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(Communicated by Irena Peeva)

Abstract. The structure of the complex RHomR(R/I,R) is explored for an
Ulrich ideal I in a Cohen–Macaulay local ring R. As a consequence, it is
proved that in a one-dimensional almost Gorenstein but non-Gorenstein local
ring, the only possible Ulrich ideal is the maximal ideal. It is also studied
when Ulrich ideals have the same minimal number of generators.

1. Introduction

This paper studies Ulrich ideals of Cohen–Macaulay local rings and almost
Gorenstein local rings.

Ulrich ideals are newcomers. They were introduced by [7] in 2014. Typical
examples of Ulrich ideals are the maximal ideal of a Cohen–Macaulay local ring
with minimal multiplicity. The syzygy modules of Ulrich ideals are known to be
well behaved [7]. We refer the reader to [7] for a basic theory of Ulrich ideals and
[8] for the results about the ubiquity of Ulrich ideals of two-dimensional rational
singularities and the representation-theoretic aspects of Ulrich ideals.

Almost Gorenstein rings are also newcomers. They form a class of Cohen–
Macaulay rings, which are not necessarily Gorenstein but still good, hopefully next
to the Gorenstein rings. The notion of almost Gorenstein local rings dates back
to the article [3] of Barucci and Fröberg in 1997. They introduced almost Goren-
stein rings in the case where the local rings are of dimension one and analytically
unramified. We refer the reader to [3] for a well-developed theory of almost sym-
metric numerical semigroups. The notion of almost Gorenstein local rings in the
present paper is, however, based on the definition given by the authors [9] in 2015
for Cohen–Macaulay local rings of arbitrary dimension. See [6] for a basic the-
ory of almost Gorenstein local rings of dimension one which might be analytically
ramified.

One of the purposes of this paper is to clarify the structure of Ulrich ideals of
almost Gorenstein local rings. The motivation for the research comes from a recent
result of Kei-ichi Watanabe, which asserts that non-Gorenstein almost Gorenstein
numerical semigroup rings possess no Ulrich monomial ideals except the maximal
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ideal. This result essentially says that there should be some restriction of the
distribution of Ulrich ideals of an almost Gorenstein but non-Gorenstein local ring.
Our research started from the attempt to understand this phenomenon. Along
the way, we recognized that his result holds true for every one-dimensional almost
Gorenstein non-Gorenstein local ring, and finally reached new knowledge about the
behavior of Ulrich ideals, which is reported in this paper.

Let us state the results of this paper, explaining how this paper is organized. In
Section 2 we shall prove the following structure theorem of the complex
RHomR(R/I,R) for an Ulrich ideal I.

Theorem 1.1. Let R be a Cohen–Macaulay local ring of dimension d ≥ 0. Let I be
a non-parameter Ulrich ideal of R containing a parameter ideal of R as a reduction.
Denote by ν(I) the minimal number of generators of I, and put t = ν(I)− d. Then
there is an isomorphism

RHomR(R/I,R) ∼=
⊕
i∈Z

(R/I)⊕ui [−i]

in the derived category of R, where

ui =

⎧⎪⎨
⎪⎩
0 (i < d),

t (i = d),

(t2 − 1)ti−d−1 (i > d).

In particular, one has ExtiR(R/I,R) ∼= (R/I)⊕ui for each integer i.

This theorem actually yields many consequences and applications. Let us state
some of them. The Bass numbers of R are described in terms of those of R/I and the
ui, which recovers a result in [7]. Finiteness of the G-dimension of I is characterized
in terms of ν(I), which implies that if R is G-regular in the sense of [13] (e.g., R
is a non-Gorenstein ring with minimal multiplicity, or is a non-Gorenstein almost
Gorenstein ring), then one must have ν(I) ≥ d + 2. For a non-Gorenstein almost
Gorenstein ring with prime Cohen–Macaulay type, all the Ulrich ideals have the
same minimal number of generators. For every one-dimensional non-Gorenstein
almost Gorenstein local ring the only non-parameter Ulrich ideal is the maximal
ideal. This recovers the result of Watanabe mentioned above, and thus our original
aim of the research stated above is achieved.

Now we naturally become interested in whether or not the minimal numbers
of generators of Ulrich ideals of an almost Gorenstein non-Gorenstein local ring
are always constant. We will explore this in Section 3 to obtain some supporting
evidence for the affirmativity. By the way, it turns out to be no longer true if the
base local ring is not almost Gorenstein. In Section 4 we will give a method of
constructing Ulrich ideals which possesses different numbers of generators.

