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THE CHOWLA-SELBERG FORMULA

FOR QUARTIC ABELIAN CM FIELDS

ROBERT CASS

(Communicated by Ken Ono)

Abstract. We provide explicit evaluations of the Chowla-Selberg formula
for quartic abelian CM fields due to Barquero-Sanchez and Masri. These
identities relate values of a Hilbert modular function at CM points to values of
Euler’s gamma function Γ and an analogous function Γ2 at rational numbers.

Our work consists of two main parts. First, we implement an algorithm in
SageMath to compute the CM points. Second, we exhibit families of quartic
abelian CM fields for which the part of the formula involving values of Γ and
Γ2 takes a particularly simple form.

1. Introduction and statement of results

The Chowla-Selberg formula [4, 5] relates values of the Dedekind eta function η
at CM points associated to imaginary quadratic fields to values of Euler’s gamma
function Γ at rational numbers. In [1], Barquero-Sanchez and Masri generalized
the Chowla-Selberg formula to abelian CM fields. Their formula relates values of a
Hilbert modular function at CM points associated to an abelian CM field to values
of both Γ and an analogous function Γ2 at rational numbers. In this paper we will
provide explicit evaluations of the Chowla-Selberg formula for quartic abelian CM
fields. This consists of two parts: (1) calculating the CM points, and (2) identifying
families of field extensions for which the side of the formula involving Γ and Γ2 takes
a particularly simple form. We provide several examples of our formulas for specific
quartic fields.

We briefly recall the classical Chowla-Selberg formula. Let K = Q(
√
d) be a

quadratic field of discriminant Δ, OK be the ring of integers, CL(K) be the ideal
class group, hd be the class number, wd = #O×

K be the number of units (for d < 0),

εd be the fundamental unit (for d > 0), and χd(k) =
(
Δ
k

)
be the Kronecker symbol.

Let

η(z) = q1/24
∞∏

n=1

(1− qn), q = e2πiz, z = x+ iy ∈ H,
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be the Dedekind eta function, where H is the complex upper half-plane. Define the
SL2(Z)-invariant function

G(z) =
√
y|η(z)|2.

The Chowla-Selberg formula is the identity

(1.1)
∏

[a]∈CL(K)

G(za) =

(
1

4π
√
|Δ|

) hd
2 |Δ|∏

k=1

Γ

(
k

|Δ|

)wdχd(k)

4

where d < 0 and the product is taken over a complete set of CM points za of
discriminant Δ.

We now state the analog of (1.1) for abelian CM fields proved in [1]. We refer
the reader to the introduction of that paper for an overview of the proof. Let F/Q
be a totally real field of degree n with embeddings τ1, . . . , τn. Let OF be the ring
of integers, O×

F be the group of units, dF be the absolute value of the discriminant,
∂F be the different ideal, ζF (s) be the Dedekind zeta function, and

ζ∗F (s) = d
s/2
F π−ns/2Γ(s/2)nζF (s)

be the completed Dedekind zeta function of F .
Let

z = (z1, . . . , zn) ∈ Hn.

The Hilbert modular group SL2(OF ) acts componentwise on Hn by linear frac-
tional transformations. There exists an SL2(OF )-invariant function H : Hn → R+

analogous to G(z) which arises from a renormalized Kronecker limit formula for
the non-holomorphic Hilbert modular Eisenstein series. More precisely, define the
non-holomorphic Hilbert modular Eisenstein series

E(z, s) =
∑

M∈Γ∞\ SL2(OF )

N(y(Mz))s, z ∈ Hn, Re(s) > 1,

where

Γ∞ =

{(
∗ ∗
0 ∗

)
∈ SL2(OF )

}
and

N(y(z)) =
n∏

j=1

yj

is the product of the imaginary parts of the components of z ∈ Hn. Barquero-
Sanchez and Masri [1, Proposition 3.1] derived the renormalized Kronecker limit
formula

E

(
z,

s+ 1

2

)
= 1 + log(H(z))(s+ 1) + O((s+ 1)2).
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Explicitly,

H(z) =
√

N(y(z))φ(z)

where φ : Hn → R+ is

φ(z) = exp

⎛⎜⎜⎜⎝ζ∗F (−1)N(y(z))

rF
+

∑
μ∈∂−1

F /O×
F

μ �=0

σ1(μ∂F )e
2πiT (μ,z)

rF
∣∣NF/Q(μ∂F )NF/Q(μ)

∣∣1/2
⎞⎟⎟⎟⎠ .

Here rF is the residue of ζ∗F (s) at s = 0,

σ1(μ∂F ) =
∑

b|μ∂F

NF/Q(b),

and

T (μ, z) =

n∑
j=1

τj(μ)xj + i

n∑
j=1

|τj(μ)|yj .

Let E be a CM extension of F with class number hE and let Φ = (σ1, . . . , σn) be
a CM type for E. Assume that F has narrow class number 1. For each fractional
ideal class [a] ∈ CL(E), there exists a CM point za ∈ E× of type (E,Φ) which is
unique up to SL2(OF )-equivalence. Let

CM(E,Φ,OF ) = {za : [a] ∈ CL(E)}

be a complete set of CM points of type (E,Φ) on the Hilbert modular variety
SL2(OF )\Hn (see Section 5 for more details).

