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A DYNAMIC PROGRAMMING APPROACH

TO THE PARISI FUNCTIONAL

AUKOSH JAGANNATH AND IAN TOBASCO

(Communicated by Mark M. Meerschaert)

Abstract. G. Parisi predicted an important variational formula for the ther-
modynamic limit of the intensive free energy for a class of mean field spin
glasses. In this paper, we present an elementary approach to the study of the
Parisi functional using stochastic dynamic programing and semi-linear PDE.
We give a derivation of important properties of the Parisi PDE avoiding the
use of Ruelle Probability Cascades and Cole-Hopf transformations. As an ap-
plication, we give a simple proof of the strict convexity of the Parisi functional,
which was recently proved by Auffinger and Chen.

1. Introduction

Consider the mixed p-spin glass model on the hypercube ΣN = {−1, 1}N , which
is given by the Hamiltonian

HN (σ) = H ′
N (σ) + h

∑
i

σi,

where H ′
N is the centered gaussian process on ΣN with covariance

EH ′
N (σ1)H ′

N (σ2) = Nξ((σ1, σ2)/N).

The parameter ξ satisfies ξ(t) =
∑

p≥2 β
2
pt

p, where we assume there is a positive ε

such that ξ(1 + ε) < ∞, and h is a non-negative real number. It was predicted by
Parisi [13], and later proved rigorously by Talagrand [19], and Panchenko [16], that
the thermodynamic limit of the intensive free energy is given by

lim
N→∞

1

N
log

∑
σ∈ΣN

eHN (σ) = inf
μ∈Pr[0,1]

P(μ; ξ, h) a.s.

Here Pr([0, 1]) is the space of probability measures on [0, 1], and the Parisi func-
tional, P, is given by

P(μ; ξ, h) = uμ(0, h)−
1

2

ˆ 1

0

ξ′′(t)μ[0, t]t dt,
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where uμ solves the Parisi PDE:⎧⎨
⎩∂tuμ(t, x) +

ξ
′′
(t)
2

(
∂xxuμ(t, x) + μ [0, t] (∂xuμ(t, x))

2
)
= 0, (t, x) ∈ (0, 1)× R,

uμ(1, x) = log cosh(x).

In the case that μ has finitely many atoms, the existence of a solution of the
Parisi PDE and its regularity properties are commonly proved using the Cole-
Hopf transformation and Ruelle Probability Cascades. A continuity argument is
then used to extend the definition of uμ to general μ and to prove corresponding
regularity properties. Such approaches do not address the question of uniqueness
of solutions. See [1, 2, 15, 21] for a summary of these results.

In this paper, we present a different approach. In Section 2, we prove the exis-
tence, uniqueness, and regularity of the Parisi PDE using standard arguments from
semi-linear parabolic PDEs.

Theorem 1. The Parisi PDE admits a unique weak solution which is continuous,
differentiable in time at continuity points of μ, and smooth in space.

See Section 2 for the precise statement of this result, and in particular for the
definition of weak solution. Due to the non-linearity of the Parisi PDE, low regu-
larity of the coefficients, loss of uniform ellipticity at t = 0, and unboundedness of
the initial data, the proof of Theorem 1 requires the careful application of many
different (though relatively standard) arguments in tandem.

The presentation of a PDE driven approach to the study of this functional is not
only of interest to experts in the field of spin glasses, but may also be of interest
to practitioners of the calculus of variations, PDEs, and stochastic optimal control.
There are many important, purely analytical questions surrounding this functional
that must be addressed before further progress on questions in spin glasses can be
made. See [18, 20, 21] for a discussion. Some of these questions are thought to be
intractable to the methods currently used in the spin glass literature but appear to
be well suited to the techniques of the aforementioned fields. As such it is important
to present the study of this functional in a language that is both basic and palatable
to their practitioners.

Besides its intrinsic interest, the preceding theorem has useful applications to
the study of the Parisi functional. After proving the existence of a sufficiently reg-
ular solution to the above PDE, we can use elementary arguments from stochastic
analysis to prove many important and basic properties of this functional, such as
fine estimates on the solution of the Parisi PDE and the strict convexity of the
Parisi functional itself.

As a first application of this type, we further develop the well-posedness theory
of the Parisi PDE by quantitatively proving the continuity of the solution in the
measure μ. We also prove sharp bounds on some of the derivatives of the solution.
Such bounds are important to the proofs of many important results regarding the
Parisi functional; see for example Talagrand’s proof of the Parisi formula in [21] and
also [1, 2, 18]. They were previously proved using manipulations of the Cole-Hopf
transformation and Ruelle Probability Cascades [21]. This is presented in Section
2.4.

As a further demonstration how Theorem 1 can be combined with methods
from stochastic optimal control, we present a simple proof of the strict convexity
of the Parisi functional. As background, recall the prediction by Parisi [13] that
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the minimizer of the Parisi functional should be unique and should serve the role
of the order parameter in these systems. The question of the strict convexity of
P was first posed by Panchenko in [14] as a way to prove this uniqueness. It
was studied by Panchenko [14], Talagrand [18, 19], Bovier and Klimovsky [4], and
Chen [5], and finally resolved by Auffinger and Chen in their fundamental work [2].
The work of Auffinger and Chen rested on a variational representation of the log-
moment generating functional of Brownian motion [3,7], which they combine with
approximation arguments to give a variational representation for the solution of the
Parisi PDE. We note here that an early version of this variational representation
appeared in [4], where it is shown, using the theory of viscosity solutions, to hold
when the coefficient μ[0, t] is piecewise continuous with finitely many jumps.

