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SOME NONEXISTENCE RESULTS FOR A SEMIRELATIVISTIC

SCHRÖDINGER EQUATION WITH NONGAUGE

POWER TYPE NONLINEARITY
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(Communicated by Joachim Krieger)

Abstract. We consider the following semirelativistic nonlinear Schrödinger
equation (SNLS):

{
i∂tu± (m2 −Δ)1/2u = λ|u|p, (t, x) ∈ [0, T )× Rd,
u(0, x) = u0(x), x ∈ Rd,

where m ≥ 0, λ ∈ C \ {0}, d ∈ N, T > 0, and ∂t = ∂/∂t. Here (m2 −Δ)1/2 :=

F−1(m2 + |ξ|2)1/2F , where F denotes the Fourier transform. Fujiwara and
Ozawa proved the nonexistence of global weak solutions to SNLS for some

initial data in the case of d = 1, m = 0, and 1 < p ≤ 2 by a test function
method. In this paper, we extend their result to a more general setting: for
example, m ≥ 0, d ∈ N, or p > 1. Moreover, we obtain the upper estimates of
weak solutions to SNLS. The key to the proof is to choose an appropriate test
function.

1. Introduction

We consider the following semirelativistic nonlinear Schrödinger equation:

(1.1)

{
i∂tu± (m2 −Δ)1/2u = λ|u|p, (t, x) ∈ [0, T )× Rd,
u(0, x) = u0(x), x ∈ Rd,

where m ≥ 0, λ ∈ C\{0}, p > 1, d ∈ N, T > 0, and ∂t = ∂/∂t. Here (m2−Δ)1/2 :=
F−1(m2 + |ξ|2)1/2F , where F denotes the Fourier transform defined by

(Ff)(ξ) = f̂(ξ) :=
1

(2π)d/2

∫
Rd

e−ix·ξf(x)dx.

In this paper, we are interested in the global existence of solutions to the Cauchy
problem (1.1). The following semirelativistic Schrödinger equation appears in many
physical contexts:

(1.2) i∂tu± (m2 −Δ)1/2u = λ|u|p−1u, (t, x) ∈ [0, T )× R
d.

The local well-posedness and the global solvability for (1.2) are discussed in [1,3,8].
However, the global solvability for (1.1) is not well known. It is known that the
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following two equations are quite different from the view point of global solvability:{
i∂tu+Δu = λ|u|p−1u, (t, x) ∈ [0, T )× Rd,
u(0, x) = u0(x), x ∈ Rd,

(1.3) {
i∂tu+Δu = λ|u|p, (t, x) ∈ [0, T )× Rd,
u(0, x) = u0(x), x ∈ Rd.

(1.4)

Indeed, if 1 < p < 1+4/d, λ > 0 and u0 ∈ L2(Rd), then the corresponding solution
to (1.3) is global (see [2] for more information). On the other hand, there exists a
blow-up solution for (1.4) even if u0 is sufficiently small (see [5, 7] and see [4] for
some other nonexistence results). We expect that the global solvability of (1.1) and
(1.2) is different. Recently, Fujiwara and Ozawa studied the global solvability of
(1.1) in their paper [3]. They proved the nonexistence of global weak solutions to
(1.1) for some initial data in the case of d = 1, 1 < p ≤ 2, and m = 0 by a test
function method. To avoid the difficulty which comes from the nonlocal operator
(−Δ)1/2, they reduced (1.1) with m = 0 to the following nonlinear wave equation
with a time derivative nonlinearity:

(1.5) ∂2
t v −Δv = −|λ|2∂t(|u|p), (t, x) ∈ [0, T )× R

d,

where v = Im(λ̄u). The wave equation with the nonlinearity |v|p is well studied
(see [9, 11, 13] and references therein). However, (1.5) has the difficulty which
comes from the time derivative nonlinearity ∂t(|u|p). (1.5) is more difficult than
the damped wave equation, which has time derivative linear term ∂tu. The damped
wave equation is studied in [6,10,12]. Because of the difficulty, Fujiwara and Ozawa
cannot treat the general case, for instance, d > 1, m > 0 or p > 2. In the
present paper, we extend their result in [3] to the more general case by choosing an
appropriate test function and initial data. Moreover, we obtain the upper estimates
of the lifespan of weak solutions to (1.1). To state our main results, we introduce
some definitions and notation.

Hs = Hs(Rd) is the usual inhomogeneous Sobolev space for s ≥ 0. (·|·) denotes
the L2 inner product. a∧ b := min{a, b} for a, b ∈ R. We define the function space
XT for T > 0 as follows:

XT := {ψ ∈ C([0,∞);H1)∩C1([0,∞);L2) : supp ψ ⊂ [0, T )×R
d, ψ is R-valued}.