Notation 1.2. In what follows, unless otherwise specified, R stands for a d-dimen-
sional Cohen–Macaulay local ring with maximal ideal m and residue field k. For a
finitely generated R-module M , denote by �R(M), νR(M), rR(M) and e0m(M) the
length of M , the minimal number of generators of M , the Cohen–Macaulay type
of M and the multiplicity of M with respect to m. Let v(R) denote the embedding
dimension of R, i.e., v(R) = νR(m). For each integer i we denote by μi(R) the i-th

Bass number of R, namely, μi(R) = dimk Ext
i
R(k,R). Note that μd(R) = r(R).

The subscript indicating the base ring is often omitted.
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2. The structure of RHomR(R/I,R) for an Ulrich ideal I

In this section, we establish a structure theorem ofRHomR(R/I,R) for an Ulrich
ideal I of a Cohen–Macaulay local ring, and derive from it many consequences and
applications. First of all, we fix our notation and assumptions on which all the
results in this section are based.

Setup 2.1. Throughout this section, let I be a non-parameter m-primary ideal of
R containing a parameter ideal Q of R as a reduction. Suppose that I is an Ulrich
ideal, that is, I2 = QI and I/I2 is R/I-free. Put t = ν(I)− d > 0 and

ui =

⎧⎪⎨
⎪⎩
0 (i < d),

t (i = d),

(t2 − 1)ti−d−1 (i > d).

Remark 2.2. (1) The condition that I contains a parameter ideal Q of R as a
reduction is automatically satisfied if k is infinite.
(2) The condition I2 = QI is independent of the choice of minimal reductions Q of
I.

The following is the main result of this section.

Theorem 2.3. There is an isomorphism

RHomR(R/I,R) ∼=
⊕
i∈Z

(R/I)⊕ui [−i]

in the derived category of R. Hence for each integer i one has an isomorphism

ExtiR(R/I,R) ∼= (R/I)⊕ui

of R-modules. In particular, ExtiR(R/I,R) is a free R/I-module.

Proof. Let us first show that ExtiR(R/I,R) ∼= (R/I)⊕ui for each i. We do it by
making three steps.

Step 1. As I is an m-primary ideal, R/I has finite length as an R-module. Hence

we have Ext<d
R (R/I,R) = 0.

Step 2. There is a natural exact sequence 0 → I/Q
f−→ R/Q

g−→ R/I → 0, which
induces an exact sequence

ExtdR(R/I,R) −→ ExtdR(R/Q,R) −→ ExtdR(I/Q,R)

−→ Extd+1
R (R/I,R) −→ Extd+1

R (R/Q,R).

Since Q is generated by an R-sequence, we have Extd+1
R (R/Q,R) = 0. There is a

commutative diagram

ExtdR(R/I,R) ��

∼=
��

ExtdR(R/Q,R) ��

∼=
��

ExtdR(I/Q,R)

∼=
��

0 �� HomR/Q(R/I,R/Q)
g∗

��

∼=
��

HomR/Q(R/Q,R/Q)
f∗

��

∼=
��

HomR/Q(I/Q,R/Q)

0 �� (Q : I)/Q
h �� R/Q
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with exact rows, where the vertical maps are natural isomorphisms and h is an
inclusion map. Thus we get an exact sequence

0 → (Q : I)/Q
h−→ R/Q → HomR/Q(I/Q,R/Q) → Extd+1

R (R/I,R) → 0.

Note here that I/Q ∼= (R/I)⊕t and Q : I = I hold; see [7, Lemma 2.3 and Corollary

2.6]. Hence ExtdR(R/I,R) ∼= (Q : I)/Q = I/Q ∼= (R/I)⊕t. We have isomorphisms

HomR/Q(I/Q,R/Q) ∼= HomR/Q(R/I,R/Q)⊕t ∼= (I/Q)⊕t ∼= (R/I)⊕t2 , and there-
fore we obtain an exact sequence

0 → R/I → (R/I)⊕t2 → Extd+1
R (R/I,R) → 0.

This exact sequence especially says that Extd+1
R (R/I,R) has finite projective di-

mension as an R/I-module. Since R/I is an Artinian ring, it must be free, and we

see that Extd+1
R (R/I,R) ∼= (R/I)⊕t2−1.

