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POSITIVE DEFINITE MATRICES AND THE S-DIVERGENCE

SUVRIT SRA

(Communicated by Jeremy Tyson)

Abstract. Hermitian positive definite (hpd) matrices form a self-dual convex
cone whose interior is a Riemannian manifold of nonpositive curvature. The
manifold view comes with a natural distance function but the conic view does
not. Thus, drawing motivation from convex optimization we introduce the
S-divergence, a distance-like function on the cone of hpd matrices. We study
basic properties of the S-divergence and explore its connections to the Rie-
mannian distance. In particular, we show that (i) its square-root is a distance,
and (ii) it exhibits numerous nonpositive-curvature-like properties.

1. Introduction

Hermitian positive definite (hpd) matrices form a manifold of nonpositive cur-
vature [11, Ch.10], [6, Ch.6]. Their closure forms a self-dual convex cone central to
modern convex optimization [10, 21] and numerous other areas [6]. But unlike the
hpd manifold, the hpd cone does not come with a “natural” distance function.

Drawing motivation from convex optimization, we introduce a distance-like func-
tion on hpd matrices, which we name the S-divergence. We prove several results
that uncover properties of this divergence, of which our main result is that its
square-root is actually a true distance. Our other results explore geometric and
analytic similarities between the S-divergence and the Riemannian distance.

1.1. Setup. Let Hn be the set of n × n Hermitian matrices. A matrix A ∈ Hn is
called positive definite if

(1.1) 〈x, Ax〉 > 0 for all x �= 0, also written as A > 0.

We say A is positive semidefinite if 〈x, Ax〉 ≥ 0 for all x, and write A ≥ 0. For
A,B ∈ Hn, the inequality A ≥ B means A − B ≥ 0. The set of positive definite
(henceforth positive) matrices in Hn is denoted by Pn. The Frobenius norm of

a matrix X is ‖X‖F :=
√

tr(X∗X), while ‖X‖ denotes the operator norm. If
f : R → R and A has the eigendecomposition A = UΛU∗ with unitary U , we define
f(A) = Uf(Λ)U∗, where f(Λ) is the diagonal matrix Diag[f(Λ11), . . . , f(Λnn)].

The set Pn is a differentiable Riemannian manifold, with the Riemannian metric
given by the differential form ds = ‖A−1/2dAA−1/2‖F. This metric induces the
Riemannian distance (see, e.g., [6, Ch. 6]):

(1.2) δR(X,Y ) := ‖log(Y −1/2XY −1/2)‖F for X,Y > 0.
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The set Pn is an (open) convex cone, on which we can define the following distance-
like function, namely, the S-divergence:1

(1.3) δ2S(X,Y ) := log det
(
X+Y

2

)
− 1

2 log det(XY ) for X,Y > 0.

This divergence complements (1.2), and it was originally proposed as a numerical
alternative to (1.2) in [14]. There it was used in an application to image-search,
primarily due to its computational and empirical benefits; this initial success of the
S-divergence is what motivated our theoretical study in this paper.

Main contributions. The present paper goes substantially beyond our initial confer-
ence version [23]. The main additions are: (i) Theorems 4.1, 4.5, 4.6, 4.7, and 4.9,
which establish several new geometric and analytic similarities between δS and δR;
(ii) the joint geodesic convexity of δ2S (Proposition 4.3, Theorem 4.4); and (iii) new
“conic” contraction results for δS and δR that uncover properties akin to those
exhibited by Hilbert’s projective metric and Thompson’s part metric [20] (Propo-
sition 4.11, Corollary 4.12, Theorem 4.14, Theorem 4.15, and Corollary 4.16).

Concurrent to our work, Chebbi and Moakher (CM) [12] have considered a family
of divergences that parametrically generalize (1.3). CM actually proved δS to be a
distance, though only for commuting matrices; we remove this restriction to tackle
both the commuting and noncommuting cases. A question closely related to δS
being a distance is whether the matrix [det(Xi+Xj)

−β]mi,j=1 is positive semidefinite
for arbitrary X1, . . . , Xm ∈ Pn, every integer m ≥ 1, and any scalar β ≥ 0. We
provide a complete characterization of necessary and sufficient conditions on β for
the above matrix to be semidefinite by relating the question to a deeper result of
Gindikin on symmetric spaces [17].

