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EXISTENCE AND NONEXISTENCE

OF HALF-GEODESICS ON S2

IAN M. ADELSTEIN

(Communicated by Michael Wolf)

Abstract. In this paper we study half-geodesics, those closed geodesics that
minimize on any subinterval of length L/2, where L is the length of the ge-
odesic. For each nonnegative integer n, we construct Riemannian manifolds
diffeomorphic to S2 admitting exactly n half-geodesics. Additionally, we con-
struct a sequence of Riemannian manifolds, each of which is diffeomorphic to
S2 and admits no half-geodesics, yet which converge in the Gromov-Hausdorff

sense to a limit space with infinitely many half-geodesics.

1. Introduction

The existence of closed geodesics on Riemannian manifolds is one of the foun-
dational questions in the field of global differential geometry. The classical result
of Cartan, which states that on closed Riemannian manifolds every nontrivial ho-
motopy class of curves contains a closed geodesic, addressed this problem for man-
ifolds having nontrivial fundamental group. The question of existence on simply-
connected manifolds would prove to be much more difficult. In 1905, Poincaré [13]
established the existence of a closed geodesic on any surface analytically equiva-
lent to S2. Birkhoff [5] proved in 1917 the existence of a closed geodesic on any
manifold homeomorphic to Sn. On surfaces homeomorphic to S2, Lyusternik and
Schnirelmann [11] in 1929 showed that there exist at least three geometrically dis-
tinct closed geodesics, and in 1991 Bangert [3] and Franks [7] showed that there
exist infinitely many.

The study of the existence of closed geodesics on arbitrary compact manifolds
would yield exciting new techniques. The celebrated theorem of Lyusternik and Fet
[10] in 1951 states that there exists a closed geodesic on any compact Riemannian
manifold. They employed Morse’s calculus of variations in showing that the energy
functional E : Ω → R on the loop space of an arbitrary compact manifold has
a critical point. Then in 1969 Gromoll and Meyer [8] established that there are
infinitely many geometrically distinct closed geodesics on compact simply-connected
manifolds under a relatively weak topological restriction on the loop space. The
question of the existence of infinitely many geometrically distinct closed geodesics
on an arbitrary compact manifold remains open.

A defining property of a geodesic is that it is a locally distance minimizing
curve. It is clear that a nontrivial closed geodesic can never be a globally distance
minimizing curve. Indeed, a closed geodesic cannot minimize past half its length, as
traversing the geodesic in the opposite direction always provides a shorter path. It is
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therefore natural to consider the largest interval on which a given closed geodesic is
distance minimizing. This led Sormani [14] to consider the notion of a 1/k-geodesic.

Definition 1.1. A 1/k-geodesic on a compact Riemannian manifold (or more gen-
erally on a compact length space) is a closed geodesic γ : S1 → M which is mini-
mizing on all subintervals of length l(γ)/k, i.e.,

d(γ(t), γ(t+ 2π/k)) = l(γ)/k ∀t ∈ S1.

Sormani introduced this notion of a 1/k geodesic to study the behavior of closed
geodesics under deformations of Riemannian manifolds. She showed that the 1/k-
geodesics persist under the Gromov-Hausdorff convergence of Riemannian mani-
folds (Theorem 3.2). This result should be viewed in contrast to the behavior of
arbitrary closed geodesics, which can disappear under Gromov-Hausdorff conver-
gence (cf. [14, Example 7.2]).

The half-geodesics, those closed geodesics that minimize on any subinterval of
length l(γ)/2, are of inherent geometric interest. They are the closed geodesics that
have the maximal minimizing property. The existence of a half-geodesic provides
an upper bound on the length L of the shortest nontrivial closed geodesic; we have
L ≤ 2 diam(M) when the set of half-geodesics on a manifold is nonempty. In
[1], the author studied half-geodesics by first providing a relationship between the
half-geodesics and the Grove-Shiohama critical points of the distance function.

We consider the question of the existence of half-geodesics on Riemannian man-
ifolds. Analogous to the existence of closed geodesics on arbitrary compact man-
ifolds, the nonsimply-connected case is straightforward. Sormani [14, Lemma 4.1]
shows that a closed geodesic which is the shortest among all noncontractible closed
geodesics is a half-geodesic; i.e., the systole of a nonsimply-connected manifold is
always a half-geodesic.