Step 3. It follows from [7, Corollary 7.4] that SyziR(R/I) ∼= SyzdR(R/I)⊕ti−d

for
each i ≥ d. Hence we have

Exti+1
R (R/I,R) ∼= Ext1R(Syz

i
R(R/I), R) ∼= Ext1R(Syz

d
R(R/I)⊕ti−d

, R)

∼= Extd+1
R (R/I,R)⊕ti−d ∼= (R/I)⊕(t2−1)ti−d

for all i ≥ d.

Combining the observations in Steps 1, 2 and 3 yields that ExtiR(R/I,R) ∼=
(R/I)⊕ui for all i ∈ Z.

Take an injective resolution E of R. Then note that C := HomR(R/I,E) is a
complex of R/I-modules with Hi(C) ∼= ExtiR(R/I,R) ∼= (R/I)⊕ui for every i ∈ Z.
Hence each homology Hi(C) is a projective R/I-module. Applying [1, Lemma 3.1]
to the abelian category ModR/I, the category of (all) R/I-modules, we obtain
isomorphisms RHomR(R/I,R) ∼= C ∼=

⊕
i∈Z

Hi(C)[−i] ∼=
⊕

i∈Z
(R/I)⊕ui [−i] in

the derived category of R/I. This completes the proof of the theorem. �

The remainder of this section is devoted to producing consequences and appli-
cations of the above theorem. First, we investigate the vanishing of Ext modules.

Corollary 2.4. Let M be a (possibly infinitely generated) R/I-module. There is
an isomorphism

ExtiR(M,R) ∼=
⊕
j∈Z

Exti−j
R/I(M,R/I)⊕uj

for each integer i. In particular, if Ext�0
R (M,R) = 0, then Ext�0

R/I(M,R/I) = 0.

Proof. There are isomorphisms

RHomR(M,R) ∼= RHomR/I(M,RHomR(R/I,R))

∼=
⊕
j∈Z

RHomR/I(M,R/I)⊕uj [−j],

where the first isomorphism holds by adjointness (see [5, (A.4.21)]) and the second
one follows from Theorem 2.3. Taking the i-th homologies, we get an isomorphism
ExtiR(M,R) ∼=

⊕
j∈Z

Exti−j
R/I(M,R/I)⊕uj for all integers i. Since ud = t > 0, the

module Exti−d
R/I(M,R/I) is a direct summand of ExtiR(M,R). Therefore, when

Ext�0
R (M,R) = 0, one has Ext�0

R/I(M,R/I) = 0. �
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Now we can calculate the Bass numbers of R in terms of those of R/I.

Theorem 2.5. There are equalities

μi(R) =
∑
j∈Z

ujμi−j(R/I) =

{
0 (i < d),∑i

j=d ujμi−j(R/I) (i ≥ d).

In particular, one has
t · r(R/I) = r(I/Q) = r(R).

Proof. Applying Corollary 2.4 to the R/I-module k gives rise to an isomorphism

ExtiR(k,R) ∼=
⊕

j∈Z
Exti−j

R/I(k,R/I)⊕uj for each integer i. Comparing the k-dimen-

sion of both sides, we get μi(R) =
∑

j∈Z
ujμi−j(R/I). Hence we have r(R) =

μd(R) = udμ0(R/I) = t · r(R/I) = r(I/Q), where the last equality comes from
the isomorphism I/Q ∼= (R/I)⊕t (see [7, Lemma 2.3]). Thus all the assertions
follow. �

The above theorem recovers a result of Goto, Ozeki, Takahashi, Watanabe and
Yoshida.

Corollary 2.6 ([7, Corollary 2.6(b)]). The following are equivalent:

(1) R is Gorenstein.
(2) R/I is Gorenstein and ν(I) = d+ 1.

Proof. Theorem 2.5 implies t · r(R/I) = r(R). Hence r(R) = 1 if and only if
t = r(R/I) = 1. This shows the assertion. �

To state our next results, let us recall some notions.
A totally reflexive R-module is by definition a finitely generated reflexive R-

module G such that Ext>0
R (G,R) = 0 = Ext>0

R (HomR(G,R), R). Note that every
finitely generated free R-module is totally reflexive. The Gorenstein dimension (G-
dimension for short) of a finitely generated R-module M , denoted by GdimR M , is
defined as the infimum of integers n ≥ 0 such that there exists an exact sequence

0 → Gn → Gn−1 → · · · → G0 → M → 0

of R-modules with each Gi totally reflexive.
A Noetherian local ring R is called G-regular if every totally reflexive R-module

is free. This is equivalent to saying that the equality GdimR M = pdR M holds for
all finitely generated R-modules M .