2. The S-divergence

Consider a differentiable strictly convex function f : R → R; then, f(x) ≥
f(y) + f ′(y)(x− y), with equality if and only if x = y. The difference between the
two sides of this inequality is called a Bregman divergence:2

(2.1) Df (x, y) := f(x)− f(y)− f ′(y)(x− y).

The scalar divergence (2.1) readily extends to Hermitian matrices. Specifically, let
f be differentiable and strictly convex on R, and let X,Y ∈ Hn be arbitrary. Then,
the Bregman (matrix) divergence may be defined as

(2.2) Df (X,Y ) := tr f(X)− tr f(Y )− tr
(
f ′(Y )(X − Y )

)
.

It can be verified that Df is nonnegative, strictly convex in X, and zero if and
only if X = Y ; it is typically asymmetric. For example, if f(x) = 1

2x
2, then

for X ∈ Hn, tr f(X) = 1
2 tr(X

2) and (2.2) becomes 1
2‖X − Y ‖2F, but if f(x) =

x log x − x on (0,∞), then tr f(X) = tr(X logX − X) and (2.2) becomes the
von Neumann divergence Dvn(X,Y ) = tr(X logX − X log Y − X + Y ) (which
is clearly asymmetric).

1Called a divergence because although nonnegative, definite, and symmetric, it is not a
distance.

2Over vectors, these divergences have been well studied; see, e.g., [2]. Although not distances,
they often behave like squared distances, in a sense that can be made precise for certain f [13].
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The asymmetry of Bregman divergences can be sometimes undesirable. There-
fore, researchers have also considered symmetric divergences, among which perhaps
the most popular is the Jensen-Shannon/Bregman divergence:

(2.3) Sf (X,Y ) := 1
2

(
Df (X, X+Y

2 ) +Df (Y,
X+Y

2 )
)
.

Divergence (2.3) may also be written in the more revealing form:

Sf (X,Y ) = 1
2

(
tr f(X) + tr f(Y )

)
− tr f

(
X+Y

2

)
.(2.4)

The S-divergence (1.3) can be obtained from (2.4) by setting f(x) = − log x, so
that tr f(X) = − log det(X), the venerable barrier function for the hpd cone [21].
The S-divergence may also be viewed as the Jensen-Bregman divergence between
two multivariate gaussians [15], or as the Bhattacharyya distance between them [8].

The following basic properties of S are easily verified.

Proposition 2.1. Let λ(X) be the vector of eigenvalues of X, and Eig(X) the
diagonal matrix formed from λ(X); let A,B,C ∈ Pn. Then,

(i) δS(I, A) = δS(I,Eig(A));
(ii) δS(A,B) = δS(P

∗AP,P ∗BP ), where P ∈ GLn(C);
(iii) δS(A,B) = δS(A

−1, B−1);
(iv) δ2S(A⊗B,A⊗ C) = nδ2S(B,C).

3. The δS distance

This section presents our main result: the square-root δS of the S-divergence is
a distance. Previous authors [12, 14] independently conjectured this result, and
appealed to classical ideas from harmonic analysis [3, Ch. 3] to establish the result
for commuting matrices. We establish the (harder) noncommutative case below.

Theorem 3.1. Let δS be defined by (1.3). Then, δS is a metric on Pn.

To prove Theorem 3.1, we need several auxiliary results.

Definition 3.2 ([3, Def. 1.1]). Let X be a nonempty set. A function ψ : X×X → R

is said to be negative definite if ψ(x, y) = ψ(y, x) for all x, y ∈ X , and the inequality∑n

i,j=1
cicjψ(xi, xj) ≤ 0

holds for all integers n ≥ 2 and subsets {xi}ni=1 ⊆ X , {ci}ni=1 ⊆ R with
∑n

i=1 ci = 0.