Let L ⊂ Q(ζm) be an abelian field, where ζm = e2πi/m is a primitive mth root
of unity. Let HL be the subgroup of G = Gal(Q(ζm)/Q) which fixes L. Recall
that G ∼= (Z/mZ)×, where we identify the map σt ∈ G determined by σt(ζm) = ζtm
with the class [t] ∈ (Z/mZ)×. We can then define the group of Dirichlet characters
associated to L by

XL = {χ ∈ (Ẑ/mZ)× : χ|HL
≡ 1}.

Since the CM field E is abelian over Q, by the Kronecker-Weber theorem E embeds
into some cyclotomic field Q(ζm). As HE ≤ HF , it follows that XF ≤ XE . For our
purposes, the choice of cyclotomic field containing E does not matter. Let L(χ, s)
be the L-function of the primitive Dirichlet character of conductor cχ which induces
χ ∈ XE and define the Gauss sum

τ (χ) =

cχ∑
k=1

χ(k)ζkcχ , ζcχ = e2πi/cχ .

Let

ζ(s, x) =

∞∑
n=0

1

(n+ x)s
, x > 0, Re(s) > 1,

be the Hurwitz zeta function, and consider the Taylor expansion

ζ(s, x) =
1

2
− x+ ∂sζ(0, x)s+ ∂2

sζ(0, x)s
2 +O(s3).
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By the Bohr-Mollerup theorem, the function log(Γ(x)/
√
2π) is the unique function

f : R+ → R such that

f(x+ 1)− f(x) = log(x),

f(1) = ζ ′(0) = − log
√
2π, and f(x) is convex on R+. One can show that ∂sζ(0, x)

satisfies these three properties, which yields Lerch’s identity [10]

∂sζ(0, x) = log(Γ(x)/
√
2π).

Deninger [6] showed that ∂2
sζ(0, x) is the unique function g : R+ → R such that

g(x+ 1)− g(x) = log2(x),

g(1) = −ζ ′′(0), and g(x) is convex on (e,∞). Define

Γ2(x) = exp(∂2
sζ(0, x)), x > 0,

which by the preceding discussion can be viewed as analogous to Γ(x)/
√
2π.

We can now state the Chowla-Selberg formula for abelian CM fields.

Theorem 1.1 ([1, Theorem 1.1]). Let F/Q be a totally real field of degree n with
narrow class number 1. Let E/F be a CM extension with E/Q abelian. Let Φ be a
CM type for E and

CM(E,Φ,OF ) = {za : [a] ∈ CL(E)}

be a set of CM points of type (E,Φ). Then

(1.2)
∏

[a]∈CL(E)

H(Φ(za)) = c1(E,F, n)
∏

χ∈XE\XF

cχ∏
k=1

Γ

(
k

cχ

) hEχ(k)

2L(χ,0)

×
∏

χ∈XF
χ �=1

cχ∏
k=1

Γ2

(
k

cχ

)hEτ(χ)χ(k)

2cχL(χ,1)

where

c1(E,F, n) :=

(
dF

2n+1π
√
dE

)hE
2

.

Our first result is the following explicit version of (1.2) for a family of biquadratic
CM fields.

Theorem 1.2. Let p ≡ 1 (mod 4) and q ≡ 3 (mod 4) be primes. Let F =
Q(

√
p), E = Q(

√
p,
√−q), and Φ be a CM type for E. If F has narrow class

number 1, then

∏
[a]∈CL(E)

H(Φ(za)) =

(
1

8πq

)hE
2

q∏
k=1

Γ

(
k

q

)hEχ−q(k)w−q
4h−q

×
pq∏
k=1

Γ

(
k

pq

)hEχ−pq(k)w−pq
4h−pq

p∏
k=1

Γ2

(
k

p

)hEχp(k)

4 log(εp)

.
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Let B1(χ) be the first generalized Bernoulli number attached to a Dirichlet char-
acter χ. Given a prime p ≡ 1 (mod 4), the pth cyclotomic field Q(ζp) contains a
unique cyclic quartic subfield E. We will show that if p ≡ 5 (mod 8), then E is a
CM field with totally real quadratic subfield F = Q(

√
p) (see Lemma 3.2).

Our analogous result for this family of cyclic quartic CM fields is as follows.

Theorem 1.3. Let p ≡ 5 (mod 8) be a prime. Let F = Q(
√
p), E be the unique

cyclic quartic subfield of Q(ζp), and Φ be a CM type for E. If F has narrow class
number 1, then∏

[a]∈CL(E)

H(Φ(za)) = c1(E,F, 2)

p∏
k=1

Γ

(
k

p

)−hE Re χ(k)
B1(χ)

p∏
k=1

Γ2

(
k

p

)hEχp(k)

4 log(εp)

.

Here χ is any choice of character of (Z/pZ)× that sends a primitive root modulo p
to a primitive fourth root of unity.

Remark 1.4. For the fields in Theorem 1.3 we have E = Q
(√

−(p+B
√
p)
)
where

p = B2+C2 with B > 0, C > 0 integers and B ≡ 2 (mod 4). This can be deduced
from the main theorem in [11] which gives the conductor of a cyclic quartic field in
terms of certain integers that define a primitive element, and the fact that Q(ζp)
has at most one subfield of a given degree. We will need this fact to compute a
complete set of CM points CM(E,Φ,OF ) using Algorithm 6.1.