Since the Parisi PDE is a Hamilton-Jacobi-Bellman equation, it is natural to
obtain the desired variational representation for its solution as an application of
the dynamic programming principle from stochastic optimal control theory. The
required arguments are elementary and are commonly used in studying non-linear
parabolic PDEs of the type seen above. We prove the variational representation in
Section 3, and then deduce from it the strict convexity of the Parisi functional in
Section 4.

Theorem 2. The functional P(μ; ξ, h) is strictly convex for all choices of ξ and h.

The variational representation which was discussed above is given in Lemma 18.
From this it follows immediately that one has the following representation for the
Parisi Formula.

Proposition 3. The Parisi Formula has the representation

lim
N→∞

1

N
log

∑
σ∈ΣN

eHN (σ)

= inf
μ∈Pr([0,1])

sup
α∈A0

E

[
log cosh

(ˆ 1

0

ξ′′(s)μ[0, s]αsds+

ˆ t

0

√
ξ′′(s)dWs + h

)

−1

2

ˆ 1

0

ξ′′(s)μ[0, s]
(
α2
s + s

)
ds

]
,

where A0 consists of all bounded processes on [0, 1] that are progressively measurable
with respect to the filtration of Brownian motion.

2. Well-posedness of the Parisi PDE

Let u : [0, 1] × R → R be a continuous function with essentially bounded weak
derivative ∂xu. We call u a weak solution of the Parisi PDE if it satisfies

0 =

ˆ 1

0

ˆ
R

−u∂tφ+
ξ′′ (t)

2

(
u∂xxφ+ μ [0, t] (∂xu)

2
φ
)
dxdt+

ˆ
R

φ (1, x) log coshx dx

for every φ ∈ C∞
c ((0, 1]× R) . We now state the precise version of Theorem 1 from

the introduction.

Theorem 4. There exists a unique weak solution u to the Parisi PDE. The solution
u has higher regularity:

• ∂j
xu ∈ Cb ([0, 1]× R) for j ≥ 1,

• ∂t∂
j
xu ∈ L∞ ([0, 1]× R) for j ≥ 0.
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For all j ≥ 1, the derivative ∂j
xu is a weak solution to⎧⎨

⎩∂t∂
j
xu+ ξ′′(t)

2

(
∂xx∂

j
xu+ μ [0, t] ∂j

x (∂xu)
2
)
= 0, (t, x) ∈ (0, 1)× R,

∂j
xu (1, x) =

dj

dxj log coshx, x ∈ R.

Remark 5. The solution described in [1] can be shown to be a weak solution of the
Parisi PDE, using the approximation methods developed there. It was also shown
in [1] that this solution has the higher regularity described above.

Remark 6. The reader may notice that the essential boundedness of ∂xu is not
strictly necessary to make sense of the definition of weak solutions. It is used in the
proof of uniqueness in an essential way, however we do not claim that this proof is
optimal by any means.

Continous dependence is proved in Section 2.4.
We begin the proof of Theorem 4. After performing the time change t → s (t) =

1
2 (ξ

′ (1)− ξ′ (t)) and extending the time-changed CDF μ
[
0, s−1 (t)

]
by zero, we are

led to consider the semi-linear parabolic PDE

(1)

{
∂tu−Δu = m (t)u2

x, (t, x) ∈ R+ × R,

u (0, x) = g (x) , x ∈ R,

where g (x) = log coshx and m (t) = μ
[
0, s−1 (t)

]
1t≤(ξ′(1)/2. We carry over the

definition of a weak solution from before: a continuous function u : [0,∞)×R → R

with essentially bounded weak derivative ∂xu is a weak solution to (1) if it satisfies

0 =

ˆ ∞

0

ˆ
R

u∂tφ+ u∂xxφ+m(t) (∂xu)
2
φ dxdt+

ˆ
R

φ (0, x) g(x) dx

for every φ ∈ C∞
c ([0,∞)× R) . Evidently, the existence, uniqueness, and regularity

theory of weak solutions to the Parisi PDE is captured by that of (1).
Our proof of the well-posedness of (1) boils down to the study of a certain fixed

point equation, which we introduce now. Let etΔ be the heat semi-group on R, i.e.(
etΔh

)
(x) =

1√
4πt

ˆ
R

e−
|x−y|2

4t h (y) dy.

Then, u weakly solves (1) if and only if u satisfies

(2) u (t) = etΔg +

ˆ t

0

e(t−s)Δm (s)u2
x (s) ds.

This is an application of Duhamel’s principle (see e.g. [6, Ch. 2]). For completeness,
we present this in Proposition 24.

In Sections 2.1-2.3 below, we prove the existence, uniqueness, and regularity of
fixed points of (2) on a certain complete metric space. The properties of g and m
we will be using are that

• g′ ∈ L∞ and dj

dxj g ∈ L2 ∩ L∞ for j ≥ 2,
• m is a monotonic function of time alone and ||m||∞ ≤ 1.

These properties will influence our choice of space on which to study (2). The exact
bound on m does not matter, but we include it for convenience.