Theorem 3.3 ([3, Prop. 3.2, Ch. 3]). If ψ : X × X → R is negative definite, then
there is a Hilbert space H ⊆ RX and a mapping x 
→ ϕ(x) from X → H such that

(3.1) ‖ϕ(x)− ϕ(y)‖2H = 1
2 (ψ(x, x) + ψ(y, y))− ψ(x, y).

Moreover, negative definiteness of ψ is necessary for such a mapping to exist.

Theorem 3.3 helps prove the triangle inequality for the scalar case.3

Lemma 3.4. Let δs be the scalar version of δS, i.e.,

δs(x, y) :=
√
log[(x+ y)/(2

√
xy)], x, y > 0.

Then, δs is a metric on (0,∞).

3Schoenberg’s theorem (Theorem 3.3) for establishing the commutative case (which is essen-
tially just the scalar case of Lemma 3.4) was also used in [12].
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Proof. To verify that ψ(x, y) = log((x+ y)/2) is negative definite, by [3, Thm. 2.2,

Ch. 3] we may equivalently show that e−βψ(x,y) =
(
x+y
2

)−β
is positive definite for

any β > 0. But this follows readily upon noting the integral representation

(3.2) (x+ y)−β = 1
Γ(β)

∫ ∞
0

e−t(x+y)tβ−1dt = 〈fx, fy〉,

where fx(t) = e−txt
β−1
2 ∈ L2([0,∞)). �

Corollary 3.5. Let x, y, z ∈ Rn
++ and let p ≥ 1. Then,

(3.3)
(∑

i
δps (xi, yi)

)1/p

≤
(∑

i
δps (xi, zi)

)1/p

+
(∑

i
δps (yi, zi)

)1/p

.

Corollary 3.6. Let X,Y, Z > 0 be diagonal matrices. Then,

(3.4) δS(X,Y ) ≤ δS(X,Z) + δS(Y, Z).

Proof. For diagonal X,Y , δ2S(X,Y ) =
∑

i δ
2
s(Xii, Yii); now use Corollary 3.5. �

Next, we recall an important determinantal inequality for positive matrices.

Theorem 3.7 ([16]). Let A,B > 0. Let λ↓(X) be the vector of eigenvalues of X
arranged in decreasing order; define λ↑(X) likewise. Then,

(3.5)
∏n

i=1
(λ↓

i (A) + λ↓
i (B)) ≤ det(A+B) ≤

∏n

i=1
(λ↓

i (A) + λ↑
i (B)).

Corollary 3.8. Let A,B > 0. Let Eig↓(X) denote the diagonal matrix with λ↓(X)

as its diagonal; define Eig↑(X) likewise. Then,

δS(Eig
↓(A),Eig↓(B)) ≤ δS(A,B) ≤ δS(Eig

↓(A),Eig↑(B)).(3.6)

Proof. In (3.5), divide throughout by 2n
√
det(A) det(B) to obtain∏n

i=1(λ
↓
i (

A
2 ) + λ↓

i (
B
2 ))√

det(A) det(B)
≤

det
(
A+B

2

)
√
det(A) det(B)

≤
∏n

i=1(λ
↓
i (

A
2 ) + λ↑

i (
B
2 ))√

det(A) det(B)
.

Since det(A) = det(Eig↑(A)) = det(Eig↓(A)), we can rewrite the leftmost and
rightmost terms above, so that upon taking logarithms we obtain (3.6). �

The final result we need is a classic lemma from linear algebra.

Lemma 3.9. If A > 0 and B is Hermitian, then there is a matrix P such that

(3.7) P ∗AP = I and P ∗BP = D, where D is diagonal.

Equipped with the above results, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We need to show that δS is symmetric, nonnegative, def-
inite, and that it satisfies the triangle inequality. Symmetry and nonnegativity
are obvious, while definiteness follows from strict convexity of − log det(X), the
seed function that generates the S-divergence. The only difficulty is posed by the
triangle inequality.

