()=dyf(v) = > ftail(e)).

head(e)=v

Here d, is the outdegree of vertex v. The context is the following well-known
equivalence, where 1 denotes the constant function 1(v) =1 for all v € V.
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Proposition 1.1. The following are equivalent for a strongly connected directed
multigraph G = (V, E):

(1) ker(A:ZYV - ZV) = 7Z1.

(2) Mg =k(s) forallseV.

(3) G is Eulerian.

Our main result, Theorem [[.2] is in some sense dual to Proposition [[LI} it
gives several equivalent characterizations of the graphs with Pham index 1. These
coEulerian graphs are the farthest from being Eulerian.

Our motivation for considering coEulerian graphs and the Pham index comes
from chip-firing, which we now describe. A chip configuration on G, or simply
configuration for short, is a function ¢ : V' — Z. If o(v) > 0 we think of a pile
of o(v) chips at vertex v, and if o(v) < 0 we think of a hole waiting to be filled
by chips. Denoting by d, the outdegree of vertex v, we say that v is stable for o
if o(v) < d,, and active for o otherwise. A vertex v can fire by sending one chip
along each outgoing edge, resulting in the new configuration

o' =0 — Ad,,

where A is the graph Laplacian (Il and d,(w) is 1 if v = w and 0 otherwise.
Concretely, we may think of o,0’ as column vectors and Ad, as a column of the

matrix
A —duyp, v # w,
vw T
dv - dvv7 v=w,

where d,,, denotes the number of directed edges of G from w to v. More generally,
we can specify a firing vector x € NV and fire each vertex v a total of x(v) times,
resulting in the configuration ¢/ = ¢ — Ax. Here and throughout, N ={0,1,2,...}.

A legal firing sequence is a finite sequence of configurations og, ..., o such
that each o; for i = 1,...,k is obtained from o;_1 by firing a vertex that is active
for o;_1. A configuration o is called stable if o(v) < d,, for all v € V. We say that
o stabilizes if there is a legal firing sequence o = oy, . .., 0} such that oy is stable.
Bjorner, Lovész, and Shor posed the following problem in 1991 [6].

THE HALTING PROBLEM FOR CHIP-FIRING:

Given the adjacency matrix of a finite, strongly connected multigraph
G and a chip configuration ¢ on G with o > 0,

Decide whether o stabilizes.

Write o] = > ¢y o(v) for the total number of chips. This quantity is conserved
by firing (since |Ad,| = 0 for all v € V). The maximal stable configuration

Omax (V) =dy, — 1

has |omax| = #F — #V. By the pigeonhole principle, any configuration o with
lo| > #E — #V has at least one unstable vertex, so such o does not stabilize. A
natural question arises: Which directed graphs have the property that every chip
configuration of #F — #V chips stabilizes? These graphs are the subject of our
main result.

We write Z for the set of o € ZV such that |o| = 0.
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Theorem 1.2. The following are equivalent for a strongly connected directed multi-
graph G = (V, E):

(1) Im(A:ZY - ZV)=17}.

(2) Mg =1.

(3) A chip configuration o on G stabilizes if and only if |o| < #FE — #V.

(4) For all s € V, the sandpile group K (G, s) is cyclic with generator Bs.

(5) For some s € V, the sandpile group K(G,s) is cyclic with generator fs.

Items (1) and (2) are in some sense dual to their counterparts in Proposition [[1]
so we propose the term coEulerian for a graph satisfying the equivalent conditions
of Theorem [[2} The sandpile group K (G, s) and S, are defined below in Section 21
For a dual counterpart to item (4), see Proposition [Z12](4).

3 3 3
80
V\_/

2 2 2

FiGure 1. Example of a coEulerian graph: a path of length n
with edge multiplicities 2 to the right and 3 to the left. It has
k(v) = m(v) = 2¥3"7? spanning trees oriented toward v, so its
Pham index is Mg = ged(27,27713,...,3") = 1.