Remark 2.7. The following local rings are G-regular:

• Regular local rings.
• Non-Gorenstein Cohen–Macaulay local rings with minimal multiplicity.
• Non-Gorenstein almost Gorenstein local rings.

For the proofs, we refer to [13, Proposition 1.8], [2, Examples 3.5] (see also [14,
Corollary 2.5]) and [9, Corollary 4.5], respectively.

Suppose that R admits a canonical module KR. We say that R is almost Goren-
stein if there exists an exact sequence

0 → R → KR → C → 0

of R-modules such that C is an Ulrich R-module, i.e., C is a Cohen–Macaulay
R-module (of dimension d− 1) with e0m(C) = νR(C).
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Using our Theorem 2.3, we establish a characterization of finiteness of the G-
dimension of R/I in terms of the minimal number of generator of I.

Theorem 2.8. One has

ν(I) = d+ 1 ⇐⇒ GdimR R/I < ∞.

In particular, if R is G-regular, then ν(I) ≥ d+ 2.

Proof. As to the first assertion, it suffices to show that t = 1 if and only if R/I has
finite G-dimension as an R-module.

The ‘if’ part: As R/I has depth 0, it has G-dimension d by [5, (1.4.8)], and

hence Ext>d
R (R/I,R) = 0 by [5, (1.2.7)]. It follows from Theorem 2.3 that ui = 0

for all i > d. In particular, we have t2 − 1 = ud+1 = 0, which implies t = 1.
The ‘only if’ part: By Theorem 2.3 we have RHomR(R/I,R) ∼= R/I[−d]. It is

observed from this that the homothety morphism

R/I → RHomR(RHomR(R/I,R), R)

is an isomorphism. It follows from [5, (2.2.3)] that the R-module R/I has finite
G-dimension.

Thus the first assertion of the theorem follows. As for the second assertion,
suppose that t = 1. Then R/I has finite G-dimension, and so does I by [5, (1.2.9)].
Since R is G-regular, I has finite projective dimension. As I is an Ulrich ideal, I/I2

is a free R/I-module. Hence we see from [4, Theorem 2.2.8] that I is generated
by an R-sequence, which contradicts the assumption that I is a non-parameter
m-primary ideal. Therefore we have t ≥ 2, which means ν(I) ≥ d+ 2. �

As a consequence of the above theorem, we have a characterization of Gorenstein
local rings.

Corollary 2.9. The following are equivalent:

(1) R is Gorenstein.
(2) There is an Ulrich ideal I of R with finite G-dimension such that R/I is Goren-

stein.

Proof. (1) ⇒ (2): Any parameter ideal I of R is such an ideal as in the condition
(2).

(2) ⇒ (1): It is trivial if I is a parameter ideal, so suppose that I is not so.
The Gorensteinness of R/I implies μ0(R/I) = 1 and μ>0(R/I) = 0, and hence
μi(R) = ui for all i ≥ d by Theorem 2.5. Since R/I has finite G-dimension, we
have t = 1 by Theorem 2.8, whence ud = 1 and u>d = 0. Thus we get μd(R) = 1
and μ>d(R) = 0, which shows that R is Gorenstein. �

Remark 2.10. Corollary 2.9 is a special case of [12, Theorem 2.3], which implies
that a (not necessarily Cohen–Macaulay) local ring R is Gorenstein if and only if
it possesses a (not necessarily Ulrich) ideal I of finite G-dimension such that R/I
is Gorenstein.

Using our theorems, we observe that the minimal numbers of generators of Ulrich
ideals are constant for certain almost Gorenstein rings.

Corollary 2.11. Let R be a non-Gorenstein almost Gorenstein local ring such that
r(R) is a prime number. Then R/I is a Gorenstein ring and ν(I) = r(R) + d.
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Proof. It follows from Theorem 2.5 that t · r(R/I) = r(R). Since t > 1 by Theorem
2.8 and Remark 2.7, we must have that r(R/I) = 1 and r(R) = t = ν(I)− d. �

Corollary 2.12. Let R be a two-dimensional rational singularity. Then ν(I) =
r(R) + 2.

