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A NEW CHARACTERIZATION OF GEODESIC SPHERES

IN THE HYPERBOLIC SPACE

JIE WU

(Communicated by Lei Ni)

Abstract. This paper gives a new characterization of geodesic spheres in
the hyperbolic space in terms of a “weighted” higher order mean curvature.
Precisely, we show that a compact hypersurface Σn−1 embedded in Hn with
V Hk being constant for some k = 1, · · · , n − 1 is a centered geodesic sphere.
Here Hk is the k-th normalized mean curvature of Σ induced from Hn and
V = cosh r, where r is a hyperbolic distance to a fixed point in Hn. Moreover,

this result can be generalized to a compact hypersurface Σ embedded in Hn

with the ratio V
(

Hk
Hj

)
≡ constant, 0 ≤ j < k ≤ n − 1 and Hj not vanishing

on Σ.

1. Introduction

A fundamental question about hypersurfaces in differential geometry is the rigid-
ity of the spheres. Alexandrov [3] studied the rigidity of spheres with constant mean
curvature. Precisely, he proved that a compact hypersurface embedded in the Eu-
clidean space with constant mean curvature must be a sphere. This is a well-known
Alexandrov theorem. Later, in [28], by exploiting a formula originated by Reilly
[27], Ros generalized Alexandrov’s result to the hypersurface embedded in the Eu-
clidean space with constant scalar curvature. Also, Korevaar [22] gave another proof
to this result by using the classical reflection method due to Alexandrov [3] and he
indicated that Alexandrov’s reflection method works as well for hypersurfaces in
the hyperbolic space and the upper hemisphere. Later, Ros [29] extended his result
to any constant k-mean curvature and provided another proof in [26] together with
Montiel. Explicitly, they proved the following result.

Theorem 1.1 ([26, 29]). Let Σn−1 be a compact hypersurface embedded in Eu-
clidean space R

n. If Hk is constant for some k = 1, · · · , n− 1, then Σ is a sphere.

There are many works generalizing Theorem 1.1. For instance, In [20, 21], Koh
gave a new characterization of spheres in terms of the ratio of two mean curva-
ture which generalized a previous result of Bivens [7]. Aledo-Aĺıas-Romero [2]
extended the result to compact space-like hypersurfaces with constant higher or-
der mean curvature in de Sitter space. In [18], He-Li-Ma-Ge studied the compact
embedded hypersurfaces with constant higher order anisotropic mean curvatures.
Recently, Brendle [8] showed an Alexandrov type result for hypersurfaces with
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constant mean curvature in the warped product spaces including the de-Sitter-
Schwarzschild manifold. Thereafter, Brendle-Eichmair [9] extended this result to
any star-shaped convex hypersurface with constant higher mean curvature in the
de-Sitter-Schwarzschild manifold. For the other generalizing works, see for example
[1, 4–6, 19, 24, 25, 30] and the references therein.

In a different direction, there is another kind of mean curvature with a weight
V in the hyperbolic space H

n which has recently attracted much interest. Here
V = cosh r, where r is the hyperbolic distance to a fixed point in Hn. For ex-
ample, the mean curvature integral

∫
Σ
V H1dμ with weight V appears naturally

in the definition of the quasi-local mass in Hn and the Penrose inequality for
asymptotically hyperbolic graphs [11]. The higher order mean curvature integrals∫
Σ
V H2k−1dμ also appear in [16] on the GBC mass for asymptotically hyperbolic

graphs. Comparing with the one without weight [14, 15, 23, 31], the correspond-
ing Alexandrov-Fenchel inequalities with weight also hold in the hyperbolic space.
Brendle-Hung-Wang [10] and de Lima-Girão [12] established optimal inequalities
for the mean curvature integral

∫
Σ
V H1dμ. More recently, in [16], Ge, Wang and

the author established an optimal inequality for the higher order mean curvature
integral

∫
Σ
V Hkdμ. These inequalities are related to the Penrose inequality for the

asymptotically hyperbolic graphs with a horizon type boundary. See [10–12,16] for
instance.

For the hyperbolic space Hn with the metric b = dr2 + sinh2 rdΘ2, where dΘ2

is the standard round metric on Sn−1, the “weight” V = cosh r appears quite
naturally. In fact, it satisfies the following equation:

(1.1) Nb � {V ∈ C∞(Hn)|HessbV = V b}.
Any element V in Nb satisfies that the Lorentzian metric γ = −V 2dt2+ b is a static
solution to the vacuum Einstein equation with the negative cosmological constant
Ric(γ) + nγ = 0. In fact, Nb is an (n+ 1)-dimensional vector space spanned by an
orthonormal basis of the following functions:

V(0) = cosh r, V(1) = x1 sinh r, · · · , V(n) = xn sinh r,

where x1, x2, · · · , xn are the coordinate functions restricted to Sn−1 ⊂ Rn. We
equip the vector space Nb with a Lorentz inner product η with signature (+,−,
· · · ,−) such that

(1.2) η(V(0), V(0)) = 1, and η(V(i), V(i)) = −1 for i = 1, · · · , n.