Remark 1.5. Because the Dirichlet character χ in Theorem 1.3 takes values in
{0,±1,±i}, the exponents on the right side of Theorem 1.3 are rational except for
the regulator log(εp). In particular,

B1(χ) =
1

p

p∑
k=1

χ(k)k.

Organization. This paper is organized as follows. In Section 2, we give several
examples of our main theorems. In Section 3, we calculate the groups of characters
appearing in the right side of Theorem 1.1 for the families of fields in Theorems
1.2 and 1.3, and in Section 4 we prove these two theorems using Theorem 1.1. In
Section 5, we review some relevant facts about CM points, and in Section 6 we
give a modified version of an algorithm of Streng [13] to compute the CM points
for a quartic abelian CM field. In Section 7, we give some tables of CM points
for fields of small class number and for some of the larger examples in Section 2.
Finally, in the appendix we explain how to use an implementation of this algorithm
in SageMath [12].

2. Examples

We now give several examples of Theorems 1.2 and 1.3, including explicit CM
points obtained by Algorithm 6.1. We have also included a cyclic quartic field not
covered by either of these theorems.

Example 2.1 (Theorem 1.2, p = 13, q = 3). Let E = Q(
√
13,

√
−3), which has

totally real subfield F = Q(
√
13). Note that F has narrow class number 1. Then

hE = 2, h−3 = 1, h−39 = 4, w−3 = 6, and w−39 = 2. A fundamental unit is
ε13 = (3 +

√
13)/2. Let Φ = {id, σ} be the CM type where id is the identity map

and σ is the automorphism such that σ(
√
13) = −

√
13 and σ(

√
−3) =

√
−3. A
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complete set of CM points of type (E,Φ) is given in Table 1 in Section 7. By
Theorem 1.2, we compute

H

(√
−3−

√
13

2
,

√
−3 +

√
13

2

)
H

(√
−3− 3

√
13√

13 + 5
,

√
−3 + 3

√
13

−
√
13 + 5

)
=

Γ
(
1
3

)3
24πΓ

(
2
3

)3
×
(
Γ
(

1
39

)
Γ
(

2
39

)
Γ
(

4
39

)
Γ
(

5
39

)
Γ
(

8
39

)
Γ
(
10
39

)
Γ
(
11
39

)
Γ
(
16
39

)
Γ
(
20
39

)
Γ
(
22
39

)
Γ
(
25
39

)
Γ
(

7
39

)
Γ
(
14
39

)
Γ
(
17
39

)
Γ
(
19
39

)
Γ
(
23
39

)
Γ
(
28
39

)
Γ
(
29
39

)
Γ
(
31
39

)
Γ
(
34
39

)
Γ
(
35
39

)
Γ
(
37
39

)) 1
4

×
Γ
(
32
39

) 1
4

Γ
(
38
39

) 1
4

(
Γ2

(
1
13

)
Γ2

(
3
13

)
Γ2

(
4
13

)
Γ2

(
9
13

)
Γ2

(
10
13

)
Γ2

(
12
13

)
Γ2

(
2
13

)
Γ2

(
5
13

)
Γ2

(
6
13

)
Γ2

(
7
13

)
Γ2

(
8
13

)
Γ2

(
11
13

)) 1

2 log

(
3+

√
13

2

)

.

Example 2.2 (Theorem 1.2, p = 29, q = 31). For an example involving a larger

class number, consider the biquadratic CM field E = Q(
√
29,

√
−31). The real qua-

dratic subfield F = Q(
√
29) has narrow class number 1. We have hE = 21, h−31 =

3, h−29·31 = 14, w−31 = 2, w−29·31 = 2 and ε29 = (5 +
√
29)/2. Similarly to Ex-

ample 2.1, we will use the CM type Φ = {id, σ} where σ(
√
29) = −

√
29 and

σ(
√
−31) =

√
−31. Table 3 gives a complete set of CM points CM(E,Φ,OF ).

Then Theorem 1.2 gives

∏
[a]∈CL(E)

H(Φ(za)) =

(
1

248π

) 21
2

31∏
k=1

Γ

(
k

31

) 7
2χ−31(k)

×
899∏
k=1

Γ

(
k

899

) 3
4χ−899(k) 29∏

k=1

Γ

(
k

29

) 21χ29(k)

4 log

(
5+

√
29

2

)
.