Proof. Because r(R/I) = 1 by [8, Corollary 6.5], the equality follows from Theorem
2.5. �

The following corollary is another consequence of Theorem 2.3. Note that such
an exact sequence as in the corollary exists for every almost Gorenstein ring.

Corollary 2.13. Suppose that R admits a canonical module KR, and that there is
an exact sequence 0 → R → KR → C → 0 of R-modules. If ν(I) ≥ d + 2, then
AnnR C ⊆ I.

Proof. We set a = AnnR C and M = SyzdR(R/I). Then M is a maximal Cohen–
Macaulay R-module. Hence Ext>0

R (M,KR) = 0, and in particular there is a surjec-

tion HomR(M,C) � Ext1R(M,R). Since Ext1R(M,R) ∼= Extd+1
R (R/I,R) and t > 1,

the ideal a annihilates R/I by Theorem 2.3, whence I contains a. �

Now we state the last theorem in this section, whose first assertion is proved by
Kei-ichi Watanabe in the case where R is a numerical semigroup ring over a field
and all ideals considered are monomial.

Theorem 2.14. Let R be a non-Gorenstein local ring of dimension d. Assume that
R is almost Gorenstein, that is, there exists an exact sequence 0 → R → KR →
C → 0 such that C is Ulrich.

(1) If d = 1, then I = m.
(2) Suppose that k is infinite. If mC = IC, then I = m.

Proof. (1) As C 
= 0 = mC, we have ν(I) ≥ d+2 by Theorem 2.8 and Remark 2.7.
Hence I = m by Corollary 2.13.

(2) We may assume by (1) that d > 1 and that our assertion holds true for
d − 1. We set a = AnnR C and S = R/a. Then mS is integral over IS, because
mC = IC. Therefore, without loss of generality, we may assume that a = a1 (a part
of a minimal basis of a reduction Q = (a1, a2, . . . , ad) of I) is a superficial element
of C with respect to m. Let R = R/(a), I = I/(a), and C = C/aC. Then R is a
non-Gorenstein almost Gorenstein ring, C is an Ulrich R-module, and we have an
exact sequence 0 → R → KR → C → 0 of R-modules ([9, Proof of Theorem 3.7

(2)]), because KR
∼= KR/aKR ([11, Korollar 6.3]). Consequently, since mC = IC,

we get IR = mR by the hypothesis of induction, so that I = m. �

3. The expected core of Ulrich ideals

In this section let (R,m, k) be a d-dimensional Cohen-Macaulay local ring with
canonical module KR. We denote by XR the set of non-parameter Ulrich ideals of
R. Let

a =
∑

f∈KR such that 0:Rf=0

[Rf :R KR] ,

which is the expected core of Ulrich ideals in the case where R is an almost Goren-
stein but non-Gorenstein ring. In fact we have the following.
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Theorem 3.1. Suppose that R is a non-Gorenstein almost Gorenstein local do-
main. Then the following assertions hold true:

(1) If I ∈ XR, then a ⊆ I.
(2) Suppose that Rp is a Gorenstein ring for every p ∈ SpecR\{m}. Then

√
a = m.

(3) Suppose that dimR = 2 and r(R) = 2. If Rp is a Gorenstein ring for every
p ∈ SpecR \ {m}, then XR is a finite set and every I ∈ XR is minimally
generated by four elements.

Proof. (1) For each f ∈ KR such that 0 :R f = 0 we have an exact sequence

0 → R
ϕ−→ KR → C → 0

with ϕ(1) = f and applying Corollary 2.13 to the sequence, we get a ⊆ I by
Theorem 2.8.

(2) Let p ∈ SpecR \ {m}. Then [KR]p = KRp

∼= Rp, since Rp is a Gorenstein

ring. Choose an element f ∈ KR so that [KR]p = Rp
f
1 . Then 0 :R f = 0 and

Rf :R KR 
⊆ p. Hence a 
⊆ p and therefore
√
a = m.