1.1. History. Let us call a graph bidirected if it is obtained from an undirected
graph by replacing each undirected edge {u,v} by a pair of directed edges (u,v)
and (v,u). All bidirected graphs are Eulerian.

One of the earliest results in chip-firing is the following observation of Tardos.

Lemma 1.3 (|26l Lemma 4]). Let o be a configuration on a bidirected graph G. If
there is a legal firing sequence for o in which every verter of G fires at least once,
then o does not stabilize.

Tardos used Lemma to prove that for any configuration ¢ on a simple bidi-
rected n-vertex graph, if o stabilizes, then it does so in O(n*) firings. Eriksson
showed, however, that on a general directed graph a configuration may require an
exponential number of firings to stabilize [I3]. Bjorner and Lovész [5] generalized
the “at least once” condition of Lemma [[3] to directed graphs as follows. (An
integer vector is called primitive if the greatest common divisor of its coordinates
is 1).

Lemma 1.4 ([5]). For every strongly connected multigraph G there is a unique
primitive 7 € NV such that Am = 0. If there is a legal firing sequence for o in
which every vertex v fires at least w(v) times, then o does not stabilize.

This gives a procedure for deciding the HATLTING PROBLEM FOR CHIP-FIRINGI
perform legal firings in any order until either you reach a stable configuration or
the criterion of Lemma [[4] certifies that o will not stabilize. There is only one
problem: the values m(v) may be exponentially large. Figure [[l shows a coEulerian
graph on vertex set {0, 1,...,n} with m(v) = 23", The algorithm just described
would run for exponential time on this graph, but Theorem gives a much faster
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algorithm to decide the halting problem for chip-firing on any coEulerian graph:
count the total number of chips and compare to #FE — #V . As far as we are aware,
this is the first progress on the halting problem for chip-firing on directed graphs
since the work of Bjérner and Lovész [5].

1.2. Related work. Pham [22] introduced the index Mg to answer a question
posed in [I7]: Which directed graphs G have the property that all unicycles of G
lie in the same orbit of the rotor-router operation? He showed that G has this
property if and only if Mg = 1, and that in general the number of orbits is M¢.

The [HALTING PROBLEM FOR_CHIP-FIRING is a special case of the halting prob-
lem for a class of automata networks called abelian networks. A polynomial time
algorithm to decide if a given abelian network halts on all inputs appears in [§],
where it is remarked that the problem of deciding whether a given abelian net-
work halts on a given input is a subtler problem. The HALTING PROBLEM FOR
CHIP-FIRING is of this latter type (the “input” to the abelian network is the chip
configuration o).

1.3. Outline. The next section is devoted to the proofs of Proposition [[.I] and
Theorem [[12] and concludes with Proposition [Z.13] characterizing the graphs that
are both Eulerian and coEulerian. In Section Bl we show that despite its being easy
for Eulerian graphs and coEulerian multigraphs, the HALTING PROBLEM FOR CHIP-
FIRING on finite directed multigraphs is NP-complete in general. One ingredient in
the proof is Theorem Bl which expresses an arbitrary (n — 1)-dimensional lattice
in Z{ as the Laplacian lattice of a strongly connected multigraph.

2. SANDPILES AND THE HALTING PROBLEM

To prove Theorem [[.2 we will compare chip-firing with and without a sink vertex.
This kind of comparison appears also in the study of the abelian sandpile threshold
state [19], and in the extension of the Biggs-Merino polynomial to Eulerian graphs
[21] and to all strongly connected graphs [I0]. Sections [Z1] and review the
relevant background on chip-firing and the sandpile group. In Section 223 we relate
the sandpile groups with and without sink, and in Section [2.4] we prove the results
stated in the introduction.

2.1. Background. The following result frees us from considering only legal firing
sequences in looking for an answer to the halting problem for chip-firing.

Lemma 2.1 (Least Action Principle, [7, Lemma 4.3]). Let o be a chip configuration
on a finite directed graph. Then o stabilizes if and only if there exists an x € NV
such that o — Ax is stable.