Although Bangert and Franks showed that a manifold diffeomorphic to S2 ad-
mits infinitely many closed geodesics, it is known that metrics on the 2-sphere need
not admit any half-geodesics. Indeed, using Clairaut’s relation, Wing Kai Ho [9]
produced surfaces of revolution diffeomorphic to the 2-sphere that do not admit
half-geodesics. Additionally, Balacheff, Croke and Katz [2] constructed a Zoll sur-
face whose closed geodesics have length greater than twice the diameter, hence fails
to admit a half-geodesic. The following result provides new examples of metrics on
S2 which do not admit half-geodesics, and shows that the absence of half-geodesics
is not preserved under Gromov-Hausdorff convergence.

Theorem 1.2. There exists a sequence of Riemannian manifolds, each of which is
diffeomorphic to S2 and admits no half-geodesics, which converge in the Gromov-
Hausdorff sense to a limit space that has infinitely many half-geodesics.

The following is a positive result on the existence of half-geodesics on Riemannian
manifolds diffeomorphic to S2.

Theorem 1.3. For each nonnegative integer n, there exist Riemannian manifolds
diffeomorphic to S2 admitting exactly n half-geodesics.

The paper proceeds as follows. In Section 2 we study the existence and non-
existence of half-geodesics on doubled regular polygons (Proposition 2.1). In Sec-
tion 3 we construct sequences of Riemannian manifolds diffeomorphic to S2 that
converge in the Gromov-Hausdorff sense to these doubled regular polygons. We use
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a result by Cheeger [6, Theorem 2.1] to show that these sequences admit positive
uniform lower bounds on the length of closed geodesics (Proposition 3.1). We show
the existence and nonexistence of half-geodesics on these sequences by applying
Sormani’s result (Theorem 3.2) concerning the persistence of 1/k-geodesics under
Gromov-Hausdorff convergence. The manifolds in these sequences are then used to
prove Theorems 1.2 and 1.3.

2. Half-geodesics on doubled polygons

In this section we study the half-geodesics on doubled regular n-gons Xn. These
spaces are convex compact length spaces, not Riemannian manifolds, and will serve
as the limiting spaces for the sequences of Riemannian manifolds that we construct
in Section 3.

Proposition 2.1. Let Xn be a doubled regular n-gon.

(1) If n is odd, then Xn has no half-geodesics.
(2) If n is even, then Xn has exactly n/2 half-geodesics: those curves which pass

through the center of each face and perpendicularly through parallel edges.

Proof. We first note that a half-geodesic γ : S1 → Xn contains an edge point be-
cause closed geodesics on Xn contain points from each face and therefore cross an
edge (crossing at a vertex would violate the local length minimization property of
the geodesic). We label this edge point p = γ(0) and parameterize the curve γ by a
circle of length 2π so that p and q = γ(π) are at distance l(γ)/2. The two halves of
γ minimize between p and q which shows that q is a cut point of p and therefore also
an edge point. The fact that these two halves of γ connect to form a closed geodesic
implies that p and q are on parallel (i.e. opposite) edges and that γ crosses these
edges perpendicularly. As doubled regular n-gons with an odd number of sides do
not have parallel edges we conclude that these spaces do not admit half-geodesics.

Let γ : S1 → Xn be a half-geodesic on a doubled regular n-gon with an even
number of sides. As above we have that γ is the concatenation of the two straight
line paths connecting a pair of points on parallel edges. We show that γ contains
the center point of each face. Suppose this is not the case. Then letting γ(0) and
γ(π) be the edge points of γ we see that γ(π/2) and γ(3π/2) are a pair of off-center
points on opposite faces which lie exactly halfway between the parallel edges, and
are therefore connected via a shorter curve which crosses a third edge of the n-gon.
We conclude that γ does not minimize between this pair of points and is therefore
not a half-geodesic.

We therefore identify n/2 candidate half-geodesics: those curves which pass
through the center of each face and perpendicularly through the midpoints of par-
allel edges. We show that each of these curves γ : S1 → Xn is a half-geodesic, i.e.,
that γ minimizes between p = γ(t) and q = γ(t + π) for every t ∈ S1. First note
that if p and q are edge points, then γ minimizes between them. If the points p and
q are on opposite faces, then any shorter curve joining them would have to cross
an edge of the n-gon at a point distinct from the two edge points of γ. Consider
for a moment a single-sided regular n-gon where p and q have both been placed as
they were on their respective faces (see Figure 1). We inscribe an ellipse in this
n-gon with focal points p and q and major axis length l(γ)/2. The n-gon is tangent
to the ellipse along its major axis, and we see that all of the other edge points are
at a combined distance greater than or equal to l(γ)/2 from p and q. Back on the
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doubled n-gon, we conclude that a shorter curve joining p and q is impossible. We
have therefore shown that γ is a half-geodesic. �

Figure 1. A single-sided regular n-gon. The ellipse with focal
points p and q and major axis length l(γ)/2 is tangent to the n-
gon along its major axis. All other edge points of the n-gon are at
a combined distance greater than l(γ)/2 from p and q.

