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A BERNSTEIN RESULT AND COUNTEREXAMPLE

FOR ENTIRE SOLUTIONS TO DONALDSON’S EQUATION

MICAH WARREN

(Communicated by Guofang Wei)

Abstract. We show that convex entire solutions to Donaldson’s equation are
quadratic, using a result of Weiyong He. We also exhibit entire solutions to the
Donaldson equation that are not of the form discussed by He. In the process we
discover some nontrivial entire solutions to complex Monge-Ampère equations.

1. Introduction

In this note we show the following.

Theorem 1. Suppose that u is a convex solution to the Donaldson equation on
R× Rn−1 = (t, x2, . . . , xn):

(1) σ̃2(D
2u) = u11(u22 + u33 + · · ·+ unn)− u2

12 − · · · − u2
1n = 1.

Then u is a quadratic function.

Donaldson introduced the operator

Q(D2u) = uttΔu− |∇ut|2

arising in the study of the geometry of the space of volume forms on compact Rie-
mannian manifolds [1]. On Euclidean space, (1) becomes an interesting nonsym-
metric fully nonlinear equation. Weiyong He has studied aspects of entire solutions
on Euclidean space, and was able to show [2, Theorem 2.1] that if u11 = const,
then the solution can be written in terms of solutions to Laplace equations.

Here we show that any convex solution must also satisfy u11 = const. It follows
quickly that the solution must be quadratic. We also show that, in the absence of
the convexity constraint, solutions exist for which u11 = const fails.

Theorem 2. There exist solutions to the Donaldson equation which are not of the
form given by He.

In real dimension 3 we note that solutions of (1) can be extended to solutions of
the complex Monge-Ampère equation on C

2

(2) det
(
∂∂̄u

)
= 1

and we can conclude the following.

Corollary 3. There exist a nonflat solution of the complex Monge-Ampère equation
(2) on C2 whose potential depends on only three real variables.
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2. Proof of Theorem 1

First, we define an operator on symmetric matrices:

Definition 4. Given a matrix M define the quadratic operator

σ̃2(M) = m11(m22 +m33 + · · ·+mnn)−m12m21 − · · · −m1nmn1.

Lemma 5. Let h be a positive constant and suppose that Kh is the sublevel set
u ≤ h of a nonnegative solution to

σ̃2(D
2u) = 1.

Let E ⊂ Kh be an ellipsoid and A : E → B1 an affine diffeomorphism of the form

(3) A(x) = M · x+ b,

for some matrix M and some vector b. Then

σ̃2(M
2) ≥ 1

4

1

h2
.

Proof. Given an ellipsoid E ⊂ Kh, choose an affine diffeomorphism A : E → B1 of
the form (3) and consider the function v on R

n defined by

v(x) = h|A(x)|2.

For x on the boundary of E, since A(x) ∈ ∂B1 we have

v(x) = h ≥ u.

Differentiating v,

Dv = 2hM · (M · x+ b) ,

D2v = 2hM2.

Thus

σ̃2(D
2v) = 4h2σ̃2(M

2).

Now if the matrix M satisfies

σ̃2(M
2) <

1

4h2
,

then

σ̃2(D
2v) < 1 on E,

so v is a supersolution to the equation and must lie strictly above the solution u.
But v must vanish at A−1(0). Because u is nonnegative, this is a contradiction of
the strong maximum principle. Thus σ̃2(M

2) ≥ 1
4h2 . �

Proposition 6. Suppose that u is an entire convex solution to

σ̃2(D
2u) = u11(u22 + u33 + · · ·+ unn)− u2

12 − · · · − u2
1n = 1.

Then

lim
t→∞

u1(t, 0, . . . , 0) = ∞.
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Proof. Assume not. By convexity the result will follow once we show that

(4) lim
t→∞

sup u1(t, 0, . . . , 0) = A

leads to a contradiction when A < ∞. By convexity, u11 ≥ 0, and hence
u1(t, 0, . . . , 0) ≤ A for all t. We may without loss of generality assume that u(0) = 0
and Du(0) = 0, adjusting A if necessary. Then

(5) u(t, 0, . . . , 0) =

∫ t

0

u1(s)ds ≤
∫ t

0

Ads ≤ At.

Now for h > 0 consider the convex sublevel set

Kh = {(t, x) : u(t, x) ≤ h} .
By (5)

p1 := (
h

A
, 0, . . . , 0) ∈ Kh.

If the level set

∂Kh = {(t, x) : u(t, x) = h}
intersects the positive x2 axis at some point p2, define a2 by

p2 = (0, a2, 0, . . . , 0),

which lies on the boundary ∂Kh. If the level set does not intersect the positive x2

axis, then define

a2 := 8
√
n− 1A+ 1,(6)

p2 = (0, a2, 0, . . . , 0),

which lies in the interior of Kh. Repeat this for each axis, finding p3, . . . , pn such
that

pi ∈ Kh.