A sizable portion of the ground soon to be covered is motivated by the following
principle: in looking for a stabilizing firing sequence, instead of firing willy-nilly
we can establish some structure by designating a special vertex s as the sink,
which fires only if no other vertex is active. We fire active, nonsink vertices until all
nonsink vertices are stable. At this point if the sink is stable we are done; otherwise,
we fire the sink (once) and repeat.

The reduced Laplacian A; is the matrix obtained by deleting the row and
column of A corresponding to the sink s. To emphasize the distinction between A
and Ag, we will sometimes refer to A as the total Laplacian. In what follows we
will sometimes identify the vertex set V with {1,...,n} and set s = n.
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Definition 2.2. Let G = (V, F) be a finite strongly connected multigraph and fix
s € V. The sandpile group of G with sink s is the group quotient

K(G,s)=2""*/A 2",
where A,Z" ! is the integer column-span of Aj.

A sandpile is a chip configuration n € Z"~! indexed by the nonsink vertices.
When we wish to emphasize that a chip configuration is defined also at the sink, we
call it a total configuration. One can imagine that a sandpile is composed of sand
grains which behave just like chips except that they are small enough to disappear
down the sink. The definitions “stable” and “firing vector” have obvious analogues
for sandpiles: a sandpile 7 is stable if n(i) < d; for all v; # s; and firing vectors
for sandpiles live in Z"~!. The sandpile group treats two sandpiles as equivalent if
one can be obtained from the other by firing nonsink vertices. We write 77 for the
equivalence class of 1 in K(G, s).

On a strongly connected graph, every sandpile stabilizes, and its stabilization
does not depend on the order of firings [I7, Lemmas 2.2 and 2.4]; we denote the
stabilization of 1 by n°. Next we recall the connection between sandpiles and
spanning trees.

Definition 2.3. An oriented spanning tree of a directed graph G = (V, E)
rooted at s € V is a spanning subgraph T' = (V, A) such that

(1) Every vertex v # s has outdegree 1 in T
(2) s has outdegree 0 in T
(3) T has no oriented cycles.

Hence an oriented spanning tree has as its limbs edges that point toward the root.
Let k(s) denote the number of oriented spanning trees in G rooted at s.

Theorem 2.4 (Matrix tree theorem [25, Theorem 5.6.8] and [I7, Lemma 2.8]).
For a finite strongly connected multigraph G and a vertex s,

k(s) =det Ay = #K(G, s).

Note that if G is strongly connected, then it has at least one spanning tree rooted
at s, so Ay is invertible; since the rows of A sum to 0, this implies that A has rank
n— 1.

There is a natural representative for each equivalence class of K(G,s). To de-
scribe this representative, we say that a sandpile 7 is accessible if from any other
sandpile it is possible to obtain 7 by adding a nonnegative number of sand grains
at each vertex and then selectively firing active vertices. A sandpile that is both
stable and accessible is called recurrent.

Theorem 2.5 ([I7, Cor. 2.16]). The set Rec(G, s) of all recurrent sandpiles is an
abelian group under the operation
@& = n+8)°

and it is isomorphic via the inclusion map to the sandpile group K(G,s).

The recurrent identity element e, € Rec(G, s) is the unique recurrent sand-
pile in A,Z"~1. The recurrent representative .. of a sandpile 1 can be found by
adding the identity and stabilizing:

Threc = (77 + es)o-
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Dhar’s burning test [I1] determines whether a given sandpile on an Eulerian graph
is recurrent. Speer [24] generalized the burning test to directed graphs. Dhar’s and
Speer’s tests are closely related to Lemmas [[.3] and [[.4] respectively.