Note that the subset N
+
b consisting of positive functions is just the interior of the

future lightcone. Let N1
b be the subset of N+

b of functions V with η(V, V ) = 1. One
can check easily that every function V in N1

b has the following form:

V = cosh distb(x0, ·),
for some x0 ∈ Hn, where distb is the distance function with respect to the metric b.
Therefore, in the following we fix V = V(0) = cosh r. Throughout this paper, a cen-
tered geodesic sphere means a geodesic sphere with the center x0. Comparing with
the Euclidean case, V = 1 since the corresponding one to (1.1) is 1-dimensional.

It is natural to ask whether the previous rigidity results can be extended to
the hypersurface of the hyperbolic space in terms of some “weighted” higher mean
curvature. In studying this problem, the existence of function V makes things
subtle and it would be difficult to apply the classical Alexandrov reflection method
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[3] as in [22] to handle this problem. Hence some new ideas may be needed to attack
this problem. Comparing with the proof of Theorem 1.1, the classical Minkowski
integral identity (see (2.6) below) is not enough in this case. So one needs to
generalize the classical Minkowski integral identity a little bit. Note that in [16],
in order to establish the optimal inequality for the “weighted” higher order mean
curvature integral, they generalized (2.6) into some inequalities between Hk and
Hk−1 for a convex hypersurface in H

n. In fact, by the same proof, this condition
can be weakened into a k-convex hypersurface. Another ingredient in our proof is
a special case of Heintze-Karcher-type inequality due to [8]. Based on these two
aspects, we obtain the following results.

Theorem 1.2. Let Σn−1 be a compact hypersurface embedded in the hyperbolic
space Hn. If V Hk is constant for some k = 1, · · · , n − 1, then Σ is a centered
geodesic sphere.

The above rigidity result can be generalized to the hypersurface in terms of the
ratio of two higher order mean curvatures multiplying by weight.

Theorem 1.3. Let Σn−1 be a compact hypersurface embedded in the hyperbolic

space H
n. If the ratio V

(
Hk

Hj

)
is constant for some 0 ≤ j < k ≤ n− 1 and Hj does

not vanish on Σ, then Σ is a centered geodesic sphere.

2. Preliminaries

In this section, first let us recall some basic definitions and properties of higher
order mean curvature.

Let σk be the k-th elementary symmetry function σk : Rn−1 → R defined by

σk(Λ) =
∑

i1<···<ik

λi1 · · ·λik for Λ = (λ1, · · · , λn−1) ∈ R
n−1.

For a symmetric matrix B, let λ(B) = (λ1(B), · · · , λn(B)) be the eigenvalues of B.
We set

σk(B) := σk(λ(B)).

The G̊arding cone Γk is defined by

(2.1) Γk = {Λ ∈ R
n−1 |σj(Λ) > 0, ∀ j ≤ k}.

A symmetric matrix B is denoted Γk if λ(B) ∈ Γk. Let

(2.2) Hk =
σk

Ck
n−1

be the normalized k-th elementary symmetry function. As a convention, H0 = 1.
We have the following Newton-Maclaurin inequalities. For the proof, we refer to a
survey of Guan [17].

Lemma 2.1. For 1 ≤ j < k ≤ n − 1 and Λ ∈ Γk, we have the following Newton-
Maclaurin inequality:

(2.3) Hj ≥ (Hk)
j
k .

Moreover, equality holds in (2.3) at Λ if and only if Λ = c(1, 1, · · · , 1).
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Next, we recall a Minkowski relation proved in [16]. In order to state this result,
let us give some definitions and notation. Let V = cosh(r) and p = 〈DV, ξ〉 > 0 be
the support function. The k-th Newton transformation is defined as follows:

(2.4) (Tk)
i
j(B) :=

∂σk+1

∂bij
(B),

where B = (bij). Recall that we have the following Minkowski identity with weight
V (see [4]):

(2.5) ∇j(T
ij
k−1∇iV ) = −kpσk + (n− k)V σk−1.

Integrating the above equality and recalling (2.2), we get

(2.6)

∫
Σ

pHkdμ =

∫
Σ

V Hk−1dμ.

This is the classical Minkowski integral identity in Hn. In [16], (2.6) is generalized to
some inequalities between Hk and Hk−1, where they are called Minkowski integral
formulae. These integral inequalities play an important role in this paper. If the
principles of a hypersurface belong to the G̊arding cone Γk, it is called k-convex.

Proposition 2.2 ([16]). Let Σn−1 be a hypersurface isometric immersed in the
hyperbolic space H

n. We have

(2.7)

∫
Σ

pV Hkdμ =

∫
Σ

V 2Hk−1dμ+
1

kCk
n−1

∫
Σ

(Tk−1)
ij∇iV∇jV dμ.

Moreover, if Σ is k-convex, k ∈ {1, · · · , n− 1}, then we have

(2.8)

∫
Σ

pV Hkdμ ≥
∫
Σ

V 2Hk−1dμ.