Let X,Y, Z > 0 be arbitrary. From Lemma 3.9 we know that there is a matrix
P such that P ∗XP = I and P ∗Y P = D. Since Z > 0 is arbitrary and congruence
preserves positive definiteness, we may write just Z instead of P ∗ZP . Also, since
δS(P

∗XP,P ∗Y P ) = δS(X,Y ) (see Proposition 2.1), proving the triangle inequality
reduces to showing that

(3.8) δS(I,D) ≤ δS(I, Z) + δS(D,Z).
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Consider now the diagonal matrices D↓ and Eig↓(Z). Corollary 3.6 asserts

(3.9) δS(I,D
↓) ≤ δS(I,Eig

↓(Z)) + δS(D
↓,Eig↓(Z)).

Proposition 2.1(i) implies that δS(I,D) = δS(I,D
↓) and δS(I, Z) = δS(I,Eig

↓(Z)),

while Corollary 3.8 shows that δS(D
↓,Eig↓(Z)) ≤ δS(D,Z). Combining these

inequalities, we immediately obtain (3.8). �

We now briefly consider a closely related topic of importance in some applica-
tions: kernel functions arising from δS .

3.1. Hilbert space embedding. Since δS is a metric that embeds isometrically
into Hilbert space (Lemma 3.4) when restricted to scalars, it is natural to ask
whether it also admits such an embedding for matrices. But as already noted, such
an embedding does not exist. Specifically, Theorem 3.3 shows that a Hilbert space
embedding exists if and only if δ2S(X,Y ) is a negative definite kernel; equivalently,
if and only if the map (cf. Lemma 3.4)

e−βδ2S(X,Y ) =
det(X)β det(Y )β

det((X + Y )/2)β

is a positive definite kernel for β > 0. This in turn is equivalent to the matrix

(3.10) Hβ = [hij ] =
[
det(Xi +Xj)

−β
]
, 1 ≤ i, j ≤ m,

being positive definite for everym ≥ 1 and arbitrary positive matricesX1, . . . , Xm ∈
Pn. A quick numerical check shows, however, that Hβ can be indefinite. Thus, we
are led to the weaker question: for what choices of β is Hβ ≥ 0?

Theorem 3.10 provides an answer for (real) symmetric positive definite matrices.

Theorem 3.10. Let X1, . . . , Xm be real symmetric matrices in Pn. The m × m
matrix Hβ defined by (3.10) is positive definite, if and only if β satisfies

(3.11) β ∈
{

j
2 : j ∈ N and 1 ≤ j ≤ (n− 1)

}
∪

{
γ : γ ∈ R and γ > 1

2 (n− 1)
}
.

We refer the interested reader to the longer version of this paper [22] for details.

Theorem 3.10 says that e−βδ2S is not always a kernel, though for commuting

matrices e−βδ2S is always a kernel. This discrepancy raises the following question:

Open problem. Determine necessary and sufficient conditions on a set X ⊂ Pn,

so that e−βδ2S(X,Y ) is a kernel function on X × X for all β > 0.

4. Geometric and analytic similarities with δR

4.1. Geometric mean. We begin by studying an object that connects δR and δ2S
most intimately: the matrix geometric mean. For positive A and B, the matrix
geometric mean (MGM) is denoted by A�B, and is given by the formula [6, Ch. 4]

(4.1) A�B := A1/2(A−1/2BA−1/2)1/2A1/2.

The MGM enjoys a host of attractive properties—see for instance the classic pa-
per [1]; of these, the following variational characterization [7] is important:

A�B =argminX>0 δ
2
R(A,X) + δ2R(B,X) and

δR(A,A�B) = δR(B,A�B).
(4.2)

Surprisingly, the MGM enjoys a similar characterization even under δ2S .
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Theorem 4.1. Let A,B > 0. Then,

(4.3) A�B = argminX>0

[
h(X) := δ2S(X,A) + δ2S(X,B)

]
.

Moreover, A�B is equidistant from A and B, i.e., δS(A,A�B) = δS(B,A�B).

Proof. If A = B, then clearly X = A minimizes h(X). Assume, therefore, that
A �= B. Ignoring the constraint X > 0 for the moment, we see that any stationary
point of h(X) must satisfy ∇h(X) = 0. This condition translates into

∇h(X) =
(
X+A

2

)−1 1
2 +

(
X+B

2

)−1 1
2 −X−1 = 0 =⇒ B = XA−1X.