(3) We have an exact sequence

0 → R → KR → C → 0

of R-modules such that C = R/p is a DVR ([9, Corollary 3.10]). Then p ⊆ a by the
definition of a. Since a 
= p by assertion (2), we have a = p + xnR for some n > 0
where x ∈ m such that m = p+ (x). Let I ∈ XR. Then because a ⊆ I by assertion
(1), we get I = p + x�R with 1 ≤ � ≤ n. Hence the set XR is finite. By Corollary
2.11 every I ∈ XR is minimally generated by four elements. �

Corollary 3.2. Let R be a two-dimensional normal local ring. Assume that R is
a non-Gorenstein almost Gorenstein ring with r(R) = 2. Then XR is a finite set
and every I ∈ XR is minimally generated by four elements.

Remark 3.3. We know no examples of non-Gorenstein almost Greenstein local rings
in which Ulrich ideals do not possess a common number of generators.

We explore a few examples. Let S = k[X,Y, Z,W ] be the polynomial ring over
a field k. Let n ≥ 1 be an integer and consider the matrix M = (X

n Y Z
Y Z W ). We set

T = S/I2(M) where I2(M) denotes the ideal of S generated by two by two minors of
M. Let x, y, z, w denote the images of X,Y, Z,W in T respectively. We set R = TM ,
where M = (x, y, z, w)T .

Theorem 3.4. We have the following:

(1) R is a non-Gorenstein almost Gorenstein local integral domain with r(R) =
2.

(2) XR = {(x�, y, z, w)R | 1 ≤ � ≤ n}.
(3) R is a normal ring if and only if n = 1.

Proof. We regard S as a Z-graded ring so that degX = 1, deg Y = n + 1, degZ =
n+2, and degW = n+3. Then T ∼= k[s, snt, snt2, snt3] where s, t are indeterminates
over k. Hence T is an integral domain, and T is a normal ring if and only if n = 1.
The graded canonical module KT of T has the presentation of the form
(3.4.1)

S(−(n+ 3))⊕ S(−(n+ 4))⊕ S(−(n+ 5))

(
Xn Y Z
Y Z W

)

−−−−−−−−→ S(−3)⊕ S(−2)
ε−→ KR → 0.
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Since

KT /T ·ε(e1) ∼= [S/(Y, Z,W )](−2) and KT /T ·ε(e2) ∼= [S/(Xn, Y, Z)](−3)

where e1, e2 is the standard basis of S(−3) ⊕ S(−2), R is an almost Gorenstein
local ring with r(R) = 2. By Theorem 3.1 (1) every I ∈ XR contains (xn, y, z, w)R,
so that I = (x�, y, z, w)R with 1 ≤ � ≤ n. It is straightforward to check that
(x�, y, z, w)R is actually an Ulrich ideal of R for every 1 ≤ � ≤ n. �

Let k be a field and let T = k[Xn, Xn−1Y, . . . , XY n−1, Y n] be the Veronesean
subring of the polynomial ring S = k[X,Y ] of degree n ≥ 3. Let R = TM and
m = MTM , where M denotes the graded maximal ideal of T . Then R is a non-
Gorenstein almost Gorenstein normal local ring ([9, Example 10.8]) and we have
the following. Let us note a brief proof in our context.

Example 3.5 (cf. [8, Example 7.3]). XR = {m}.

Proof. Since M2 = (Xn, Y n)M , we have m ∈ XR. Because

KR = (Xn−1Y,Xn−2Y 2, . . . , X2Y n−2, XY n−1)R,

it is direct to check that M ⊆
∑n−1

i=1

[
R·XiY n−i :R KR

]
. Hence XR = {m} by

Theorem 3.1 (1). �

Let S = k[[X,Y, Z]] be the formal power series ring over an infinite field k. We
choose an element f ∈ (X,Y, Z)2 \ (X,Y, Z)3 and set R = S/(f). Then R is a
two-dimensional Cohen–Macaulay local ring of multiplicity 2. Let m denote the
maximal ideal of R and consider the Rees algebra R = R(m�) of m� with � ≥ 1.
Hence

R = R[m�·t] ⊆ R[t]

where t is an indeterminate over R. Let M = m+R+ and set A = RM, n = MRM.
Then A is not a Gorenstein ring but almost Gorenstein ([10, Example 2.4]). We
furthermore have the following.

Theorem 3.6. XA = {n}.