3. Construction of the surfaces

The doubled regular n-gons studied in Proposition 2.1 are convex compact length
spaces. We study the existence of half-geodesics on Riemannian manifolds by first
constructing for each n ≥ 3 a sequence of piecewise smooth manifolds converging
in the Gromov-Hausdorff sense to a doubled regular n-gon Xn. Start by choosing a
sequence εn,i → 0 with εn,i > 0 and let Tεn,i

(Xn) be the εn,i tubular neighborhood of
Xn. Then let Yn,i = ∂Tεn,i

(Xn) be the boundary of this εn,i tubular neighborhood.
We choose the εn,i sufficiently small so that the Yn,i consist of two flat faces each
isometric to a face of Xn, joined by half-cylinders along the edges and 1/n-sections
of spheres between the vertices (see Figure 2). As submanifolds of R3 the Yn,i are
piecewise smooth surfaces. We note that the Yn,i converge in the Gromov-Hausdorff
sense to Xn.

Next let Mn,i be Riemannian manifolds obtained by smoothing the Yn,i along
the boundaries of their n spherical regions. We smooth symmetrically, maintaining
two equivalent hemispheres (the top and bottom halves of the surface) separated
by an equator curve which passes through the middle of each of the cylindrical and
spherical regions. The resultant Mn,i are Riemannian manifolds which converge in
the Gromov-Hausdorff sense to Xn.

Proposition 3.1. For each n ≥ 3 the sequence {Mn,i}∞i=1 constructed above admits
a positive uniform lower bound on the length of closed geodesics.
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Figure 2. A sample Y4,i. We see the pink top face, the grey half-
cylinders joining the edges, and the yellow 1/4-sections of spheres
between the vertices.

Proof. We apply the following result by Cheeger [6, Theorem 2.1]: given constants
d, v > 0 and H there exists a positive constant cm(d, v,H) such that if M is a
Riemannian m-manifold with diam(M) < d, vol(M) > v and sectional curvature
k ≥ H, then every closed geodesic in M has length greater than cm(d, v,H). For
each n ≥ 3 the sequence {Mn,i}∞i=1 admits a uniform upper bound of 2 diam(Xn) on
diameter and uniform lower bounds of vol(Xn) on volume and H = 0 on sectional
curvature so that the Cheeger result applies. �

We will use the following convergence result due to Sormani to study the half-
geodesics on the sequences {Mn,i}∞i=1.

Theorem 3.2 ([14], Theorem 7.1). Let Mi be a sequence of compact Riemannian
manifolds converging in the Gromov-Hausdorff sense to a compact length space X.
Let γi : S

1 → Mi be a sequence of 1/k-geodesics. Then a subsequence of the γi
converge point-wise to a continuous curve γ : S1 → X, and γ is either a 1/k-
geodesic or trivial.

Proposition 3.3. For each odd integer n ≥ 3 only finitely many of the manifolds
in the sequence {Mn,i}∞i=1 constructed above can admit a half-geodesic.

Proof. This follows immediately from Proposition 2.1(1), Proposition 3.1 and The-
orem 3.2. �

Proof of Theorem 1.2. We choose a sequence εn → 0 such that the smoothed Rie-
mannian manifolds Mn ≈ ∂Tεn(X2n+1) do not admit any half-geodesics. The se-
quence Mn converges in the Gromov-Hausdorff sense to a doubled disk, a compact
length space admitting infinitely many half-geodesics. �

Proposition 3.4. For each n ≥ 2 there exists a sequence of Riemannian manifolds
diffeomorphic to S2 each of which admits exactly n half-geodesics.

Proof. Let X2n be a doubled regular 2n-gon. Recall from Proposition 2.1 that
X2n admits exactly n half-geodesics. We will first show that each manifold in the
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sequence {M2n,i}∞i=1 constructed above admits at least n half-geodesics, and then
that only finitely many of the M2n,i can admit more than n half-geodesics.

We argue that the n meridians of M2n,i, those curves which pass through the
center of each face and perpendicularly through parallel cylindrical edges, are half-
geodesics. Indeed, because the smoothing of the M2n,i occurs only in a neigh-
borhood of the spherical regions, the same ellipse argument as in the proof of
Proposition 2.1 applies to show that meridians are half-geodesics.

