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ABSTRACT. In this article we prove that the co-compactness of the arithmetic
lattices in a connected semisimple real Lie group is preserved if the lattices
under consideration are representation equivalent. This is in the spirit of the
question posed by Gopal Prasad and A. S. Rapinchuk in 2014 where instead of
representation equivalence, the lattices under consideration are weakly com-
mensurable Zariski dense subgroups.

1. INTRODUCTION

In [9], G. Prasad and A. S. Rapinchuk defined the notion of weakly commensu-
rable Zariski dense subgroups in absolutely almost simple algebraic groups. Among
many other striking implications of this seemingly weak notion they have proved
that weakly commensurable subgroups in the group of rational points of abso-
lutely almost simple algebraic groups determine the type of the group except in
the case when one is of type B and the other of type C. They show that length
commensurable arithmetic lattices are weakly commensurable. For this, when the
locally symmetric spaces are of rank greater than 1, they assume the validity of
Schanuel’s conjecture. Further using methods from arithmetic theory of algebraic
groups, they obtain commensurability type results for isospectral compact locally
symmetric spaces.

In [I], we assumed the stronger hypothesis that the lattices defining the locally
symmetric spaces are representation equivalent rather than isospectral on functions.
This allowed us to obtain similar conclusions as in [9] for representation equivalent
lattices, without invoking Schanuel’s conjecture.

In the sequel to their work on weakly commensurable subgroups [10], Prasad
and Rapinchuk posed the following question. For ¢ = 1,2, let G; be a connected
absolutely almost simple group defined over F' = R or C and let I'; be a lattice
in G;(F). Assume that I'; is weakly commensurable to I's. Does compactness of
I'1\G1(F) imply the compactness of I';\G2(F)? When the corresponding locally
symmetric spaces are length commensurable and one of the spaces is arithmetically
defined, Theorem 6 and Theorem 7 of [9] provide an affirmative answer to the above
question. We recall that the co-compactness of a lattice in a semisimple real Lie
group is equivalent to the absence of nontrivial unipotents in it (cf. [II, Corollary
11.13]). Thus the above question can be rephrased as whether for two weakly
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commensurable lattices, the existence of nontrivial unipotent elements in one of
them implies their existence in the other.

In this article we address a similar question under the stronger hypothesis of
representation equivalence. We prove that:

Theorem 1.1. Let G be a connected semisimple real Lie group. Let 'y, T's be
representation equivalent arithmetic lattices in G. Then T'1\G is compact if and
only if T2\G is compact.

Remark 1.2. By the arithmeticity theorem of Margulis, if G is a real semisimple
algebraic group without compact factors and such that R-rank of G is > 2, then
every irreducible lattice is arithmetic. If R-rank is 1, a result of Corlette in the
archimedean case and of Gromov-Schoen in the nonarchimedean case shows that
lattices in Sp(n,1),n > 2, and F[QO are arithmetic.

Remark 1.3. For p-adic groups, Theorem [[.1] is a tautology since every lattice is
co-compact.

2. PRELIMINARIES

2.1. Lattices and representation equivalence. Let G be a connected semisim-
ple real Lie group. Suppose I' is a discrete subgroup of G such that the quotient
I'\G has a finite G-invariant Borel measure p. Consider the space L?(I'\G) of all
complex valued measurable I'-invariant functions on G such that

[ 14 Panto) < .
na
The right regular representation Rr of G is on L?(I'\G), defined by
Rr(9)f(z) = f(zg) V g,z €Gand fe L*(T\G).

It is well known that this defines a unitary representation of GG on the Hilbert space
L*(IT\G).

Let G be the set of all equivalence classes of irreducible unitary representations
of G. We will denote an element of G by w. We now recall the following result (cf.
[12] 14.10.5]) which describes the direct integral decomposition of Rr with respect
to the irreducible unitary representations of the group G.

Theorem 2.1. Let (m,H) be a unitary representation of G on a Hilbert space
H. There exists a Borel measure o on G and a family of unitary representations
(7w, Hy) such that:
(1) The representation (w,H) is unitarily equivalent to a direct integral as fol-
lows:

(m,H) = /(Ww,Hw) do(w).