Equality holds if and only if Σ is a centered geodesic sphere in H
n.

Proof. This has been proved in [16] under the condition that the hypersurface is
convex. By the same argument, the result holds for a k-convex hypersurface. For
the convenience of the reader, we include the proof. In view of (2.5) and (2.2), we
have

1

kCk
n−1

∇j(T
ij
k−1∇iV ) = −pHk +Hk−1V.

Multiplying the above equation by the function V and integrating by parts, one
obtains the desired result (2.7). Under the assumption that Σ is k-convex, the
(k − 1)-th Newton tensor Tk−1 is positively definite (for the proof see the one of
Proposition 3.2 in [6] for instance). That is,

(Tk−1)
ij∇iV∇jV ≥ 0,

thus (2.8) holds. When the equality holds, we have ∇V = 0 which implies that Σ
is a geodesic sphere in Hn. �

Finally, we need a special case of the Heintze-Karcher-type inequality due to
Brendle [8].

Proposition 2.3 (Brendle). Let Σ be a compact hypersurface embedded in Hn with
positive mean curvature (i.e. H1 > 0), then∫

Σ

pdμ ≤
∫
Σ

V

H1
dμ.



A NEW CHARACTERIZATION OF GEODESIC SPHERES 3081

Moreover, equality holds if and only if Σ is totally umbilical.

To prove this inequality we first choose a suitable geometric flow, then prove the
monotonicity, and finally analyze the asymptotical behavior to obtain the desired
inequality. This Heintze-Karcher type inequality plays an important role in [12]
to establish a weighted Alexandrov-Fenchel equality for mean curvature integral in
the hyperbolic space. This inequality is also a main ingredient in this paper. For
the proof of Proposition 2.3, we refer the reader to [8].

3. Proof of the main theorems

After all the preparation work, we are ready to prove our main theorems.

Proof of Theorem 1.2. Since the hypersurface Σ is compact, thus at the point where
the distance function r of Hn attains its maximum, all the principal curvatures are
positive. This together with the simple fact V = cosh r > 0 yields that V Hk is
a positive constant and thus Hk is positive everywhere in Σ. From the result of
G̊arding [13], we know that the principal curvatures of Σ belong to the G̊arding
cone Γk defined in (2.1).

It follows from (2.8) that

(3.1) V Hk

∫
Σ

pdμ =

∫
Σ

pV Hkdμ ≥
∫
Σ

V 2Hk−1dμ.

By the Newton-Maclaurin inequality (2.3), we have

Hk−1 ≥ H
k−1
k

k ,

thus

(3.2)

∫
Σ

V 2Hk−1dμ ≥
∫
Σ

V 2H
k−1
k

k dμ = (V Hk)
k−1
k

∫
Σ

V 1+ 1
k dμ.

Hence (3.1) and (3.2) yield

(3.3)

∫
Σ

pdμ ≥ (V Hk)
− 1

k

∫
Σ

V 1+ 1
k dμ,

and equality holds if and only if Σ is a geodesic sphere. On the other hand, applying
Proposition 2.3 and the Newton-Maclaurin inequality (2.3) we derive that

(3.4)

∫
Σ

pdμ ≤
∫
Σ

V

H1
dμ ≤

∫
Σ

V

H
1
k

k

dμ = (V Hk)
− 1

k

∫
Σ

V 1+ 1
k dμ.

Finally combining (3.3) and (3.4), we complete the proof. �

Proof of Theorem 1.3. The first step is more or less the same as above. At the
point where the distance function r of Hn attains its maximum, all the principal
curvatures are positive. Therefore Hj and Hk are both positive at the point. This

together with V = cosh r > 0 yields that V
(

Hk

Hj

)
is a positive constant. Since by

the assumption Hj does not vanish on Σ, Hj and Hk are positive everywhere in
Σ. From [13], we know that the principal curvatures of Σ belong to Γk defined in
(2.1).
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If j = 0, Theorem 1.3 is reduced to the case of Theorem 1.2. In the following,
we consider the case j ≥ 1. Denote the positive constant by α, namely,

α := V

(
Hk

Hj

)
> 0.

Applying the Newton-Maclaurin inequality (2.3), we note that

Hk

Hk−1
≤ Hj

Hj−1
,

which implies

(3.5) V

(
Hk−1

Hj−1

)
≥ α.

It follows from (2.8) and (2.6) that

(3.6)

∫
Σ

V 2Hk−1dμ ≤
∫
Σ

V pHkdμ = α

∫
Σ

pHjdμ = α

∫
Σ

V Hj−1dμ.

This gives ∫
Σ

V (V Hk−1 − αHj−1) ≤ 0.

The above together with (3.5) imply

V
Hk−1

Hj−1
= α,

everywhere in Σ. By an iteration argument, one obtains

V
Hk−j

H0
= V Hk−j = α,

everywhere in Σ. Finally, from Theorem 1.2, we complete the proof. �
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