The latter equation is a Riccati equation whose unique positive solution is X =
A�B [6, Prop 1.2.13]. It remains to show that the stationary point A�B is actually
a local minimum. Consider the Hessian

2∇2h(X) = X−1 ⊗X−1 −
[
(X +A)−1 ⊗ (X +A)−1 + (X +B)−1 ⊗ (X +B)−1

]
.

Writing P = (X +A)−1, Q = (X +B)−1, and using ∇h(X) = 0 we obtain

2∇2h(X) = (Q⊗ P ) + (P ⊗Q) > 0.

Thus, X = A�B is a strict local minimum of h(X). This local minimum is the global
minimum since ∇h(X) = 0 has a unique positive solution and h goes to +∞ at the
boundary. Equidistance follows easily from A�B = B�A and Proposition 2.1. �

4.2. Geodesic convexity. In this section, we show that δ2S is jointly geodesically
convex (hereafter ‘g-convex’), an important property also satisfied by δR. Before
proving our g-convexity result (Theorem 4.4), we recall two useful facts.

Theorem 4.2 ([18]). The MGM of A,B ∈ Pn is given by the variational formula

A�B = max
{
X ∈ Hn |

[
A X
X B

]
≥ 0

}
.

Proposition 4.3 (Joint-concavity (see, e.g., [18])). Let A,B,C,D > 0. Then,

(4.4) (A�B) + (C�D) ≤ (A+ C)�(B +D).

Theorem 4.4. The function δ2S(X,Y ) is jointly g-convex for X,Y > 0.

Proof. It suffices to show that for X1, X2, Y1, Y2 > 0 we have

(4.5) δ2S(X1�X2, Y1�Y2) ≤ 1
2δ

2
S(X1, Y1) +

1
2δ

2
S(X2, Y2).

From Proposition 4.3 it follows that X1�X2 + Y1�Y2 ≤ (X1 + Y1)�(X2 + Y2). Since
log det is monotonic and determinants are multiplicative, it then follows that

log det
(

X1�X2+Y1�Y2

2

)
≤ log det

(
(X1+Y1)�(X2+Y2)

2

)
,

which when combined with the identity

− 1
2 log det

(
(X1�X2)(Y1�Y2)

)
= − 1

4 log det(X1Y1)− 1
4 log det(X2Y2)

yields inequality (4.5), establishing joint g-convexity. �

4.3. Basic contraction results. We now show that δS and δR exhibit similar
contraction properties. The results are stated in terms of δ2S or δS , depending on
which appears more elegant.
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4.3.1. Power-contraction. The metric δR satisfies (e.g., [6, Ex. 6.5.4])

(4.6) δR(A
t, Bt) ≤ tδR(A,B), for A,B > 0 and t ∈ [0, 1].

The S-divergence satisfies the same relation.

Theorem 4.5. Let A,B > 0, and let t ∈ [0, 1]. Then,

(4.7) δ2S(A
t, Bt) ≤ tδ2S(A,B).

Moreover, if t ≥ 1, then the inequality gets reversed.

Proof. Recall that for t ∈ [0, 1], the map X 
→ Xt is operator concave. Thus,
1
2 (A

t +Bt) ≤
(
A+B

2

)t
; by monotonicity of the determinant it then follows that

δ2S(A
t, Bt) = log

det
(
1
2 (A

t +Bt)
)

det(AtBt)1/2
≤ log

det
(
1
2 (A+B)

)t
det(AB)t/2

= tδ2S(A,B).

The reverse inequality for t ≥ 1 follows by considering δ2S(A
1/t, B1/t). �

4.3.2. Contraction on geodesics. The curve

(4.8) γ(t) := A1/2(A−1/2BA−1/2)tA1/2, for t ∈ [0, 1],

parameterizes the unique geodesic between the positive matrices A and B on the
manifold (Pn, δR) [6, Thm. 6.1.6]. On this curve δR satisfies

δR(A, γ(t)) = tδR(A,B), t ∈ [0, 1].

The S-divergence satisfies a similar, albeit slightly weaker, result.

Theorem 4.6. Let A,B > 0, and let γ(t) be defined by (4.8). Then,

(4.9) δ2S(A, γ(t)) ≤ tδ2S(A,B), 0 ≤ t ≤ 1.