2.2. Cyclic subgroups of the sandpile group. For s,v € V let S5(v) = dsy, the
number of directed edges from s to v. In accordance with our principle of controlled
sink firing, given a recurrent sandpile 1 we are interested in

Cp,={(n+kBs)° : k € N},

the set of sandpiles obtainable from 7 by firing the sink s some nonnegative number
of times and then stabilizing. Note that starting with a recurrent sandpile, adding
sand grains to the nonsink vertices and then stabilizing results in another recurrent
sandpile; so all sandpiles in C), are recurrent. Note that

(77'1'65)0:(77"'@3"'/85)0:77@75’

where v5 = (es + B5)° is the recurrent representative of 8. It follows that

C’O:n@<75>a

where (7,) denotes the cyclic subgroup of Rec(G, s) generated by ;.
To investigate these cosets of (vs), we recall the period vector introduced by
Bjorner and Lovasz.

Definition 2.6 ([5]). Given a graph G with total Laplacian A, a vector p € N™ is
called a period vector for GG if p # 0 and Ap = 0. A period vector is primitive
if the greatest common divisor of its entries is 1.

In other words, a period vector p has the property that firing each vertex v € V
a total of p(v) times results in no net movement of chips. The following lemma
sums up some useful properties of period vectors.

Lemma 2.7 ([5, Prop. 4.1]). A strongly connected multigraph G has a unique
primitive period vector wg. All entries of mg are strictly positive and all period
vectors of G are of the form kng for k=1,2,.... Moreover, if G is Eulerian, then
mq = 1.

A consequence of the strict positivity of ¢ that we will use several times is that
AZ™ = AN™.

We now introduce a very special period vector. Recall that x(v) denotes the
number of spanning trees of G oriented toward v.

Lemma 2.8 ([1,9]). Ax = 0.

Recall the Pham index M = Mg, defined as the greatest common divisor of
the spanning tree counts {(v)|v € V}. By LemmasZ7land 28] the vector 7 = 1=k
is the unique primitive period vector of G.

Next we argue that w(s) = ord(vs), the order of 7, in the group Rec(G, s).
Fixing a positive integer m, we have that mg, is trivial in K(G,s) if and only if
there exists y € Z"~! such that mj3, = A,y. Setting x = (y,0) € Z" and noting
that S is the restriction of —Ad to the nonsink vertices, such y exists if and only
if there is a vector x € Z™ such that x(s) = 0 and A(x + mds) = 0. (The equality

in the sink coordinate of the first equation follows from the equality in the nonsink
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coordinates because the sum of all the coordinates is 0.) Setting p = x+mJds, such
x exists if and only if there is a vector p € Z™ such that

Ap=0 and p(s) =m.

By Lemma 2.8 since the kernel of A is one-dimensional and m is positive, such p
must be a positive integer multiple of the primitive period vector . Such p exists
if and only if 7(s) divides m. Thus 7(s) is the order of 8, in K(G,s), which by
Theorem is the order of s in Rec(G, s). Recalling that w(s) = k(s)/M, we
conclude the following.

Lemma 2.9 ([22] Lemma 5]). For any choice of sink s, we have that
ord(s) = k(s)/M = # Rec(G, s)/M.
Thus, M = # Rec(G, s)/ (s) is the number of distinct cosets of (vys) in Rec(G, s).

2.3. Comparison of sandpile groups with and without sink. We now inves-
tigate the structure of the quotient group Rec(G,s)/ (vs). Recall that S is the
sandpile Bs(v) = dg,, where s is the designated sink vertex, and that B, is the
equivalence class of s in K(G,s). As before we write Zj for the group of vectors
in Z™ with coordinates summing to 0.

Theorem 2.10. For any strongly connected multigraph G and any vertez s,
Rec(G, )/ (1s) = K(G,s)/ (Bs) = Zy | AL".

The meat of the proof for this theorem is packaged in the following workhorse
lemma. To translate between sandpiles and total configurations, we introduce some
notation: Given a vector x € Z", we denote by X the restriction of x to the nonsink
vertices; and given 1 € Z"~!, we write 7 for the extension of n to Z" such that
el = k.