Example 2.3 (Theorem 1.3, p = 13). Consider the real quadratic field F =

Q(
√
13), which has narrow class number 1. The unique cyclic quartic subfield

of Q(ζ13) is E = Q(
√
Δ), where Δ = −(13 + 2

√
13) (the fact that Δ is a generator

follows by Remark 1.4). Let Φ = {id, τ} be the CM type consisting of the identity

map and the map τ such that τ (
√
Δ) =

√
Δ′ where Δ′ = −(13 − 2

√
13). The

number 2 is a primitive root modulo 13. Let χ be the character of (Z/13Z)× such
that χ(2) = i. A calculation shows B1(χ) = −1 − i. We have hE = 1, and a

fundamental unit is ε13 = (3 +
√
13)/2. From Table 2, (

√
Δ− 3

√
13)/(

√
13 + 5) is

a CM point corresponding to the only fractional ideal class in E. We have dF = 13
and dE = 2197. Now by Theorem 1.3,

H

⎛⎝
√
−(13 + 2

√
13)− 3

√
13

√
13 + 5

,

√
−(13− 2

√
13) + 3

√
13

−
√
13 + 5

⎞⎠
=

1

2 · 13 1
4

√
2π

(
Γ
(

1
13

)
Γ
(

2
13

)
Γ
(

3
13

)
Γ
(

5
13

)
Γ
(

6
13

)
Γ
(

9
13

)
Γ
(

4
13

)
Γ
(

7
13

)
Γ
(

8
13

)
Γ
(
10
13

)
Γ
(
11
13

)
Γ
(
12
13

)) 1
2

×
(
Γ2

(
1
13

)
Γ2

(
3
13

)
Γ2

(
4
13

)
Γ2

(
9
13

)
Γ2

(
10
13

)
Γ2

(
12
13

)
Γ2

(
2
13

)
Γ2

(
5
13

)
Γ2

(
6
13

)
Γ2

(
7
13

)
Γ2

(
8
13

)
Γ2

(
11
13

)) 1

4 log

(
3+

√
13

2

)

.
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Example 2.4 (Theorem 1.3, p = 109). Let F = Q(
√
109). The unique cyclic

quartic subfield of Q(ζ109) is E = Q(
√
Δ) where Δ = −(109 + 10

√
109). The class

number of E is hE = 17, and F has narrow class number 1. Let Φ = {id, τ} be the

CM type consisting of the identity map and the map τ such that τ (
√
Δ) =

√
Δ′

where Δ′ = −(109− 10
√
109). The number 6 is a primitive root modulo 109, so let

χ be the character of (Z/109Z)× such that χ(6) = i. Then B1(χ) = −5 − 3i. A

fundamental unit is ε109 = (261 + 25
√
109)/2, and we have dF = 109, dE = 1093.

Substituting this data into Theorem 1.3, we get

∏
[a]∈CL(E)

H(Φ(za)) =

(
1

8π
√
109

) 17
2

108∏
k=1

Γ

(
k

109

)α(k)
2

108∏
k=1

Γ2

(
k

109

) 17χ109(k)

4 log

(
261+25

√
109

2

)

where the 17 CM points are given in Table 4 and

α(k) =

⎧⎪⎪⎨⎪⎪⎩
5, if χ(k) = 1,
−5, if χ(k) = −1,
3, if χ(k) = i,
−3, if χ(k) = −i.

Example 2.5. For an example of a cyclic quartic CM field not covered by Theorem
1.3, let E = Q(

√
Δ) where Δ = −3(5 +

√
5), and F = Q(

√
5), which has narrow

class number 1. The field E is cyclic of degree 4 by the introduction to [11], and
hence E is a CM field because it has at least one complex embedding. We have
dF = 5, dE = 26 · 32 · 53, hE = 4, and ε5 = (1 +

√
5)/2. Let Φ = {id, τ} be the

CM type such that τ (
√
Δ) =

√
Δ′ where Δ′ = −3(5−

√
5). We can use Magma [2]

to compute the primitive Dirichlet characters inducing the Dirichlet L-functions in
the factorization of the Dedekind zeta function of E, which are the characters in
XE. The non-trivial character in XF is the Kronecker symbol of Q(

√
5). It is also

possible to determine the characters by using the explicit description of a generator
of E found in [11, Lemma 2] in terms of biquadratic Gauss sums. Using either
method, we find that XE \XF = {χ, χ} where χ is the character of conductor 120
such that

χ(31) = −1, χ(61) = −1, χ(41) = −1, χ(97) = i.

Proceeding in the same way as in the proof of Theorem 1.3, we find

∏
[a]∈CL(E)

H(Φ(za)) =
1

212 · 32 · 5 · π2

120∏
k=1

Γ

(
k

120

)α(k)
(
Γ2

(
1
5

)
Γ2

(
4
5

)
Γ2

(
2
4

)
Γ2

(
3
4

)) 1

log

(
1+

√
5

2

)

where

α(k) =

⎧⎨⎩
1, if χ(k) = −1 or χ(k) = −i,
−1, if χ(k) = 1 or χ(k) = i,
0, if gcd(k, 120) > 1,

and the four CM points computed using Algorithm 6.1 are

z1 =
√
Δ, z2 =

√
Δ

2
, z3 =

2
√
Δ√

5 + 5
, z4 =

√
Δ

3
.
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3. Groups of characters for quartic abelian CM fields

In this section we compute the groups of characters necessary to obtain Theorems
1.2 and 1.3. First, we recall a couple of classical results about quadratic Gauss sums.
For an odd prime p and integer k not divisible by p, let

g(k, p) =

p−1∑
x=1

(
x

p

)
e2πikx/p

denote the quadratic Gauss sum. Then we have the following:

g(k, p) =

(
k

p

)
g(1, p), [7, Prop. 6.3.1](3.1)

g(1, p) =

{ √
p, if p ≡ 1 (mod 4),

i
√
p, if p ≡ 3 (mod 4),

[7, Ch. 6, Theorem 1](3.2)

where the square roots have positive real part. In [1, Theorem 1.4], the authors
give a more general version of Theorem 1.2 for multiquadratic extensions. Their
computation of the group of characters for a multiquadratic extension relies on a
certain Galois-theoretic property of the Kronecker symbol, which is more or less
equivalent to the fact that an analogue of (3.2) holds when p is replaced by a
squarefree integer (see [8, §5.2(d)-5.2(e)]). We will give an alternative computation
of the group of characters for the family of biquadratic extensions in Theorem 1.2
using only (3.1) and (3.2).