Once Theorem 4 is established, one can give a quick proof of the final component
of wellposedness, namely the continuity of the map from μ to the corresponding
solution of the Parisi PDE, using standard SDE techniques. This is in Section 2.4.
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The notation �c denotes an inequality that is true up to a universal constant
that depends only on c. Throughout the proofs below, we will use two elementary
estimates for the heat kernel which we record here:

(3) ||etΔ||Lp→Lp ≤ 1 and ||∂xetΔ||Lp→Lp � 1√
t
.

2.1. Existence of a fixed point. We prove the existence of a fixed point to (2).
First we show that there exists a solution for short-times t < T∗; then by using an
a priori estimate we prove that a solution exists for all time.

Short-time existence comes via a contraction mapping argument. Define the
Banach space

X = {ψ ∈ L∞ (R)} ∩ {ψx ∈ L∞ (R)} ∩
{
ψxx ∈ L2 (R)

}
with the norm

||ψ||X = ||ψ||∞ ∨ ||ψx||∞ ∨ ||ψxx||2,
and for each T > 0 define the complete metric space

Xh
T =

{
etΔh+ φ : φ ∈ L∞ ([0, T ] ;X )

}
∩
{
||φx||L∞([0,T ]×R) ≤ ||h′||∞, ||φxx||L∞([0,T ];L2(R)) ≤ ||h′′||2

}
with the distance

dXh
T
(u, v) = ||u− v||L∞([0,T ];X ).

The symbol h in the definition of the space refers to the initial data, which is
assumed to satisfy h′ ∈ L∞ and h′′ ∈ L2.

Given u ∈ Xh
T define the map

(4) A [u] = etΔh+

ˆ t

0

e(t−s)Δm (s)u2
x (s) ds.

Lemma 7 (Short-time existence). Let

(5) T∗ (h) = min
{
1, [C · (||h′||∞ + ||h′′||2)]−2

}
,

where C ∈ R+ is a universal constant. Then for all T ∈ (0, T∗),

• (self-map) A : Xh
T → Xh

T .
• (strict contraction) There exists α < 1 such that

dXh
T
(A [u] , A [v]) ≤ α · dXh

T
(u, v) , u, v ∈ Xh

T .

Therefore for every T < T∗ (h) there exists u ∈ Xh
T satisfying u = A [u].

Proof. First we prove A is a self-map. Let u ∈ Xh
T and say

ψ = A [u]− etΔh =

ˆ t

0

e(t−s)Δm (s)u2
x (s) ds.

Note that

ψx =

ˆ t

0

∂xe
(t−s)Δmu2

x(s) ds,

ψxx =

ˆ t

0

∂xe
(t−s)Δ2muxuxx(s) ds.
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The estimates in (3) and the definition of Xh
T imply the bounds

||ψ||L∞([0,T ]×R) � T ||h′||2∞,

||ψx||L∞([0,T ]×R) � T 1/2||h′||2∞,

||ψxx||L∞([0,T ];L2(R)) � T 1/2||h′||∞||h′′||2.

Therefore there is a universal constant C ∈ R+ such that A : Xh
T → Xh

T whenever

T ≤ T0 (h) = (C||h′||∞)
−2

.

Now we prove that A is a strict contraction. Let u, v ∈ Xh
T and say

D = A [u]−A [v] =

ˆ t

0

e(t−s)Δm (s)
(
u2
x (s)− v2x (s)

)
ds.

The estimates in (3) and the definition of Xh
T give

dXh
T
(A [u] , A [v])≤C ·max

{
T ||h′||∞, T 1/2||h′||∞, T 1/2 (||h′′||2+||h′||∞)

}
dXh

T
(u, v),

where C ∈ R+ is a universal constant. Therefore, if

T1 (h) = min
{
1, [C · (||h′||∞ + ||h′′||2)]−2

}
,

then A is a strict contraction on Xh
T for all T < T0 ∧ T1. Since T1 ≤ T0 we may

take T∗ = T1. �

To prove the existence of a global-in-time solution to (2) we will work in the
space

XT =
{
etΔg + φ : φ ∈ L∞ ([0, T ] ;X )

}
defined for each T ∈ R+. Note that Xg

T ⊂ XT , so that by Lemma 7, if we take
T < T∗(g), then there exists u ∈ XT satisfying the fixed point equation (2). To
extend u to all of time we require the following a priori estimates.

Lemma 8 (A priori estimates). Let T ∈ R+ and assume u ∈ XT satisfies (2).
Then

||ux||L∞([0,T ]×R) ≤ ||g′||∞,

||uxx||L∞([0,T ];L2(R)) ≤ ||g′′||2 exp
(
||g′||2∞T

)
.

Proof. The estimate on ux is derived by the maximum principle. By Corollary 11
(see below) we have

∂±
t ux (t, x)−Δux (t, x) = 2m (t±)ux∂xux (t, x) , ∀ (t, x) ∈ (0, T )× R,

and by assumption ux is bounded. Now the usual proof of the maximum principle
for linear parabolic PDE in unbounded domains goes through [10].

For the estimate on uxx observe that

ux = etΔg′ +

ˆ t

0

e(t−s)Δ2muxuxx (s) ds,

so by a standard energy estimate (see Lemma 12 below) we have for almost every
t ≤ T ,

||uxx||2L2(R)(t) ≤ 2||ux||2L∞([0,T ]×R)

ˆ t

0

||uxx||2L2(R)(s)ds+ ||g′′||22.
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The desired result follows from Gronwall’s inequality [6] and the a priori bound on
ux. �

Corollary 9 (Global existence). For each T ∈ R+, there exists uT ∈ XT satisfying
(2). The solutions {uT }T∈R+

so produced agree on their common domains.