The sublevel set Kh is convex, so it must contain the simplex given by convex
combinations of {p0, p1, . . . , pn} with

p0 = (0, 0, . . . , 0).

In particular, it must contain the rectangle

[0,
1

2

h

A
]× [0,

1

2
a2]× · · · × [0,

1

2
an],

which in turn must contain the ellipsoid E centered at

c =

(
1

4

h

A
,
1

4
a2, . . . ,

1

4
an

)
that is defined by the equation

|T (x)|2 ≤ 1

where

T (x) = M · (x− c) ,

M = 4

⎛
⎜⎜⎝

A
h

1
a2

1
a3

. . .

⎞
⎟⎟⎠ .
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Now

M2 = 16

⎛
⎜⎜⎜⎜⎜⎝

(
A
h

)2 (
1
a2

)2

(
1
a2
3

)2

. . .

⎞
⎟⎟⎟⎟⎟⎠

and

σ̃2(M
2) = 16

(
A

h

)2
((

1

a2

)2

+ · · ·+
(

1

an

)2
)

≥ 1

4

1

h2

with the latter inequality following from the previous lemma.
Thus (

1

a2

)2

+

(
1

a3

)2

+ · · ·+
(

1

an

)2

≥ 1

64A2
.

It follows that for some i,
1

a2i
≥ 1

64 (n− 1)A2
.

That is,

ai ≤ 8
√
n− 1A.

Now to finish the argument, let

R = 8
√
n− 1A.

Now let
Ū = sup

BR

u(x).

Now by (1) the function u must be strictly convex in some direction, in particular,
every sublevel set Kh is nonempty and convex. Choose h = Ū+1. Apply the above
argument, and we can find some pi ∈ Kh with

ai ≤ R = 8
√
n− 1A.

By our choice (6) this point must lie on the level set u = h. Since pi ∈ BR we have

h = u(pi) ≤ sup
BR

u(x) = h− 1,

which is clearly a contradiction. Thus (4) cannot hold. �

Note that the equation is invariant under translation in x and also under the
symmetry t → −t. Thus we can apply the above proposition for any x ∈ Rn−1 and
conclude that

lim
t→∞

u1(t, x) = ∞,

lim
t→∞

u1(−t, x) = −∞.

In particular, letting z = u1(t, x), the map

Φ : R× R
n−1 → R× R

n−1

Φ(t, x) = (z, x)

is a diffeomorphism. With this in hand, we repeat the argument of He [2, section 3].
For each x fixed, there exists a unique t = t(z, x) such that z = u1(t, x). Defining

θ(z, x) = t(z, x)
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the computations in [2, section 3] yield that θ is a harmonic function. It follows
that ∂θ

∂z = 1/u11 is a positive harmonic function, so must be constant. Now we have

u(t, x) = at2 + tb(x) + g(x),

which satisfies [2, section 2]

Δb = 0,

Δg =
1

2a

(
1 + |∇b|2

)
.

Letting t = 0 we conclude that g is convex. Letting t → ±∞ we conclude that b is
convex and concave, so must be linear. It follows that |∇b|2 is constant, and

(7) Δg =
1

2a

(
1 + |c|2

)
.

Differentiate (7) twice in any direction e, and we see that

Δgee = 0.

By convexity
gee ≥ 0

and the classical Liouville theorem tells us the second derivatives of g are constant.
Thus g is a quadratic.

3. Counterexamples

We use the method described in [3] and restrict to n = 3. Consider

u(t, x) = r2et + h(t)

where r =
(
x2
2 + x2

3

)1/2
. At any point we may rotate R

2 so that x2 = r and get

D2u =

⎛
⎝ r2et + h′′(t) 2ret 0

2ret 2et 0
0 0 2et

⎞
⎠ .

We compute

σ̃2

(
D2u

)
= 4et

(
r2et + h′′(t)

)
− 4r2e2t = 4eth′′(t).

Then

u = r2et +
1

4
e−t

is a solution.
Now defining complex variables

z1 = t+ is,

z2 = x+ iy

we can consider the function

(8) u(z1, z2) = 4 |z2|2 eRe(z1) + e−Re(z1).

The complex Hessian becomes

∂z∂z̄u =
1

4

(
4 |z2|2 eRe(z1) + e−Re(z1) 8z2e

Re(z1)

8z̄2e
Re(z1) 16eRe(z1)

)
and it follows that u satisfies the complex Monge-Ampère equation

det (∂z∂z̄u) = 1.
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In particular, while the function is not convex, it is plurisubharmonic. The induced
Ricci-flat complex metric

gij̄ = ∂zi∂zj̄u

can be neither complete nor flat. Indeed, when z2 = 0, the metric is of the form

1

4

(
e−Re(z1) 0

0 16eRe(z1)

)
.

Thus we can take a path

γ : [0,∞) → C
2,

t 
→ (−t, 0, 0, 0) ,

which has finite length, but is not contained in any compact set. A standard
computation of the sectional curvatures shows that this metric is not flat.
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