Lemma 2.11. Let 0,7 € Z™ with |o| = |7|. Then the following are equivalent:
(1) o =7 mod AZ",
(2) 6 =7 mod AZ"* + 7,
(3) (G4es) €(T+es)” ®(vs)-

Proof. (1 <= 2) Assume (1), and let m = |o| = |7|. Recall that o), denotes the
extension of o to Z™ such that |o;| = k. We observe that (1) holds if and only if
there is an x € Z™ such that 0 = 7 — Ax. If 0 = 7 — Ax, then

3 B % 0o ] A%
0'—T—AX—T—A|: 0 ] -A { x(s) } =7— [ N } — x(8)cs,
where c; denotes the column of A corresponding with the sink and a is the dot
product of the nth row of A with (%,0). Since fs(i) = —c4(i) for each i # s,
it follows that 6 = 7 — A% + x(s)8s. Going the other way, we assume that
& =7—kBs — A% for some k € Nand x € N1, Let ¢/ be the total configuration

od=71-A [ z } .
Then o/(i) = &(4) for all i # s and |¢’| = |7|. Since o(s) is determined by |o| and
|o| = ||, we have that ¢/ = 0.
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(2 <= 3) Note that (3) is equivalent to the existence of an x such that
(6 +e)° = (F+es)” +x(s) (Bs +e5)” — A%,
which in turn is equivalent to the congruence 6 = 7 mod AZ" 1 4+ 7.8, O
Proof of Theorem 210 Define a map ¢ : K(G,s)/ (Bs) — Z§/AZ" sending
7 mod <E> — 1o mod AZ".

Let n,§ € Z"'. If 7 = £ mod (f;), then by Lemma [ZIIl we have that ny =
& mod AZ™, so that ¢ is well defined. The equation n9+&y = (1 + &), is immediate
from the definition, so that ¢ is a homomorphism. The map ¢ is also surjective,
since for each o € Z? there is a corresponding ¢ € Z" !, and ¢ (5 mod <E>) =
o mod AZ™. We now show that ¢ is injective to complete the proof that ¢ is an
isomorphism. Suppose that 0 = 7 mod AZ™. Then by Lemma 211l we have that
& =7 mod <E> and the theorem is proved. O

2.4. Eulerian and CoEulerian graphs. We now prove the two results stated
in the introduction. We also supplement Proposition [ with three equivalent
conditions about the sandpile group.

Proposition 2.12. The following are equivalent for a strongly connected directed
multigraph G = (V, E):
(1) ker(A:ZYV — ZV) = 71.
(2) Mg =k(s) forallseV.
(3) G is Eulerian.
(4) For all s € V, the element By is trivial in the sandpile group K (G, s).
(5) K(G,s) ZV/AZV forallse V.
(6) K(G,s) 2 K(G,s') forall s,s' € V.

Proof. (1 <= 3) We have Al = 0 if and only if the indegree of each vertex
equals its outdegree. By [25, Theorem 5.6.1], for G strongly connected this degree
condition is equivalent to the existence of an Eulerian tour.

(1 = 4) By definition, j; is the restriction of Ad, to the nonsink coordinates.
If A1 =0, then —Ads = A3, 4, 00), 50 Bs = As (D2, 0v) € A7

(4 = 5) This follows directly from Theorem 2T0l

(5 = 6) Trivial.

(6 = 2) If K(G,s) = K(G,s), then equating orders yields x(s) = s(s’). If
this holds for all vertices s and s, then Mg := ged{k(v)|v € V} = k(s) for all
seV.

(2 = 1) If all coordinates of x are equal, then A1 = 0 by Lemma [Z8 O

3
4
5
6

In particular, the sandpile group K (G, s) is independent of the choice of sink if
and only if G is Eulerian (the “if” direction is well known [I7, Lemma 4.12]).

Proof of Theorem L2l (3 = 4) We prove the contrapositive. Assume there
is a sink s such that K(G,s) # (B,), and fix the number of chips on G to be
m = #FE — #V. Our assumption implies that there are two distinct cosets Cy
and Cy of (vs) such that 6. € Cy. Choosing an n € Cs, we remark that 7,
stabilizes if and only if 7, = omax mod AZ"™ (since opax is the only stable total
configuration with m chips). By Lemma 211 this congruence holds if and only if
7 € Tmax ® (7s) = C1, so we see that 7, does not stabilize.
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(4 = 5) Trivial.