Proof. Define the maximal time of existence TM to be the supremum over T ∈ R+

such that there exists uT ∈ XT satisfying (2). If TM < ∞, then by Lemma 7 we
must have

lim sup
T↑TM

||(uT )x||L∞([0,T ]×R) + ||(uT )xx||L∞([0,T ];L2(R)) = ∞,

otherwise we could construct a solution extending for times beyond TM . Therefore
by Lemma 8 we must have TM = ∞.

A quick application of Lemma 13 shows that uT = uT ′ for t ≤ T ∧ T ′. �

2.2. Regularity of fixed points. One proves the higher regularity of the fixed
point u by a parabolic bootstrapping procedure.

Lemma 10 (Higher regularity). Assume u ∈ XT satisfies (2). Then u satisfies

• ∂j
xu ∈ L∞ (

[0, T ] ;L2 (R) ∩ L∞ (R)
)
for j ≥ 2,

• ∂tu ∈ L∞ ([0, T ]× R) and ∂t∂
j
xu ∈ L∞ (

[0, T ] ;L2 (R) ∩ L∞ (R)
)
for j ≥ 1.

Proof. Let us describe the first step of the argument. Since u ∈ XT we have
ux ∈ L∞

tx and uxx ∈ L∞
t L2

x. Our goal will be to deduce uxx ∈ L∞
tx and uxxx ∈ L∞

t L2
x.

It will be important to note that we are working on the finite-time domain [0, T ]×R,
so that in particular L∞

t L2
x ⊂ L2

tx.
Start by writing

ux = etΔg′ +

ˆ t

0

e(t−s)Δ2muxuxx (s) ds;

then by Lemma 12 we get uxxx ∈ L2
tx. Since muxuxx ∈ L∞

t L2
x, g

′′ ∈ L∞ and

uxx = etΔg′′ +

ˆ t

0

∂xe
(t−s)Δ2muxuxx (s) ds,

we conclude that uxx ∈ L∞
tx . Here we have used that

´ t

0
∂xe

(t−s)Δ ds : L∞
t L2

x →
L∞
tx , which follows from (3).
Now

∂x (muxuxx) = m
(
u2
xx + uxuxxx

)
∈ L2

tx,

so that uxx = etΔg′′ +

ˆ t

0

e(t−s)Δ2m
(
u2
xx + uxuxxx

)
ds,

and finally we conclude uxxx ∈ L∞
t L2

x using Lemma 12 again.
The rest of the estimates on ∂j

xu are proved in the same way; the ∂t∂
j
xu estimates

follow easily. �

There is a sense in which the weak solution u is a classical solution.

Corollary 11. Let u ∈ XT satisfy (2). Then for all j ≥ 0 we have

• ∂j
xu exists pointwise and is continuous,

• the left/right derivatives ∂±
t ∂j

xu exist pointwise, and ∂t∂
j
xu exists at conti-

nuity points of m.
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Moreover, we have that

∂±
t ∂j

xu (t, x)−Δ∂j
xu (t, x) = m (t±) ∂j

x

[
u2
x

]
(t, x) , ∀ (t, x) ∈ (0, T )× R.

For completeness, we record the energy estimate which was used above. The
proof is standard (see [6]) and is omitted.

Lemma 12. Let h be weakly differentiable with h′ ∈ L2 and let f ∈ L2([0, T ]×R).
Then

ψ(t) = etΔh+

ˆ t

0

e(t−s)Δf(s) ds

satisfies

||ψx||2L∞([0,T ];L2(R)) + ||ψxx||2L2([0,T ]×R) ≤ ||f ||2L2([0,T ]×R) + ||h′||2L2(R).

2.3. Uniqueness of fixed points. Since we used a contraction mapping argument
to construct fixed points for (4) in the spaces Xh

T , we have implicitly demonstrated
a uniqueness theorem there. The following result achieves uniqueness without men-
tion of the second derivative uxx.

Lemma 13. Assume u, v : [0, T ]×R → R are weakly differentiable and that ux, vx
are essentially bounded. Then if u, v satisfy the fixed point equation (2), it follows
that u = v.

Proof. In the following, C denotes a universal constant which may change from line
to line. Let d = u− v; then by assumption we have

d (t) =

ˆ t

0

e(t−s)Δm (s) (ux + vx) dx (s) ds, t ≤ T.

Therefore

dx(t) =

ˆ t

0

∂xe
(t−s)Δm(s)(ux + vx)dx(s) ds, t ≤ T.

Using the second heat kernel estimate in (3), we conclude the contractive estimate

||dx||L∞([0,t]×R) ≤ C||ux + vx||L∞([0,T ]×R)

ˆ t

0

1√
t− s

||dx (s)||L∞(dx) ds

for all t ≤ T . It now follows from an iterative argument that dx = 0 and hence
that d = 0. To see this note that if dx = 0 on [0, t1] × R, then by the contractive
estimate above,

||dx||L∞([t1,t]×R) ≤ C||ux + vx||L∞([0,T ]×R)

√
t− t1||dx||L∞([t1,t]×R)

for all t ∈ [t1, T ]. Therefore dx = 0 on [0, t1 + ε], where ε depends only on the L∞

bounds on ux, vx. This completes the proof. �
2.4. Continuous dependence of solutions. For convenience we metrize the
weak topology on the space of probability measures on the interval Pr [0, 1] with
the metric

d (μ, ν) =

ˆ 1

0

|μ [0, s]− ν [0, s]| ds.