G
(2) Each (m,, H,) is unitarily equivalent to the Hilbertian tensor product
(r'w®I, H',®V,) of an irreducible unitary representation (7', H',,) € w
and the trivial G representation I on some Hilbert space V,,.
(3) The map w — dim(V,,) is measurable w.r.t. the measure o.

The following result from [3] gives the appropriate uniqueness for the measure o
in Theorem 211
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Proposition 2.2. If there are two Borel measures o and p on G such that all
the three conditions in Theorem B hold, then o and p are mutually absolutely
continuous, i.e., for any Borel set E,

o(E)=0< u(E)=0.

2.2. Eisenstein series. In this subsection we recall some of the relevant facts from
the theory of Eisenstein series from Langlands’ work [5], [6] and [§]. In particular
we discuss the decomposition of the Hilbert space L?(I'\G) into certain G-invariant
spaces parametrized by various parabolic subgroups.

Let G be the group of real points of a connected semisimple group G defined
over Q and let I' be a lattice in G which we assume to be neat. Let us fix a
minimal parabolic subgroup P of G defined over Q and a maximal Q-split torus A
of P. A standard cuspidal parabolic subgroup P is the normalizer of a parabolic
subgroup P.

Let ac be the complexification of the Lie algebra of real points of A and let a be
the set of real points of ac corresponding to the split component of P. Consider a
decomposition P = AMN of P, where A = Aj is the analytic subgroup of G with
Lie algebra a, N is the unipotent radical of P and M is a reductive group identified
with N\MN. Since I' is neat, TN P C MN and © := TN N\I'N MN can be
thought of as a subgroup of N\MN = M. Let S = MN. Let (P,S) and (P’,S")
be two split parabolic subgroups of G. Then we say that (P,S) is a successor of
(P, S, ie., (P,S) > (P,S") if P> P and S D S'. Further (P,S) is called a
dominant successor of (P’,S") if there exists a chain

(PaS) = (Plasl) > (P, S2) > > (anSn) = (P/vS/)
such that
PLOP, 2 2P,
A C A CAC---CA,
and dim(A4;41) —dim(4;) =1,1<i < n.
Definition 2.3. A subgroup (P,S) is said to be I'-cuspidal if every dominant
successor (P’,S’) of (P,.S) has the following properties:

(1) T N P’ is contained in S’

(2) N'/N'NT is compact.

(3) S’/S"NT is of finite volume.

If, moreover, S/S NT is compact, then (P,S) is said to be I' per-cuspidal.

Let E(G,T) denote the set of all I-per-cuspidal subgroups of G. We recall here
the important result about E(G,T") (cf. [8 Proposition 2.6])

Proposition 2.4. Modulo I'-conjugacy, there are only finitely many elements of
E(G,T).
The number of cusps of I is then, by definition, |(I'\E(G,T))|.

Definition 2.5. Two cuspidal subgroups P and P’ are said to be associate if there
is an element of the Weyl group which takes ac to ag.

Consider a decomposition P = AMN of P as before and denote by Z the center
of the universal enveloping algebra of M. Let V(§) := {¢ € L3(O\M) : X¢ =
&(X)p VX eZ}for { € Hom(Z,C).
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Let E be the set of all orbits of the action of Z on Hom(Z,C) and let Vg :=

@ V(). This is a closed M-invariant subspace of LZ(©\M) such that
{EE

L2(O\M) = EB Ve.

Such a V is called a simple admissible subspace of L3(©\M).

Fix such a simple admissible subspace V. Let K be a maximal compact subgroup
of G and let W be the space spanned by the matrix coefficients of some irreducible
representation of K.

Let D(V, W) be the space of all continuous functions ¢ on N(I'N P)\G such that
m +— ¢(mg) belongs to V and k — ¢(gk~!) belongs to W for all g € G and such
that the support of ¢ on NM\G is compact.