(5 = 3) Let o be a total configuration with |o] < #E — #V. We first write
o = 7—0 for some 7,8 € Z™ where |7| = #E—#V and § > 0. Now if <E> = K(G,s)
for some vertex s, then 7 = Gpax mod AGZ" 1 + ZB, so that T = opnax mod AZ®
by Lemma 211l It follows that ¢ = 0.« — 6 mod AZ". Using that AZ"™ = AN",
we conclude from Lemma 2.1 that o stabilizes.

(1 <= 5) This equivalence follows from Theorem 210

(2 <= 5) This equivalence follows from Lemma O

2.5. Graphs that are both Eulerian and coEulerian. We conclude this section
by characterizing the graphs that are both Eulerian and coEulerian. A strongly
connected graph G without loops is called a directed cactus [23|[28] if each edge
of G is contained in a unique simple directed cycle. Let us call this the “unique
cycle property” (UCP). As the proof of the next proposition will show, the UCP is
equivalent to the following “unique path property” (UPP): For any pair of vertices
x,y € V there is a unique simple directed path in G from x to y. (A simple cycle
or path is one with no repeated vertices; in particular, a 2-cycle consisting of an
edge and its reversal is simple.)

Directed cacti are in some sense analogous to trees. In particular, a bidirected
graph has the UCP if and only if it is a bidirected tree.

Proposition 2.13. Let G be a strongly connected finite graph without loops. Then
G is both Eulerian and coFulerian if and only if G is a directed cactus.

Proof. Supposing that G is both Eulerian and coEulerian, we have k(y) = 1 for
all y € V. By Wilson’s algorithm [27], any oriented spanning forest, one of whose
components is oriented toward y, can be completed to a spanning tree oriented
toward y. Given z,y € V and a simple path P from x to y, completing P in this
manner results in the unique spanning tree 7y oriented toward y. Therefore all
simple paths from z to y are contained in T, so G has the UPP.

Next observe that for each directed edge e = (y, z) there is a bijection between
simple directed paths P from z to y and simple directed cycles P U {e} containing
e. Hence the UPP implies the UCP.

Finally, supposing that G has the UCP, we will compete the proof by showing
that for each vertex y there is a unique spanning tree of G oriented toward y, so
that G is both Eulerian and coEulerian. Let C be the set of simple directed cycles
in G, and consider the undirected bipartite graph T on vertex set V U € whose
edges are the pairs {v, C'} such that vertex v lies on cycle C. The UCP implies
that T is a tree. Now we can manifestly describe the unique spanning tree of G
oriented toward y. Namely, for each cycle C let ec be the outgoing edge from
x in C, where (C,z,...,y) is the unique path from C to y in J. The remaining
edges F — {ec|C € €} form a spanning tree of G oriented toward y. Moreover
any such spanning tree 7" must contain all edges of G of the form (z,z’), where
(C,z,C’, ... y) is the path from any cycle C to y in T and a2’ € C’; otherwise there
would be no path from z to y in T. By the UCP, edges ec and (z,2’) are distinct
since they belong to distinct cycles. Therefore T" must omit all of the edges e, and
hence T is unique. ([l
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3. COMPUTATIONAL COMPLEXITY

Bjorner and Lovész [5, Corollary 4.9] showed that the HALTING PROBLEM FOR
CHIP-FIRING can be decided in polynomial time for simple Eulerian graphs. By
Theorem [[2] it can be decided in linear time for coEulerian multigraphs. The
purpose of this section is to show that despite these two easy cases, the problem is
NP-complete for general directed multigraphs.