Lemma 14. Let μ, ν ∈ Pr[0, 1] and u, v be the corresponding solutions to the Parisi
PDE. Then

||u− v||∞ ≤ ξ′′ (1) d(μ, ν),

||ux − vx||∞ ≤ exp (ξ′ (1)) ξ′′ (1) d(μ, ν).
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Remark 15. The first inequality is originally due to Guerra [11].

Proof. Let u, v solve the Parisi PDE weakly; then w = u− v solves{
wt +

ξ′′

2

(
wxx + μ[0, t] (ux + vx)wx + (μ[0, t]− ν[0, t]) v2x

)
= 0, (t, x)∈(0, 1)×R,

w (1, x) = 0, x ∈ R,

weakly. Since ux, vx are Lipschitz in space uniformly in time and bounded in time,
we can solve the SDE

dXt = ξ′′ (t)μ [0, t]
ux + vx

2
(t,Xt) dt+

√
ξ′′ (t)dWt.

Furthermore, as w weakly solves the above PDE and has the same regularity as u
and v, we can write

w (t, x) = EXt=x

(ˆ 1

t

1

2
ξ′′ (s) (μ [0, s]− ν [0, s]) v2x (s,Xs) ds

)
by Proposition 22. Therefore

||w||∞ ≤ ξ′′ (1) d (μ, ν)

since ξ′′ is non-decreasing and ||vx||2∞ ≤ 1 by Lemma 16.
By differentiating the PDE for w in x, one finds by similar arguments in Propo-

sition 22 that wx has the representation

wx (t, x) = EXt=x

(ˆ 1

t

E (t, s) ξ′′ (s) (μ [0, s]− ν [0, s]) vxvxx (s,Xs) ds

)
,

where

E (t, s) = exp

(ˆ s

t

ξ′′ (τ )μ [0, τ ]
vxx + uxx

2
(τ,Xτ ) dτ

)
.

Using ||vx||∞ ≤ 1 and ||uxx||∞ ∨ ||vxx||∞ ≤ 1 from Lemma 16, and since ξ′′ is
non-decreasing,

||wx||∞ ≤ eξ
′(1)ξ′′ (1) d (ν, μ) .

�
Lemma 16. The solution u to the Parisi PDE satisfies |ux| < 1 and 0 < uxx ≤ 1.

Remark 17. The Auffinger-Chen SDE and the corresponding Itô formulas for ux and
uxx used in the proof below were first proved in [2] using approximation arguments.

Proof. Using the PDEs for ux, uxx given in Theorem 4, along with Proposition 22,
we can write

ux (t, x) = EXt=x (tanhX1) ,

uxx (t, x) = EXt=x

(
sech2X1 +

ˆ 1

t

ξ′′ (s)μ [0, s]u2
xx (s,Xs) ds

)
,

where Xt solves the Auffinger-Chen SDE

dXt = ξ′′ (t)μ [0, t]ux (t,Xt) dt+
√
ξ′′ (t)dWt.

The first equality immediately implies the bound on ux, and the second equality
implies uxx > 0. Then by a rearrangement one finds

uxx (t, x) = 1− μ[0, t)u2
x (t, x)− EXt=x

(ˆ 1

t

u2
x (s,Xs) dμ (s)

)
,

and uxx ≤ 1 follows. �
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3. A variational formulation for the Parisi PDE

In this section we use the methods of dynamic programming (see e.g. [8]) to give
a new proof of the variational formula for the solution of the Parisi PDE.

Lemma 18. Let uμ solve the Parisi PDE as above and define the class At of
processes αs on [t, 1] that are bounded and progressively measurable with respect to
Brownian motion. Then

(6) uμ(t, x) = sup
α∈At

EXα
t =x

[
−1

2

ˆ 1

t

ξ′′(s)μ[0, s]α2
sds+ log cosh(Xα

1 )

]
,

where Xα
s solves the SDE

(7) dXα
s = ξ′′(s)μ[0, s]αsds+

√
ξ′′(s)dWs

with initial data Xα
t = x. Furthermore, the optimal control satisfies

μ[0, s]α∗
s = μ[0, s]ux(s,Xs) a.s.,

where Xs solves the Auffinger-Chen SDE with the same initial data:

dXs = ξ′′(s)μ[0, s]∂xu(s,Xs)ds+
√

ξ′′(s)dWs.

Remark 19. This formula was first proved by Auffinger and Chen in [2]. Taking
advantage of the Cole-Hopf representation in the case of atomic μ, they proved the
lower bound for every α using Girsanov’s lemma and Jensen’s inequality. They
then verified that their optimal control achieves the supremum, by an application
of Itô’s lemma. The uniqueness follows from a convexity argument. In contrast, we
recognize the Parisi PDE as a specific Hamilton-Jacobi-Bellman equation. It is well
known that the solution of such an equation can be seen as the value function of a
stochastic optimal control problem. As such, this representation can be obtained
by a textbook application of “the verification argument”. This argument simulta-
neously gives the variational representation and a characterization of the optimizer.
We also note that the argument presented here is more flexible, as is evidenced by
replacing the nonlinearity u2

x with F (ux) in the Parisi PDE, where F is smooth,
strictly convex, and has super linear growth. In particular, observe that one cannot
use the Cole-Hopf transformation on the resulting PDE, but the arguments of this
paper follow through mutatis mutandis.