Let {P} be an associate class of per-cuspidal parabolic subgroups of G. De-
fine L({P},{V},W) to be the closed subspace spanned by functions ¢ with ¢ €
D(V(P),W) for some P € {P}.

From Lemma 2 in [5], we know that:

Lemma 2.6. The space L?>(I'\G) is the orthogonal direct sum of the spaces as
follows:

L*(T\G) = @ LHP} {V},W).
(P}

Further, each L({P},{V},W) can be decomposed as:

(1) LUPY AV} W) = D Li({P} V], W)

where g is the common rank of all parabolic subgroups in the class {P}.

Remark 2.7. (1) The important hypothesis about the lattice T" for the above result
as in [6] was that T possesses a fundamental domain. It follows from the results
of Raghunathan and Garland [4] in the rank one case and of Margulis [7] in the
higher rank case that there exist fundamental domains for the arithmetic lattices
in G. Thus the hypotheses in the decomposition theorem of Langlands (as in [5],
[6]) are satisfied.

(2) In his result in [6], Langlands considers a complete set P(G,T') of per-cuspidal
subgroups of G. It can be verified (cf. [8] page 78]) that the set E(G,T) is exactly
the set P(G,T).

3. MAIN RESULTS

In this section we prove the main result of this article.

Theorem 3.1. Let G be a connected semisimple real Lie group and let 'y, I's be
two arithmetic lattices in G. If the lattices 'y, T'y are representation equivalent and
I'\G is compact, then T'2\G is also compact.

The main ingredient of the proof of this theorem is the following characterization
of co-compact lattices in real semisimple Lie groups.
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Theorem 3.2. Let T be an irreducible lattice in G. Then the quotient T\G is
compact if and only if the direct integral decomposition given by Theorem 2.1l is a
Hilbert direct sum, i.e.,

Rp = @(ﬂ'jv VJ)
JEN
for a countable family of irreducible unitary representations (m;,Vj)jen such that
each 7; occurs with a finite multiplicity.

Proof. If T\G is compact, then it is well known that Rr is a Hilbert direct sum
as required. Conversely, if ' is not uniform, then there is a unipotent element
u# 1in T (cf. [IIl Corollary 11.13]). To such a unipotent element u in I one can
associate a proper parabolic subgroup of G. Indeed, when G is of Q-rank 1, then
by [IIl cf. 12.17], u is contained in a unique Q-parabolic subgroup of G. In the
case when Q-rank of G is at least 2, one associates to u a Q-parabolic subgroup
P, of G containing u by following the procedure of Borel-Tits in [2]. Let U; be
the one-parameter subgroup containing u, then take its normaliser Ni. Let Us
be the unipotent radical of N; (it contains Uy). Let N3 be the normaliser of Us.
After some stage this chain of Q-subgroups N; and U; stabilizes. Thus, we get the
unipotent group U = U,, which is the unipotent radical of the normaliser P = N,,,
and U,, = U,+1. Then a result of Borel-Tits (cf. [2]) says that P, := P is a proper
parabolic subgroup containing U D U; and u € U;.

Let E(G,T') be the set of all per-cuspidal parabolic subgroups of G as in section
Since I' is arithmetic, P, € E(G,T) (cf. [8, pp. 23, 63]. Thus P, appears
in the decomposition in Lemma It follows from [B, p. 252] that the space
L;({P},{V},W) has a continuous spectrum of dimension ¢. Thus we conclude
that there is a nontrivial continuous spectrum in the above decomposition since P
is proper. Hence the result follows. O

We now give the proof of the main theorem.

Proof of Theorem Bl The lattice I'1 is co-compact, so by Theorem [2.I] there is
a countable subset F of G such that the support of p; equals E. (Recall that
the support of a measure is the set of all points w in G for which every open
neighborhood U of w has positive measure.)

Let p1 and po be the measures on G corresponding to the representations Rr,
and Rr,, respectively. Hence the measures py and po are mutually absolutely
continuous by Proposition It follows that their supports are equal. Thus the
support of the measure ps also equals E. In other words, Rr, has a decomposition
as a Hilbert direct sum of irreducible representations of G. From Theorem the
desired result follows. |
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