Starting with the biquadratic case, let p ≡ 1 (mod 4) and q ≡ 3 (mod 4) be
primes. Let F = Q(

√
p), E = Q(

√
p,
√−q), and m = pq. By (3.2) it is clear that

E ⊂ Q(ζm) where ζm = e2πi/m. For a finite abelian group G and a subgroup H,

there is a natural isomorphism H⊥ ∼= Ĝ/H where H⊥ = {χ ∈ Ĝ : χ|H ≡ 1}. Take
G = Gal(Q(ζm)/Q), and let HF and HE denote the subgroups that fix F and E
respectively. Then we have XF = H⊥

F and XE = H⊥
E . Recall that we identify the

automorphism σt ∈ G determined by σt(ζm) = ζtm with the element [t] ∈ (Z/mZ)×.

Lemma 3.1. Let p ≡ 1 (mod 4) and q ≡ 3 (mod 4) be primes. Let F = Q(
√
p),

E = Q(
√
p,
√−q). Then XF and XE may be taken to be subsets of (Ẑ/pqZ)×, and

XF = {χ1, χ2}, XE = {χ1, χ2, χ3, χ4},

where

χ1 ≡ 1, χ2(k) =

(
k

p

)
, χ3(k) =

(
k

q

)
, χ4(k) =

(
k

p

)(
k

q

)
.

Proof. We first determine HF and HE by using quadratic Gauss sums. Since ζp =
ζqm, then σt(ζp) = ζtp. Hence by (3.1) and (3.2),

σt(
√
p) = σt(g(1, p)) = g(t, p) =

(
t

p

)
√
p.

Thus σt fixes F if and only if t is a quadratic residue modulo p. The same argument
shows

σt(
√
−q) =

(
t

q

)√
−q.
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It follows that

HF =

{
[t] ∈ (Z/mZ)× :

(
t

p

)
= 1

}
, HE =

{
[t] ∈ (Z/mZ)× :

(
t

p

)
=

(
t

q

)
= 1

}
.

Now to determine XE and XF , by Galois theory G/HF
∼= Gal(F/Q) and G/HE

∼=
Gal(E/Q). A finite abelian group is non-canonically isomorphic to its character
group, so by the remarks preceding this lemma we have XF

∼= Gal(F/Q) and
XE

∼= Gal(E/Q). It is immediate from the descriptions of HF and HE that the
characters χi for 1 ≤ i ≤ 4 lie in the groups XF and XE as claimed above, so by
size considerations we are done. �

Moving on to the family of fields in Theorem 1.3, we first verify that these fields
are in fact cyclic quartic CM fields.

Lemma 3.2. Let p ≡ 5 (mod 8) be a prime and let F = Q(
√
p). Then Q(ζp) has

a unique degree 4 subfield E, and furthermore E is a cyclic quartic CM field with
totally real quadratic subfield F .

Proof. The Galois group G of Q(ζp) is cyclic of order p−1. Hence by Galois theory
the subfield E fixed by the unique subgroup H of G of index 4 is a cyclic quartic
subfield. By (3.2) it is clear that F ⊂ Q(ζp), and by a similar uniqueness argument
we conclude F ⊂ E. Because |G| ≡ 4 (mod 8), H does not contain the complex
conjugation automorphism, which has order 2. Thus E is not fixed by complex
conjugation and so E has a complex embedding. Since E is Galois over Q, then
every embedding of E is complex, so E is totally imaginary. �

We can explicitly determine XF and XE for the family of cyclic quartic CM
fields in Theorem 1.3 without doing any computations in F or E.

Lemma 3.3. Let p ≡ 5 (mod 8) be a prime and let a be a primitive root modulo
p. Let F = Q(

√
p) and let E be the unique cyclic quartic subfield of Q(ζp). Then

XF and XE may be taken to be subsets of (Ẑ/pZ)×, and

XF = {χ1, χ2}, XE = {χ1, χ2, χ3, χ3},
where

χ1 ≡ 1, χ2(k) =

(
k

p

)
, χ3 is such that χ3(a) = i.

Proof. If we make the standard identification Gal(Q(ζp)/Q) ∼= (Z/pZ)×, then by
Galois theory we have HE

∼= 〈a4〉 and HF
∼= 〈a2〉. Since the above characters

χi for 1 ≤ i ≤ 4 all have order dividing 4 each of them is in XE . Similarly χ1,
χ2 ∈ XF . As in the proof of Lemma 3.1 we are done because XF

∼= Gal(F/Q) and
XE

∼= Gal(E/Q). �

4. Proof of main results

We are now prepared to evaluate the right side of (1.2) for the families of quartic
CM fields under consideration.