Proof. The proof follows upon observing that

δ2S(A, γ(t)) = δ2S(I, (A
−1/2BA−1/2)t)

(4.7)
≤ tδ2S(I, A

−1/2BA−1/2) = tδ2S(A,B). �

4.3.3. A power-monotonicity property. We show below that on matrix powers, δ2S
and δR exhibit a similar monotonicity property reminiscent of a power-means in-
equality.

Theorem 4.7. Let A,B > 0, and let scalars t and u satisfy 1 ≤ t ≤ u < ∞. Then,

t−1δR(A
t, Bt) ≤ u−1δR(A

u, Bu)(4.10)

t−1δ2S(A
t, Bt) ≤ u−1δ2S(A

u, Bu).(4.11)

To our knowledge, inequality (4.10) is also new. Before proving Theorem 4.7,
we first state a “power-means” inequality on determinants (which also follows from
the monotonicity theorem of [4]; see [22] for an alternative proof).

Proposition 4.8. Let A,B > 0, and let scalars t, u satisfy 1 ≤ t ≤ u < ∞. Then,

(4.12) det1/t
(

At+Bt

2

)
≤ det1/u

(
Au+Bu

2

)
.
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Proof of Theorem 4.7. (i) Since δR(X,Y ) = ‖logE↓(XY −1)‖F, we must show that

1
t ‖logE

↓(AtB−t)‖F ≤ 1
u‖logE

↓(AuB−u)‖F.
Writing this inequality in terms of vectors of eigenvalues, we need to show that

(4.13) ‖log λ1/t(AtB−t)‖2 ≤ ‖log λ1/u(AuB−u)‖2.
This inequality follows readily from the log-majorization [5, Theorem IX.2.9]

log λ1/t(AtB−t) ≺ log λ1/u(AuB−u),

upon applying the map x 
→ ‖x‖2, which yields (4.13). We have in fact proved the
more general result

1
t ‖logE

↓(AtB−t)‖Φ ≤ 1
u‖logE

↓(AuB−u)‖Φ,
where Φ is a symmetric gauge function (i.e., a permutation invariant absolute
norm).

(ii) To prove (4.11) we must show that

1
t log det

(
(At +Bt)/2

)
− t

2 log det(A
tBt)

≤ 1
u log det

(
(Au +Bu)/2

)
− u

2 log det(AuBu).

This inequality is immediate from Proposition 4.8 and the monotonicity of log. �

4.3.4. Contraction under translation. The last basic contraction result that we
prove is an analogue of the following shrinkage property [9, Prop. 1.6]:

(4.14) δR(A+X,A+ Y ) ≤ α
α+β δR(X,Y ), for A ≥ 0 and X,Y > 0,

where α = max {‖X‖, ‖Y ‖} and β = λmin(A). This result plays a crucial role in
deriving contractive maps for certain nonlinear matrix equations [19].

Theorem 4.9. Let X,Y > 0 and A ≥ 0. Then the function

(4.15) g(A) := δ2S(A+X,A+ Y )

is monotonically decreasing and convex in A.

Proof. We must show that if A ≤ B, then g(A) ≥ g(B). Equivalently, we show
that the gradient ∇Ag(A) ≤ 0, which follows easily since

∇Ag(A) =
(

(A+X)+(A+Y )
2

)−1

− 1
2 (A+X)

−1 − 1
2 (A+ Y )

−1 ≤ 0,

as the map X 
→ X−1 is operator convex. It remains to prove convexity of g.
Consider therefore its Hessian ∇2g(A). Let P = (A+X)−1, Q = (B +X)−1, so

∇2g(A) = 1
2 (P ⊗ P +Q⊗Q)−

(
P−1+Q−1

2

)−1

⊗
(

P−1+Q−1

2

)−1

.