Proof. We have m2 = (a, b)m with a, b ∈ m. Let Q = (a, b− a�t, b�t). Then Q ⊆ M

and M2 = QM, so that n ∈ XA. Conversely, let J ∈ XA and set K = J∩R. We put
I = m� and choose elements x1, x2, . . . , xq ∈ I (q := ν(I) = 2�+1) so that the ideal
(xi, xj) of R is a reduction of I for each pair (i, j) with 1 ≤ i < j ≤ q. (Hence xi, xj

form a super-regular sequence with respect to I, because grI(R) =
⊕

n≥0 I
n/In+1

is a Cohen–Macaulay ring.) Then

q∑
i=1

[xiR :R IR] ⊆ K

by Corollary 2.13, since KR(1) ∼= IR ([10, Proposition 2.1]). We have for each
1 ≤ i ≤ q that

xiR :R IR =
∑
n≥0

(
xiI

n−1
)
tn,

because each pair xi, xj (i 
= j) forms a super-regular sequence with respect to I.
Consequently,

(xi, xit)R ⊆ K for all 1 ≤ i ≤ q.
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Thus I +R+ ⊆ K and hence K = b+R+ for some m-primary ideal b of R. Notice
that [K/K2]1 = I/bI is R/b-free, since K/K2 is R/K- free and R/K = [R/K]0 =
R/b. We then have b = m. In fact, let us write m = (a, b, c) so that each two of
a, b, c generate a reduction of m. Set q = (a, b). Then since q is a minimal reduction
of m, the elements {a�−ibi}0≤i≤� form a part of a minimal basis, say {a�−ibi}0≤i≤�

and {ci}1≤i≤�, of I = m�. Let {ei}0≤i≤2� be the standard basis of R⊕(2�+1) and let

ϕ : R⊕(2�+1) =

2�⊕
i=0

Rei → m
�

be the R-linear map defined by ϕ(ei) = a�−ibi for 0 ≤ i ≤ � and ϕ(ei+�) = ci for
1 ≤ i ≤ �. Then setting Z = Kerϕ, we get

ξ =

⎡
⎢⎣

b
−a
0
...
0

⎤
⎥⎦ ∈ Z

and ξ 
∈ mZ because ξ 
∈ m2·R⊕(2�+1). Hence b,−a ∈ b, because I/bI is R/b-free.
We similarly have c,−a ∈ b. Hence b = m, so that K = m + R+ = M. Thus
J = n. �

4. A method of constructing Ulrich ideals

with a different number of generators

The purpose of this section is to show that in general the numbers of generators
of Ulrich ideals are not necessarily constant. To begin with, we note the following.

Lemma 4.1. Let ϕ : (A, n) → (R,m) be a flat local homomorphism of Cohen–
Macaulay local rings of the same dimension. Let q be a parameter ideal of A and
assume that n2 = qn. Then J = nR is an Ulrich ideal of R.

Proof. We set Q = qR. Then

J/Q ∼= R⊗A (n/q) ∼= R⊗A (A/n)⊕t

where t = v(A)− dimA ≥ 0. Hence J is an Ulrich ideal of R, as J2 = QJ . �

When dimR = 0 and R contains a field, every Ulrich ideal of R is obtained as
in Lemma 4.1.

Proposition 4.2. Let (R,m) be an Artinian local ring which contains a coefficient
field k. Let I = (x1, x2, . . . , xn) (n = ν(I)) be an Ulrich ideal of R. We set
A = k[x1, x2, . . . , xn] ⊆ R and n = (x1, x2, . . . , xn)A. Then n is the maximal ideal
of A, I = nR, and R is a finitely generated free A-module.

Proof. Let r = dimk R/I. Hence r = νA(R), as I = nR. Let ϕ : A⊕r → R be an
epimorphism of A-modules. Then (A/n)⊗Aϕ : (A/n)⊕r → R/I is an isomorphism,
so that the induced epimorphism φ : n⊕r → I must be an isomorphism, because
dimk n

⊕r = nr (remember that νA(n) = n) and dimk I = dimk(R/I)⊕n = nr.
Hence ϕ : A⊕r → R is an isomorphism. �
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When dimR > 0, the situation is more complicated, as we see in the following.

Example 4.3. Let V = k[[t]] be the formal power series ring over a field k and
set R = k[[t4, t5]] in V . Then (t4, t10), (t8, t10) are Ulrich ideals of R. We set A =
k[[t4, t10]] and B = k[[t8, t10, t12, t14]]. Let mA and mB be the maximal ideals of A
and B, respectively. Then A and B are of minimal multiplicity with (t4, t10) = mAR
and (t8, t10) = mBR. Notice that R ∼= A⊕2 as an A-module, while R is not a free
B-module. We actually have rankBR = 2 and νB(R) = 4.