Proof of Theorem 1.2. We have

XF = {χ1, χ2}, XE = {χ1, χ2, χ3, χ4},
where χ1, χ2, χ3, χ4 are as in Lemma 3.1. Recall that for the purposes of evaluating
the right side of (1.2), we use the primitive characters which induce the characters
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in XE and XF . Note that χ2 has conductor p, χ3 has conductor q, and χ4 has
conductor pq. It is well known that χ2 is the Kronecker symbol associated to F =
Q(

√
p), χ3 is the Kronecker symbol associated to Q(

√−q), and χ4 is the Kronecker
symbol associated to Q(

√−pq). The residue of the Dedekind zeta function of F at
s = 1 is equal to L(χ2, 1), so by the class number formula

(4.1) L(χ2, 1) =
2hp log εp√

p
.

Recall that hp = 1 by the narrow class number 1 assumption, and τ (χ2) =
√
p by

(3.2). To evaluate L(χ3, 0), let ζ
∗
K(s) be the completed Dedekind zeta function of

the field K = Q(
√−q). Combining the class number formula with the functional

equation for ζ∗K(s) gives

L(χ3, 0) =
2h−q

w−q
.

Similarly

L(χ4, 0) =
2h−pq

w−pq
.

Since p ≡ 1 (mod 4) and −q ≡ 1 (mod 4), then dF = p and dK = q. As E is
the compositum of the linearly disjoint fields F and K which have relatively prime
discriminants, then we have dE = (dFdK)2 = p2q2 [9, Ch. 3, Prop. 17]. It is now
straightforward to compute the right side of (1.2) in terms of the data given. �

Proof of Theorem 1.3. In the notation of Lemma 3.3,

XE = {χ1, χ2, χ3, χ3}, XF = {χ1, χ2}.

Hence in this case all characters appearing on the right side of (1.2) have conductor
p. As in the proof of Theorem 1.2, the character χ2 is the Kronecker symbol
associated to the field Q(

√
p), so L(χ2, 1) is given by (4.1). We cannot use the

class number formula for quadratic fields to evaluate the L-functions L(χ3, s) and
L(χ3, s) at s = 0, but we can write these values in terms of generalized Bernoulli
numbers [7, Prop. 16.6.2]. Specifically,

L(χ3, 0) = −B1(χ3)

where B1(χ3) is the first generalized Bernoulli number attached to χ3. Similarly

we have that L(χ3, 0) = −B1(χ3) = −B1(χ3). We can now evaluate the right side
of (1.2) and arrive at Theorem 1.3. �

5. CM points

Before presenting an algorithm to compute the CM points appearing in (1.2), we
give more detailed information on CM 0-cycles on a Hilbert modular variety, essen-
tially following the exposition of Bruinier and Yang [3, Section 3] and specializing
to the case F has narrow class number 1. Let F be a totally real number field of
degree n with embeddings τ1, . . . , τn and assume that F has narrow class number
1. Then SL2(OF ) acts on Hn via

Mz = (τ1(M)z1, . . . , τn(M)zn).
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The quotient space X(OF ) = SL2(OF )\Hn is the open Hilbert modular variety as-
sociated to OF . The varietyX(OF ) parametrizes isomorphism classes of principally
polarized abelian varieties (A, ι) with real multiplication ι : OF ↪→ End(A).

Let E be a CM extension of F and Φ = (σ1, . . . , σn) be a CM type for E. A
point z = (A, ι) in X(OF ) is a CM point of type (E,Φ) if one of the following
equivalent conditions holds:

(1) As a point z ∈ Hn, there is a point τ ∈ E such that

Φ(τ ) = (σ1(τ ), . . . , σn(τ )) = z

and

Λτ = OF +OF τ

is a fractional ideal of E.

(2) There exists a pair (A, ι′) that is a CM abelian variety of type (E,Φ) with
complex multiplication ι′ : OE ↪→ End(A) such that ι = ι′|OF

.

By [3, Lemma 3.2] and the narrow class number 1 assumption, there is a bijection
between CL(E) and the CM points of type (E,Φ) defined as follows: given an ideal
class C ∈ CL(E), there exists a fractional ideal a ∈ C−1 and α, β ∈ E× such that

(5.1) a = OFα+OFβ

and

z =
β

α
∈ E× ∩Hn = {z ∈ E× : Φ(z) ∈ Hn}.

Then z represents a CM point in X(OF ) in the sense that Cn/Λz is a principally
polarized abelian variety of type (E,Φ) with complex multiplication by OE . Con-
versely, every principally polarized abelian variety of type (E,Φ) with complex
multiplication by OE arises from a decomposition as in (5.1) for some a in a unique
fractional ideal class in CL(E). We denote the CM 0-cycle consisting of the set of
CM points of type (E,Φ) by CM(E,Φ,OF ) and identify it with the set

{za ∈ E× ∩Hn : [a] ∈ CL(E)}
under the bijection just described.

6. Algorithm to compute CM points

In his thesis, Streng [13] gives a couple of algorithms for enumerating principally
polarized abelian varieties admitting complex multiplication by a CM field. In
particular, [13, Algorithm 2.5, Appendix 2] produces a list of elements zi ∈ E× such
that for every fractional ideal class C ∈ CL(E) and any choice of CM type Φ, there
is some a ∈ C−1 and zi such that a = OF +OF zi and the element ε = (zi−zi)

−1δ−1

is such that Φ(ε) ∈ E× ∩Hn, where δ is a generator of the different ideal of F . The
points zi produced by this algorithm give us the decomposition (5.1), so we simply
need to modify the algorithm to select zi such that Φ(zi) ∈ E× ∩ Hn rather than
Φ(ε) ∈ E× ∩Hn.