To see that it is in NP, let o be a nonnegative halting chip configuration on a
strongly connected directed multigraph G = (V, E), and let x(v) be the number of
times vertex v fires. By Lemma 2] the vector x is a certificate that o halts. Why
does this certificate have polynomial size? By Lemma [[L4] we have x(v) < w(v) for
some vertex v. Moreover for any directed edge (u1, us) the vertex us receives at least
x(uq) chips from uq, and so us fires at least x(u1)/d,, times. For any vertex u, by
inducting along a path from u to v we find that x(u) < Dx(v), where D =[], oy, dw
is the product of all outdegrees. By Lemmas 2.7 and 2.8 relating the primitive
period vector 7 to the spanning tree count vector x, we have m(v) < k(v) < D,
so all entries of x are at most D?. Noting that log D < Zu,vEV log dy,», which
is the size of description of the adjacency matrix, we conclude that THE HALTING
PROBLEM FOR CHIP-FIRING is in NP.

To show that it is also NP-hard, our starting point is the following decision
problem considered by Amini and Manjunath [2)]:

NONNEGATIVE RANK:

Given a basis of an (n — 1)-dimensional lattice L C Z{ and a vector
ez,
Decide whether there is a vector 7 € N™ such that o — 7 € L.

If there exists such a 7, then o is said to have nonnegative rank relative to L. In
[2, Theorem 7.2] NONNEGATIVE RANK is shown to be NP-hard by reducing from
the problem of deciding whether a given simplex with rational vertices contains
an integer point. (To give a little context, the term “rank” is inspired by the
Riemann-Roch theorem of Baker and Norine [4]. Asadi and Backman [3] extend
parts of the Baker-Norine theory to directed graphs. Kiss and Téthmérész [18] show
that computing the Baker-Norine rank—a harder problem than deciding whether
it is nonnegative—is already NP-hard when L is the Laplacian lattice of a simple
undirected graph.)

The link between chip-firing and NONNEGATIVE RANK is provided by the follow-
ing variant of a theorem of Perkinson, Perlman and Wilmes [20].

Theorem 3.1. Given an (n—1)-dimensional lattice L C Z, there exists a strongly
connected multigraph with Laplacian A such that

L =AZ".

Moreover, A can be computed from a basis of L in polynomial time, and all entries
of A are bounded in absolute value by nd, where d = det L.

The inspiration for Theorem [B1]is [20, Theorem 4.11], which expresses an arbi-
trary (n — 1)-dimensional lattice in Z" ™! as a reduced Laplacian lattice A Z" 1.
Modifying its proof to express L C Z{ as a total Laplacian lattice is straightforward;
we give the details below.
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In our application it will be essential to compute the Laplacian matrix A from
a basis of L in polynomial time (in the length of the description of the basis). It is
not evident whether [20, Algorithm 4.12] runs in polynomial time, due to a possible
blow up of the matrix entries in repeated applications of the Euclidean algorithm
[T4,15]. As detailed below, this numerical blow up can be avoided by the usual
trick of computing modulo the determinant d.

To see how we will apply Theorem B.Il note that strong connectivity implies

AZ"™ = AN"
since the period vector of Lemma 2.7 is strictly positive. Thus, a vector o € Z™ has
nonnegative rank relative to L = AZ" if and only if there exists x € N” such that

o+ Ax>0.

Now by Lemma 2.1l such an x exists if and only if the chip configuration o, — o
stabilizes. To summarize, a polynomial time computation of A given a basis for L
yields a polynomial time Karp reduction from NONNEGATIVE RANK to the HALTING
PROBLEM FOR CHIP-FIRING on a finite directed multigraph, showing that the latter
is NP-hard.

Corollary 3.2. THE HALTING PROBLEM FOR CHIP-FIRING is NP-complete.

It remains to prove Theorem Bl Recall that an m x m integer matrix U is
called unimodular if det U = +1. Any nonsingular square integer matrix A has a
Hermite normal form

H = AU,
where U is a unimodular integer matrix, and H = (h;;) is lower-triangular with
integer entries satisfying

Oghij<hii, 1§j<%§m

The existence and uniqueness of H was proved by Hermite [I6]. The Hermite
normal form is useful to us because H can be computed from A in polynomial time
[12] and HZ™ = A(UZ™) = AZ™ by the unimodularity of U. Let

d=|det A| = det H = [ ] has-
i=1
We will use the following observations about the column span AZ™.