Using matrix convexity of X 
→ X−1 we obtain

∇2g(A) ≥ 1
2 (P ⊗ P +Q⊗Q)− P+Q

2 ⊗ P+Q
2 = 1

2 (P −Q)⊗ (P −Q),

which is positive definite since by assumption P ≥ Q. �

Corollary 4.10. Let X,Y > 0, A ≥ 0, and β = λmin(A). Then,

(4.16) δ2S(A+X,A+ Y ) ≤ δ2S(βI +X, βI + Y ) ≤ δ2S(X,Y ).
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4.4. Conic contraction. This section proves a compression property for δS , which
it shares with the well-known Hilbert and Thompson metrics on cones [20, Ch.2].

Proposition 4.11. Let P ∈ Cn×k (k ≤ n) have full column rank. The function
f : Pn → R ≡ X 
→ log det(P ∗XP )− log det(X) is operator decreasing.

Proof. It suffices to show that ∇f(X) ≤ 0. This amounts to establishing that

(4.17) P (P ∗XP )−1P ∗ ≤ X−1 ⇔
[
X−1 P
P ∗ P ∗XP

]
≥ 0.

Inequality (4.17) follows once we note the factorization[
X−1 P
P ∗ P ∗XP

]
=

[
I 0
0 P ∗

] [
X−1 I
I X

] [
I 0
0 P

]
. �

Corollary 4.12. Let X,Y > 0. Let A =
(
X+Y

2

)
, G = X�Y , and P ∈ C

n×k (k ≤ n)
have full column rank. Then,

(4.18)
det(P ∗AP )

det(P ∗GP )
≤ det(A)

det(G)
.

Proof. Since A ≥ G, it follows from Proposition 4.11 that

log det(P ∗AP )− log det(A) ≤ log det(P ∗GP )− log det(G).

Rearranging, and using the fact that P ∗AP ≥ P ∗GP , we obtain (4.18). �

Theorem 4.13 ([1, Thm. 3]). Let Π : Pn → Pk be a positive linear map. Then,

(4.19) Π(A�B) ≤ Π(A)�Π(B), for A,B ∈ Pn.

We are now ready to prove the main theorem of this section.

Theorem 4.14. Let P ∈ Cn×k (k ≤ n) have full column rank. Then,

(4.20) δ2S(P
∗AP,P ∗BP ) ≤ δ2S(A,B), for A,B ∈ Pn.

Proof. We may equivalently show that

(4.21)
det

(
P ∗(A+B)P

2

)
√

det(P ∗AP ) det(P ∗BP )
≤

det
(
A+B

2

)
√

det(AB)
.

But Theorem 4.13 asserts that P ∗(A�B)P ≤ (P ∗AP )�(P ∗BP ), whereby

1√
det(P ∗AP ) det(P ∗BP )

=
1

det[(P ∗AP )�(P ∗BP )]
≤ 1

det(P ∗(A�B)P )
.

Consequently, an invocation of Corollary 4.12 concludes the argument. �

Theorem 4.14 relates δS to the classical Hilbert and Thompson metrics on con-
vex cones, which satisfy similar inequalities (for a wider class of order-preserving
maps [20]); hence the name “conic contraction”. Theorem 4.14 also extends to δR,
as noted in Corollary 4.16, which follows from Theorem 4.15. We believe that this
theorem must exist in the literature—see [22, Thm. 4.17] for a proof.

Theorem 4.15. Let A,B ∈ Pn and P ∈ Cn×k (k ≤ n) have full column rank.
Then,

(4.22) λ↓
j (P

∗AP (P ∗BP )−1) ≤ λ↓
j (AB−1), for 1 ≤ j ≤ k.
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Corollary 4.16. Let P ∈ Cn×k (k ≤ n) have full column rank. Then,

(4.23) δΦ(P
∗AP,P ∗BP ) ≤ δΦ(A,B) := ‖log(B−1/2AB−1/2)‖Φ,

where Φ is any symmetric gauge function.

We conclude by noting a bi-Lipschitz-like inequality between δS and δR.

Theorem 4.17 ([22]). Let A,B ∈ Pn. Let δT (A,B) = ‖log(B−1/2AB−1/2)‖ de-
note the Thompson-part metric [20]. Then, we have the bounds

(4.24) 8δ2S(A,B) ≤ δ2R(A,B) ≤ 2δT (A,B)
(
δ2S(A,B) + n log 2

)
.
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