Below we give a modified version of Streng’s algorithm, where the only differences
are that we have specialized to the case of a quadratic totally real subfield with
narrow class number 1, and we are imposing the CM type on a different point as
just explained. See the appendix for access to an implementation of Algorithm 6.1
in SageMath.
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Algorithm 6.1

INPUT: A quartic abelian CM field E = F (
√
Δ) and a CM type Φ where Δ ∈ F ,

F is totally real of degree 2, and F has narrow class number 1.
OUTPUT: A complete set of representatives CM(E,Φ,OF ).

(1) Compute a set of representatives of the ideal class group of E.
(2) Compute an integral basis of OE .

(3) Write each element in the integral basis of OE in the form xi+yi
√
Δ where

xi, yi ∈ F .
(4) Compute all elements a ∈ OF up to multiplication by (O×

F )
2 such that

|NF/Q(a)| ≤
√
|NF/Q(Δ)| dF

6

π2
.

(5) For each a, compute a complete set of representatives Ta for OF /(a).
(6) For each a, compute all b ∈ Ta for which a divides b2 −Δ.

(7) For each pair (a, b) and each basis element xi + yi
√
Δ of OE , check if

yia ∈ OF , xi ± yib ∈ OF , and a−1yi(Δ− b2) ∈ OF hold. Remove the pair
(a, b) from the list if one of these conditions is not satisfied.

(8) For each pair (a, b), let

z =

√
Δ− b

a
.

Check if Φ(z) ∈ E× ∩H2 and if

a = OF +OF z

is a fractional ideal of E. If so, then z is a CM point corresponding to the
fractional ideal class of a. Search through the pairs (a, b) until a CM point
has been found for each fractional ideal class in E.

7. Tables of CM points

In this section we give several tables of CM points computed using the imple-
mentation of Algorithm 6.1 referenced in the appendix.

Table 1 shows a complete set of representatives of the CM points for the bi-
quadratic CM fields E = Q(

√
p,
√−q) and all primes p, q < 50 such that p ≡ 1

(mod 4), q ≡ 3 (mod 4), the class number of E is less than 4, and F has narrow
class number 1. Here the CM type is given by Φ = {id, σ} where σ is the automor-
phism of E such that σ(

√
p) = −√

p and σ(
√−q) =

√−q. Table 2 shows a complete

set of representatives of the CM points for the cyclic quartic CM fields E = Q(
√
Δ)

where Δ = −
(
p+B

√
p
)
, the numbers p, B are as in Remark 1.4, and p ≤ 101.

The CM type is Φ = {id, τ} such that τ (
√
Δ) =

√
Δ′ where Δ′ = −(p − B

√
p).

In both cases, the CM points z are such that each OF -module OF +OF z belongs
to a distinct fractional ideal class in E. For each field E, the first CM point listed
corresponds to the fractional ideal class of OE .
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Table 1. CM points for biquadratic fields E = Q(
√
p,
√−q) with

small class number.

Primes hE CM points

p = 5, q = 3 1

√
−3−

√
5

2

p = 5, q = 7 1

√
−7−

√
5

2

p = 5, q = 11 2

√
−11−

√
5

2

√
−11 +

√
5

4

p = 5, q = 23 3

√
−23−

√
5

2

√
−23− 1

4

√
−23− 2

√
5− 1

4

p = 13, q = 3 2

√
−3−

√
13

2

√
−3− 3

√
13√

13 + 5

p = 13, q = 7 1

√
−7−

√
13

2

p = 13, q = 19 3

√
−19−

√
13

2

√
−19 +

√
13

4

√
−19−

√
13

4

p = 13, q = 31 3

√
−31−

√
13

2

√
−31− 1

4

√
−31− 2

√
13− 1

4

p = 17, q = 3 1

√
−3−

√
17

2

p = 17, q = 11 1

√
−11−

√
17

2

p = 17, q = 19 2

√
−19−

√
17

2

√
−19 +

√
17

6

p = 29, q = 3 3

√
−3−

√
29

2

√
−3 +

√
29

4

√
−3−

√
29

4

p = 29, q = 7 2

√
−7−

√
29

2

√
−7− 7

√
29

2
√
29 + 12

p = 37, q = 7 2

√
−7−

√
37

2

√
−7− 7

√
37

3
√
37 + 19

p = 41, q = 3 1

√
−3−

√
41

2

p = 41, q = 11 3

√
−11−

√
41

2

√
−11 + 3

√
41

4
√
41 + 26

√
−11− 3

√
41

4
√
41 + 26
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Table 2. CM points for cyclic quartic fields E = Q(
√
Δ) as in

Theorem 1.3 where Δ = −(p+B
√
p) and p ≤ 101.