Proof. Let u solve the Parisi PDE. Notice that the nonlinearity is convex, so if we
let

(8)
L (t, λ) = −ξ′′ (t)μ [0, t]

λ2

2
,

f(t, λ) = ξ′′ (t)μ [0, t]λ,

then by the Legendre transform we have

ξ′′ (t)μ [0, t]
(∂xu)

2

2
= ξ′′(t)μ[0, t] sup

λ∈R

{
−λ2/2 + λ∂xu

}
= sup

λ∈R

{L (t, λ) + f (t, λ) ∂xu} .

Therefore, we can write the Parisi PDE as a Hamilton-Jacobi-Bellman equation:

0 = ∂tu+
ξ′′ (t)

2
∂xxu+ sup

λ∈R

{L (t, λ) + f (t, λ) ∂xu} .
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Since αs in At is bounded and progressively measurable, we can consider the
process, Xα, which solves the SDE

dXα = f(s, αs)ds+
√
ξ′′(t)dW

with initial data Xα
t = x. This process has the corresponding infinitesimal genera-

tor

L(t, α) = 1

2
ξ′′(t)∂xx + f(t, α)∂x.

Notice that u is a (weak) sub-solution to

∂tu+ L(t, α)u+ L(t, α) ≤ 0

with the regularity obtained in Theorem 4. It follows from Itô’s lemma (Proposition
22) that

u(t, x) ≥ sup
α∈At

Ex

[ˆ 1

t

L (s, αs) ds+ log cosh (Xα
1 )

]
.

The result now follows upon observing that the control ux(s,Xs) achieves equality
in the above since it achieves equality in the Legendre transform. That this control
is in the class At can be seen by an application of the parabolic maximum principle
(Lemma 16). Uniqueness follows from the fact that λ achieves equality in the
Legendre transform if and only if

ξ′′(t)μ[0, t]λ = ξ′′(t)μ[0, t]ux.

�

Applying this representation to the Parisi formula gives Proposition 3.

4. Strict convexity

As an application of the above ideas, we give a simple proof of strict convexity
of P.

Theorem 20. The Parisi functional is strictly convex.

Proof. We will prove that μ → uμ (0, h) is strictly convex. Then

P(μ) = uμ(0, h)−
1

2

ˆ 1

0

ξ′′(t)μ[0, t]s ds

will be the sum of a strictly convex and a linear functional, so P will be strictly
convex.

Recall

uμ(0, h) = sup
α∈A0

Eh

[ˆ 1

0

−ξ′′(s)μ[0, s]
α2
s

2
ds+ log cosh (Xα

1 )

]
.

Fix distinct μ, ν ∈ Pr [0, 1] and let μθ = θμ + (1− θ) ν, θ ∈ (0, 1). Let αθ be the
optimal control for the Parisi PDE associated to μθ so that

uμθ
(0, h) = Eh

[ˆ 1

0

−ξ′′(s)μθ[0, s]

(
αθ
s

)2
2

ds+ log cosh
(
Xαθ

1

)]
.

Consider the auxiliary processes Y αθ

t and Zαθ

t given by solving

dYt = ξ′′(t)μ[0, t]αθ
tdt+

√
ξ′′(t)dWt and dZt = ξ′′(t)ν[0, t]αθ

tdt+
√
ξ′′(t)dWt
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with initial data Y0 = Z0 = h, and note that

Xαθ

t = θY αθ

t + (1− θ)Zαθ

t .

By the lemma below, P (Y1 
= Z1) > 0. Therefore by the strict convexity of log cosh
and the variational representation (6),

uμθ
(0, h) = Eh

[ˆ 1

0

−ξ′′ (s)μθ [0, s]

(
αθ
s

)2
2

ds+ log cosh
(
Xαθ

1

)]

< θ

(
Eh

[ˆ 1

0

−ξ′′ (s)μ [0, s]

(
αθ
s

)2
2

ds+ log cosh
(
Y αθ

1

)])

+ (1− θ)

(
Eh

[ˆ 1

0

−ξ′′ (s) ν [0, s]

(
αθ
s

)2
2

ds+ log cosh
(
Zαθ

1

)])

≤ θuμ(0, h) + (1− θ)uν(0, h),

as desired. �

Lemma 21. Let Yt and Zt be as above. Then P (Y1 
= Z1) > 0.

Proof. It suffices to show that

V ar(Y1 − Z1) > 0.

By definition we have

Y1 − Z1 =

ˆ 1

0

ξ′′(s)(μ[0, s]− ν[0, s])αθ
s ds.

Observe that by the PDE for ux in Theorem 4 and Itô’s lemma (see Proposition
22), the optimal control αθ

t = (uμθ
)x is a martingale,

αθ
t − αθ

0 =

ˆ t

0

√
ξ′′(s)uxx(s,Xs)dWs.

Therefore if we call Δs = ξ′′(s)(μ[0, s]− ν[0, s]), then

V ar(Y1 − Z1) = Eh

(ˆ 1

0

Δs(α
θ
s − αθ

0)ds

)2

=

ˆ
[0,1]2

ΔsΔtK(s, t) dsdt,

where
K(s, t) = Eh

[(
αθ
s − αθ

0

)
·
(
αθ
t − αθ

0

)]
.