Lemma 3.3 ([12) Cor. 2.3]). Let B be a lower triangular m X m matriz whose
columns are in AZ™ and whose diagonal entries satisfy b;; = hy; for all i. Then
BZ™ = AZ™.

Lemma 3.4 ([12] Prop. 2.5]). dZ™ C AZ™.

We will apply these lemmas with m = n — 1. Note that an n X n integer matrix
is the total Laplacian of a directed multigraph if and only if (i) the entries of
each column sum to zero, (ii) the diagonal entries are nonnegative, and (iii) the
off-diagonal entries are nonpositive.

Given an n x (n — 1) integer matrix whose columns are a Z-basis of the (n — 1)-
dimensional lattice L C Zg, let A be the result of removing the last row of M. Since
each column of M sums to zero, A is nonsingular. Let H = AU be the Hermite
normal form of the (n — 1) x (n — 1) nonsingular matrix A.
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The hypotheses of Lemma [B.3] are trivially satisfied when B = H; and if B
satisfies the hypotheses of Lemma [3.3] then by Lemma [3.4] it will continue to do
so if we subtract d from an entry below the diagonal. Using this operation we can
make the entries immediately below the diagonal sufficiently negative so that the
sum of the entries in each column is nonpositive. Namely, let B = (b;;), where

ij =

) _{hij—kjd, i=j+1,

hij, else
and k; for each j = 1,...,n — 2 is a nonnegative integer such that
m
(2) (kj — 1)d < Zh” < k]d
i=1
Now let
[ +d —h11 0 0 0 0
0 + —haoo 0 0 0
0 - + —hss 0 0
A 0 - - + —hy 0
0 - - - - B _hmm
L —d - - - - +hmm _

be the n x n matrix with upper right corner —B, the column vector de; — de,
appended on the left, and a row appended on the bottom such that the entries of
each column sum to zero. By the choice of k; in (@), the bottom row of A is non-
positive, except for its rightmost entry h,,.,. Therefore A satisfies the conditions
(i)-(ili) above. Since the entries immediately above the diagonal of A are nega-
tive, as is A1, the matrix A is the Laplacian of a strongly connected multigraph
(it has the Hamiltonian cycle 1 - n - n—-1 — --- — 1). By Lemma [34] the
first column of A belongs to L. Moreover, since both L and AZ"™ are contained
in Z2 and BZ"~! = AZ"~!, the integer span of the remaining columns of A is L.
Thus L = AZ". Since each entry of H is at most d = [] hs;, each entry of A has
magnitude at most nd, completing the proof of Theorem [3.1}

3.1. Simple directed graphs. Let us point out a sense in which the NP-hardness
of CorollaryB.2lis rather weak: the directed graphs for which the HALTING PROBLEM
FOR CHIP-FIRING is hard may have large edge multiplicities. This is because the
Laplacian A of Theorem 3.1l may have large entries, which in turn is because the
lattice L in a hard instance of NONNEGATIVE RANK has large determinant. An
interesting question is whether the HALTING PROBLEM FOR CHIP-FIRING remains
NP-hard when restricted to simple directed graphs, those with edge multiplicities in
{0,1}. Does the hardness arise from directedness or from large edge multiplicities
(or both)? The following table summarizes what is known.
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TABLE 1. Complexity of the HALTING PROBLEM FOR CHIP-FIRING
for eight different classes of strongly connected directed graphs.

simple graphs multigraphs
coFEulerian P (Theorem [[.2)) P (Theorem [[.2))
bidirected P (Tardos [26]) ?
Eulerian P (Bjorner-Lovész [B]) | ?
strongly connected | ? NP-complete (Cor. [3.2)
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