Parameters hE CM points

p = 5, B = 2 1

√
Δ−

√
5

2

p = 13, B = 2 1

√
Δ− 3

√
13√

13 + 5

p = 29, B = 2 1

√
Δ− 5

√
29√

29 + 7

p = 37, B = 6 1

√
Δ−

√
37

2

p = 53, B = 2 1

√
Δ− 7

√
53√

53 + 9

p = 61, B = 6 1

√
Δ− 5

√
61

−
√
61 + 9

p = 101, B = 10 5

√
Δ−

√
101

2

√
Δ+ 3

√
101

19
√
101 + 191

√
Δ− 3

√
101

19
√
101 + 191√

Δ+ 3
√
101√

101 + 11

√
Δ− 3

√
101√

101 + 11

The biquadratic field Q(
√
29,

√
−31) has class number 21 and the cyclic quartic

field Q(
√
Δ) where Δ = −(109+10

√
109) has class number 17. Tables 3 and 4 show

CM points for these fields, where the CM points and CM types are as in Tables 1
and 2.

Table 3. CM points for Q(
√
29,

√
−31) (see Example 2.2).

√
−31−

√
29

2

√
−31− 1

4

√
−31− 2

√
29− 1

4√
−31 +

√
29

4
√
29 + 22

√
−31−

√
29

4
√
29 + 22

√
−31 +

√
29√

29 + 7√
−31−

√
29√

29 + 7

√
−31 + 5

√
29

2
√
29 + 12

√
−31− 5

√
29

2
√
29 + 12√

−31 + 5
√
29

3
√
29 + 17

√
−31− 5

√
29

3
√
29 + 17

√
−31 +

√
29

6√
−31−

√
29

6

√
−31 + 4

√
29− 1

8
√
29 + 44

√
−31 + 2

√
29− 1

8
√
29 + 44√

−31 + 19
√
29

3
√
29 + 19

√
−31− 19

√
29

3
√
29 + 19

√
−31 + 19

√
29

7
√
29 + 39√

−31− 19
√
29

7
√
29 + 39

√
−31 + 10

√
29− 1

4
√
29 + 24

√
−31− 8

√
29− 1

4
√
29 + 24
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Table 4. CM points for Q(
√
Δ) where Δ = −(109+10

√
109) (see

Example 2.4).

√
Δ− 3

√
109

−
√
109 + 11

√
Δ− 2

√
109 + 1

6

√
Δ− 4

√
109− 1

6

√
Δ+ 3

√
109

511
√
109 + 5335√

Δ− 3
√
109

511
√
109 + 5335

√
Δ+ 3

√
109√

109 + 13

√
Δ− 3

√
109√

109 + 13

√
Δ+ 3

√
109

218
√
109 + 2276√

Δ− 3
√
109

218
√
109 + 2276

√
Δ+ 4

√
109 + 1

3
√
109 + 33

√
Δ− 4

√
109− 1

3
√
109 + 33

√
Δ+ 4

√
109 + 1

−3
√
109 + 33√

Δ− 2
√
109 + 1

−3
√
109 + 33

√
Δ+ 2

√
109− 1

−3
√
109 + 33

√
Δ− 4

√
109− 1

−3
√
109 + 33

√
Δ+ 21

√
109

143
√
109 + 1493√

Δ− 21
√
109

143
√
109 + 1493

8. Appendix

A text file containing the code for an implementation of Algorithm 6.1 in Sage-
Math can be found at http://www.ms.uky.edu/~raca225/code.txt. The code
may be run in a SageMath worksheet. To explain how to use the code, we must
first describe the way in which we parametrize cyclic quartic fields. Following the
introduction in [11], let E be a cyclic quartic extension of Q. Then there exist
unique integers A, B, C, d1 such that

E = Q

(√
A(d1 +B

√
d1)

)
where

A is squarefree and odd,(8.1)

d1 = B2 + C2 is squarefree and B,C > 0,(8.2)

gcd(A, d1) = 1.(8.3)

Moreover, each choice of integers A, B, C, d1 satisfying these conditions defines a
cyclic quartic field. The unique quadratic subfield is always Q(

√
d1). The cyclic

CM fields of degree 4 are precisely those fields with A < 0.
In the first lines of the code, the user can edit the existing values for the relatively

prime squarefree integers d1 = d1 > 1 and d2 = d2 ≥ 1 and compute the CM
points for the biquadratic extension Q(

√
d1,

√
−d2). Alternatively, the user can

define d1 = d1, A = A < 0, and B = B as in (8.1)-(8.3) and compute the CM

points for the cyclic quartic extension Q(
√
Δ) where Δ = A(d1 + B

√
d1). In

both cases the CM type is the same as in Tables 1 and 2. Line 8 should read
biquadratic = true when considering a biquadratic extension, and the line should
read biquadratic = false when considering a cyclic extension. The output is a

http://www.ms.uky.edu/~raca225/code.txt
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list of ordered pairs [a, b] such that a, b ∈ E and

z =

√
Δ− b

a

gives the decomposition

a = OF +OF z,

where a ⊂ E is the fractional ideal generated by 1 and z. One such z is given for each
ideal class in E. Here Δ = −d2 in the biquadratic case, and Δ = A(d1 +B

√
d1) in

the cyclic case. The variable f appearing in the output is
√
d1. Different versions of

SageMath may produce different representatives of the CM points. The CM points
in this paper were computed using SageMath Version 6.7.
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