Now since Δs ∈ L2[0, 1], it suffices to show that K(s, t) is positive definite. We
have

K(s, t) = Eh

[ˆ s

0

√
ξ′′(s)uxx

(
s,Xαθ

s

)
dWs ·

ˆ t

0

√
ξ′′(t)uxx

(
t,Xαθ

t

)
dWt

]

=

ˆ t∧s

0

ξ′′(t′)Ehu
2
xx(t

′, Xαθ

t′ )dt′ = p (t ∧ s) = p(t) ∧ p(s),

where

p(s) =

ˆ s

0

ξ′′(t′)Ehu
2
xx(t

′, Xαθ

t′ )dt′.

By the maximum principle (Lemma 16), uxx > 0, so that p(t) is strictly increasing.
Since this kernel corresponds to a monotonic time change of a Brownian motion, it
is positive definite. �
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5. Appendix

We will say that a function f : [0,∞) × R → R with at most linear growth if it
satisfies an inequality of the form

|f(t, x)| �T 1 + |x| ∀T ∈ R+, (t, x) ∈ [0, T ]× R.

We will say the same in the case that f : R → R with the obvious modifications. In
the following we fix a probability space (Ω,F , P ) and letWt be a standard brownian
motion with respect to P. Let Ft be the filtration corresponding to Wt.

To make this paper self-contained, we present a version of Itô’s lemma in a lower
regularity setting. The argument is a modification of [17, Cor. 4.2.2].

Proposition 22. Let a, b : [0, T ] × (Ω,F , P ) → R be be bounded and progressively
measurable with respect to Ft and let a ≥ 0. Let Xt solve

dXt =
√
a(t)dWt + b(t)dt

with initial data X0 = x. Let L = 1
2a(t, ω)Δ + b(t, ω)∂x. Finally assume that we

have u satisfying:

(1) u ∈ C([0, T ]× R) with at most linear growth.
(2) ux, uxx ∈ Cb([0, T ]× R).
(3) u is weakly differentiable in t with essentially bounded weak derivative ut,

which has a representative that is Lipschitz in x uniformly in t.

Then u satisfies Ito’s lemma:

u(t,Xt)− u(s,Xs) =

ˆ t

s

(∂t + L) u(s′, Xs′)ds
′ +

ˆ t

s

ux(s
′, Xs′)

√
a(s′)dWs′ .

Remark 23. This result is applied throughout the paper to the solution u from
Theorem 1 and its spatial derivatives. We note here that, given the regularity in
Theorem 4, the weak derivatives ∂t∂

j
xu, j ≥ 0, have representatives satisfying the

above Lipschitz property.

Proof. To prove this, we will smooth u by a standard mollification-in-time proce-
dure and apply Itô’s lemma. Without loss of generality, assume T = 1 and s = 0.
Extend u to all of space-time by

u(t, x) =

{
u(0, x), t < 0,

u(1, x), t > 1.

Abusing notation, we call the extension u and note that it satisfies each of the
assumptions above. Let φ(y) ∈ C∞

c (−1, 1) with 0 ≤ φ ≤ 1 and
´
φ = 1, and define

φε(s) = φ(s/ε)/ε. Define the time-mollified version of u as

uε(t, x) =

ˆ
R

φε(s)u(t− s, x)ds.

Since uε ∈ C1,2 has bounded derivatives and grows at most linearly, Ito’s lemma
implies that

uε(t,Xt)− uε(0, x) =

ˆ t

0

(∂t + L)uε(s,Xs)ds+

ˆ t

0

uε
x(s,Xs)

√
adWs

=

ˆ t

0

uε
t(s,Xs)ds+

ˆ t

0

Luε(s,Xs)ds

ˆ t

0

uε
x(s,Xs)

√
adWs

= Aε +Bε + Cε
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for all ε > 0. Since these quantities are well defined at ε = 0, it suffices to show
their convergence.

First we show that the left-hand side converges. Note u is Lipschitz with constant
||∇u||∞. Therefore,

sup
x∈R

sup
t
|uε(t, x)− u(t, x)| = sup

x∈R

sup
t
|
ˆ

φ(y) (u(t− εy, x)− u(t, x)) dy| ≤ ||∇u||∞ε.

Thus uε(t,Xt) → u(t,Xt) uniformly P -a.s.
Now we consider the right-hand side. For Aε, note that since ut is Lipschitz

in x uniformly in t, by an application of Lebesgue’s differentiation theorem, we
have that uε

t → ut for all x, Lebesgue-a.s. in t. Thus by the bounded convergence
theorem, we have that

sup
t∈[0,1]

|
ˆ t

0

uε
t(s,Xs)ds−

ˆ t

0

ut(s,Xs)ds| ≤
ˆ 1

0

|uε
t(s,Xs)− ut(s,Xs)|ds → 0.

Thus, Aε → A uniformly P -a.s.
The convergence for Bε follows from a similar argument. Since ux, uxx ∈ Cb,

commuting derivatives with mollification shows that uε
x and uε

xx converge to ux

and uxx pointwise. Then, the bounded convergence theorem implies that Bε → B
uniformly P -a.s. just as before.

Now we prove uniform a.s. convergence of Cε to C. Combining the above
arguments proves that Cε is uniformly a.s. convergent, so it suffices to check its
convergence to C in probability. By Doob’s inequality and Ito’s isometry,

P

(
sup

t∈[0,1]

|
ˆ t

0

uε
x

√
adWs −

ˆ t

0

ux

√
adWs| ≥ η

)
�a

1

η2

ˆ 1

0

E|uε
x − ux|2 → 0,

where the last convergence is again by the bounded convergence theorem. �

We finish with a discussion of Duhamel’s principle, which justifies the introduc-
tion of the fixed point equation (2) in the proof of Theorem 4. Note that since our
weak solutions satisfy ∂xu ∈ L∞ by definition, they have at most linear growth.