Let (A, n) be a Noetherian local ring and S = A[X1, X2, . . . , X�] (� > 0) the
polynomial ring. We choose elements a1, a2, . . . , a� ∈ A and set

c = (X2
i − ai | 1 ≤ i ≤ �) + (XiXj | 1 ≤ i, j ≤ � such that i 
= j).

We put R = S/c. Then R is a finitely generated free A-module of rankAR = �+ 1.

We get R = A·1 +
∑�

i=1 A·xi, where xi denotes the image of Xi in R. With this
notation we readily get the following. We note a brief proof.

Lemma 4.4. Suppose that a1, a2, . . . , a� ∈ n. Then R is a local ring with maximal
ideal m = nR+ (xi | 1 ≤ i ≤ �).

Proof. Let M ∈ MaxR and 1 ≤ i ≤ �. Then ai ∈ M since ai ∈ n = M ∩ A, while
xi ∈ M since x2

i = ai. Thus nR + (xi | 1 ≤ i ≤ �) ⊆ M . Hence we get the result,
because nR + (xi | 1 ≤ i ≤ �) ∈ MaxR. �

The following Theorem 4.5 and Lemma 4.1 give a simple method of constructing
Ulrich ideals with different numbers of generators. In fact, suppose that A has
maximal embedding dimension and let q be a parameter ideal of A such that n2 =
qn. Then the ideals I in Theorem 4.5 and J in Lemma 4.1 are both Ulrich ideals
of R but the numbers of generators are different, if one takes the integer � ≥ 1 so
that � 
= e0n(A)− 1.

Theorem 4.5. Let q be a parameter ideal of A and assume that

(1) A is a Cohen–Macaulay ring of dimension d and
(2) ai ∈ q2 for all 1 ≤ i ≤ �.

Let I = qR+ (xi | 1 ≤ i ≤ �). Then I is an Ulrich ideal of R with ν(I) = d+ �.

Proof. We set Q = qR, a = (ai | 1 ≤ i ≤ �), and b = (xi | 1 ≤ i ≤ �). Then Q is a
parameter ideal of R and I = Q+ b. Therefore I2 = QI since b2 = a ⊆ q2. We set
m = �A(A/q). Hence �A(R/I) ≤ m, as R/I is a homomorphic image of A/q. We
consider the epimorphism

(R/I)⊕� ϕ−→ I/Q → 0

of R-modules defined by ϕ(ei) = xi for each 1 ≤ i ≤ �, where {ei}1≤i≤� denotes
the standard basis of (R/I)⊕� and xi denotes the image of xi in I/Q. Then ϕ is
an isomorphism, since

�A(I/Q) = �A(R/Q)− �A(R/I) ≥ (�+ 1)m−m = �m ≥ �A((R/I)⊕�).

Thus I is an Ulrich ideal of R with ν(I) = d+ �. �
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Example 4.6. Let 0 < a1 < a2 < · · · < an (n ≥ 3) be integers such that
gcd(a1, a2, . . . , an) = 1. Let L = 〈a1, a2, . . . , an〉 be the numerical semigroup gener-
ated by a1, a2, . . . , an. Then c(L) = an − a1 + 1, where c(L) denotes the conductor
of L. We set A = k[[tai | 1 ≤ i ≤ n]] (k a field) and assume that v(A) = e0n(A) = n,
where n denotes the maximal ideal of A (hence a1 = n). We choose an odd integer
b ∈ L so that b ≥ an+a1+1 and consider the semigroup ring R = k[[{t2ai}1≤i≤n, t

b]]
of the numerical semigroup H = 2L + 〈b〉. Let ϕ : A → R be the homomorphism
of k-algebras such that ϕ(tai) = t2ai for each 1 ≤ i ≤ n. We set f = tb. Then
f2 = ϕ(f) ∈ ϕ(A) but f 
∈ ϕ(A), since b ∈ L is odd. Therefore R is a finitely gen-
erated free A-module with rankAR = 2 and R = A·1+A·f . Since f ∈ t2a1A by the
choice of the integer b, we get by Theorem 4.5 and Lemma 4.1 that I = (t2a1 , tb) and
J = (t2ai | 1 ≤ i ≤ n) are both Ulrich ideals of R with ν(I) = 2 and ν(J) = n > 2.
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