We now show that only finitely many of the M2n,i can admit a nonmeridian half-
geodesic. By contradiction assume that there exists a subsequence (again called
M2n,i) such that each M2n,i admits a nonmeridian half-geodesic γi : S

1 → M2n,i.
Then by Theorem 3.2 a subsequence of the γi converge point-wise to a meridian
half-geodesic γ : S1 → X2n (note by Proposition 3.1 that γ cannot be the trivial
curve). We use the fact that the lengths of the γi are uniformly bounded to con-
clude that the γi converge uniformly to γ. Thus for i sufficiently large the γi are
the concatenation of straight-line segments on each face passing perpendicularly
through parallel cylindrical edges. As in the proof of Proposition 2.1 such a non-
meridian half-geodesic γi contains a pair of off-center points between which it fails
to minimize. We conclude that these γi are not half-geodesics and therefore that
only finitely many of the M2n,i can admit more than n half-geodesics. �

Proposition 3.5. There exists a sequence Mi of triaxial ellipsoids, each admit-
ting exactly one half-geodesic, which converge smoothly to the standard Riemannian
sphere, all of whose geodesics are half-geodesics.

Proof. We apply the following result by Morse [4, Theorem 109]: given any L
(think of L as very large) there is an ε > 0 such that any triaxial ellipsoid with
axis lengths satisfying 1 < a < b < c < 1 + ε has all of its periodic geodesics of
length larger than L except for the three sections by the coordinate planes. Choose
a sequence εi → 0 and let Mi be a triaxial ellipsoid with axis lengths satisfying
1 < ai < bi < ci < 1 + εi. We have that the only short closed geodesics on Mi are
the three sections by the coordinate planes. Two of these sections will contain the
largest axis and will fail to minimize between the antipodal points on their second
axis; the other coordinate section provides a shorter path between these antipodes.
The remaining coordinate section is the only half-geodesic. �

Proof of Theorem 1.3. For n = 0 we have the result of Theorem 1.2. For n = 1 we
have the result of Proposition 3.5. For n ≥ 2 we have the result of Proposition 3.4.

�

Acknowledgements

The author would like to thank Carolyn Gordon and Craig Sutton for their
guidance through all stages of the research process. The author would also like
to thank Christina Sormani for suggesting the original problem and for helpful
discussions and direction. Finally the author would like to thank the referee for
helpful suggestions in shortening the paper.

References

[1] Ian Adelstein, Minimizing closed geodesics via critical points of the uniform energy, To ap-
pear, Math. Research Letters.



EXISTENCE AND NONEXISTENCE OF HALF-GEODESICS ON S2 3091

[2] Florent Balacheff, Christopher Croke, and Mikhail G. Katz, A Zoll counterexample to a
geodesic length conjecture, Geom. Funct. Anal. 19 (2009), no. 1, 1–10, DOI 10.1007/s00039-
009-0708-9. MR2507217 (2010k:53062)

[3] Victor Bangert, On the existence of closed geodesics on two-spheres, Internat. J. Math. 4
(1993), no. 1, 1–10, DOI 10.1142/S0129167X93000029. MR1209957 (94d:58036)

[4] Marcel Berger, A panoramic view of Riemannian geometry, Springer-Verlag, Berlin, 2003.
MR2002701 (2004h:53001)

[5] George D. Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer. Math.
Soc. 18 (1917), no. 2, 199–300, DOI 10.2307/1988861. MR1501070

[6] Jeff Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970),
61–74. MR0263092 (41 #7697)

[7] John Franks, Geodesics on S2 and periodic points of annulus homeomorphisms, Invent. Math.
108 (1992), no. 2, 403–418, DOI 10.1007/BF02100612. MR1161099 (93f:58192)

[8] Detlef Gromoll and Wolfgang Meyer, Periodic geodesics on compact riemannian manifolds,
J. Differential Geometry 3 (1969), 493–510. MR0264551 (41 #9143)

[9] Wing Kai Ho, Manifolds without 1
k
-geodesics, Israel J. Math. 168 (2008), 189–200, DOI

10.1007/s11856-008-1063-5. MR2448057 (2009h:53081)

[10] L. A. Lyusternik and A. I. Fet, Variational problems on closed manifolds (Russian), Doklady
Akad. Nauk SSSR (N.S.) 81 (1951), 17–18. MR0044760 (13,474c)

[11] L.A. Lyusternik and L. Schnirelmann, Sur le probléme de trois géodésiques fermd́es sur les
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