Proposition 24. Suppose that u, f : [0,∞) × R → R, g : R → R have at most
linear growth. Assume that f is Borel measurable and that u and g are continuous.
Then
(9)

0 =

ˆ ∞

0

ˆ
R

u∂tφ+ u∂xxφ+ fφ dxdt+

ˆ
R

φ (0, x) g (x) dx ∀φ ∈ C∞
c ([0,∞)× R)

if and only if

(10) u (t) = etΔg +

ˆ t

0

e(t−s)Δf (s) ds ∀ t ∈ [0,∞).

Remark 25. Although the assumption of linear growth is not optimal, it will be
sufficient for our application. Implicit here is a uniqueness theorem for weak solu-
tions of the heat equation with at most linear growth. Recall that even classical
solutions fail to be unique without certain growth conditions at |x| = ∞ (see e.g.
[12, Ch. 7]).
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Proof. That u satisfies (9) if it satisfies (10) is clear in the case that f, g are smooth
and compactly supported. Then, a cutoff and mollification argument upgrades the
result to the given class.

In the other direction, suppose that u satisfies (9). Define the function

Θ (t, x) = u (t, x)−
[
etΔg (·)

]
(x)−

ˆ t

0

[
e(t−s)Δf (s, ·)

]
(x) ds,

which is continuous and satisfies Θ (0, ·) = 0. By a similar argument as above,
Θ satisfies the heat equation in the sense of distributions on R+ × R. Since the
heat operator is hypoelliptic, it follows that Θ is a classical solution [9]. By its
definition, Θ grows at most linearly since the same is true for u, f , and g. By the
maximum principle for the heat equation in unbounded domains [12], we conclude
that Θ = 0. �
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[13] Marc Mézard, Giorgio Parisi, and Miguel Angel Virasoro, Spin glass theory and beyond, World
Scientific Lecture Notes in Physics, vol. 9, World Scientific Publishing Co., Inc., Teaneck, NJ,
1987. MR1026102 (91k:82066)

[14] Dmitry Panchenko, A question about the Parisi functional, Electron. Comm. Probab. 10
(2005), 155–166 (electronic), DOI 10.1214/ECP.v10-1145. MR2162815 (2006m:82063)

[15] Dmitry Panchenko, The Sherrington-Kirkpatrick model, Springer Monographs in Mathemat-
ics, Springer, New York, 2013. MR3052333

[16] Dmitry Panchenko, The Parisi formula for mixed p-spin models, Ann. Probab. 42 (2014),
no. 3, 946–958, DOI 10.1214/12-AOP800. MR3189062

[17] Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 233, Springer-Verlag, Berlin-New York, 1979. MR532498 (81f:60108)

[18] Michel Talagrand, Parisi measures, J. Funct. Anal. 231 (2006), no. 2, 269–286, DOI
10.1016/j.jfa.2005.03.001. MR2195333 (2007h:82035)

[19] Michel Talagrand, The Parisi formula, Ann. of Math. (2) 163 (2006), no. 1, 221–263, DOI
10.4007/annals.2006.163.221. MR2195134 (2007m:82041)

[20] Michel Talagrand, Mean field models for spin glasses. Volume I, Basic examples, Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathemat-
ics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in
Mathematics], vol. 54, Springer-Verlag, Berlin, 2011. MR2731561 (2012c:82036)

[21] Michel Talagrand, Mean field models for spin glasses. Volume II, Advanced replica-symmetry
and low temperature, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series
of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A
Series of Modern Surveys in Mathematics], vol. 55, Springer, Heidelberg, 2011. MR3024566

Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New

York 10012

E-mail address: aukosh@cims.nyu.edu

Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New

York 10012

E-mail address: tobasco@cims.nyu.edu

http://www.ams.org/mathscinet-getitem?mr=831655
http://www.ams.org/mathscinet-getitem?mr=831655
http://www.ams.org/mathscinet-getitem?mr=1026102
http://www.ams.org/mathscinet-getitem?mr=1026102
http://www.ams.org/mathscinet-getitem?mr=2162815
http://www.ams.org/mathscinet-getitem?mr=2162815
http://www.ams.org/mathscinet-getitem?mr=3052333
http://www.ams.org/mathscinet-getitem?mr=3189062
http://www.ams.org/mathscinet-getitem?mr=532498
http://www.ams.org/mathscinet-getitem?mr=532498
http://www.ams.org/mathscinet-getitem?mr=2195333
http://www.ams.org/mathscinet-getitem?mr=2195333
http://www.ams.org/mathscinet-getitem?mr=2195134
http://www.ams.org/mathscinet-getitem?mr=2195134
http://www.ams.org/mathscinet-getitem?mr=2731561
http://www.ams.org/mathscinet-getitem?mr=2731561
http://www.ams.org/mathscinet-getitem?mr=3024566

	1. Introduction
	2. Well-posedness of the Parisi PDE
	2.1. Existence of a fixed point
	2.2. Regularity of fixed points
	2.3. Uniqueness of fixed points
	2.4. Continuous dependence of solutions

	3. A variational formulation for the Parisi PDE
	4. Strict convexity
	5. Appendix
	Acknowledgements
	References