We define the weak solution to (1.1).

Definition 1.1. Let s ≥ 0, u0 ∈ Hs(Rd), and T > 0. We say that u is a weak
solution to (1.1) on [0, T ), if |u|p belongs to L1

loc([0, T );L
2) and the identity

(1.6)

∫ T

0

(u(t)|i∂tϕ± (m2 −Δ)1/2ϕ)dt = i(u(0)|ϕ(0)) + λ

∫ T

0

(|u(t)|p|ϕ(t))dt

holds for any ϕ ∈ XT where the plus-minus sign corresponds to the sign of (1.1).

Based on the idea of Fujiwara and Ozawa [3], we reduce (1.1) to the Klein-Gordon
equation with time derivative nonlinearity:

(1.7) ∂2
t v −Δv +m2v = −|λ|2∂t(|u|p), (t, x) ∈ [0, T )× R

d,
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where v = Im(λ̄u). Formally speaking, this is derived by combining the first equa-
tion below with ∂t and the latter equation with (m2 −Δ)1/2:

∂tIm(λu)∓ (m2 −Δ)−1/2Re(λu) = −|λ|2|u|p,(1.8)

∂tRe(λu)± (m2 −Δ)−1/2Im(λu) = 0,(1.9)

which are obtained by taking the real part and the imaginary part after multiplying
λ by (1.1), respectively. We define the weak solution to (1.7).

Definition 1.2. Let s ≥ 0, u0 ∈ Hs(Rd), and T > 0. We say that u is a weak
solution to (1.7) on [0, T ), if v = Im(λu), |u|p belongs to L1

loc([0, T )×Rd), and the
identity

(1.10)

∫ T

0

(v(t)|∂2
t ϕ−Δϕ+m2ϕ)dt

= ±(Re(λu0)|(m2 −Δ)1/2ϕ(0))− (v(0)|∂tϕ(0)) + |λ|2
∫ T

0

(|u(t)|p|∂tϕ(t))dt

holds for any ϕ ∈ C2
0 ([0, T ) × Rd) where the plus-minus sign corresponds to the

sign of (1.1).

Indeed, the above formal argument is justified in the weak sense as follows.

Lemma 1.1. Let s > 0, u0 ∈ Hs(Rd), and T > 0. If u is a weak solution to (1.1)
on [0, T ), then u is also a weak solution to (1.7) on [0, T ).

Lemma 1.1 was essentially proved in [3]. However, we give a complete proof in
Appendix A for the reader’s convenience.

Now, we obtain the following main theorems.

Theorem 1.2 (Large data blow-up in the subcritical case). Let s ≥ 0, u0 ∈
Hs(Rd), and T > 0. Let u be a weak solution to (1.1) on [0, T ). We assume that
1 < p ≤ 1 + 2/(d − 2s) and the initial value u0(x) = μf(x) where μ > 0 and f
satisfies

Re(λf) = 0, −Im(λf) ≥
{

|x|−k, |x| ≤ 1,
0, |x| > 1,

where k < d/2 − s(≤ 1/(p − 1)). Then there exists μ0 such that if μ > μ0, then
the weak solution is not global, i.e. T < ∞. Moreover, for any μ ∈ [μ0,∞), there
exists a positive constant C > 0 such that

(1.11) T ≤ Cμ−1/κ,

where κ := p/(p− 1)− k − 1 > 0.

Theorem 1.3 (Nonexistence of weak solutions in the supercritical case). Let s ≥ 0,
u0 ∈ Hs(Rd), and T > 0. Let u be a weak solution to (1.1) on [0, T ). We assume
that p > 1 + 2/(d − 2s) and the initial value u0(x) = μf(x) where μ ≥ 0 and f
satisfies

Re(λf) = 0, −Im(λf) ≥
{

|x|−k, |x| ≤ 1,
0, |x| > 1,

where 1/(p− 1) < k < d/2− s. Then μ = 0, i.e. u0 ≡ 0.
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Theorem 1.4 (Small data blow-up in the mass subcritical and massless case). Let
s ≥ 0, u0 ∈ Hs(Rd), and T > 0. Let u be a weak solution to (1.1) on [0, T ). We
assume that m = 0, 1 < p < 1 + 2/d, and the initial value u0(x) = μf(x) where
μ > 0 and f satisfies

Re(λf) = 0, −Im(λf) ≥
{

0, |x| ≤ 1,
|x|−k, |x| > 1,

where 1/(p − 1) < k < d/2. Then the weak solution is not global, i.e. T < ∞.
Moreover, there exist ε0 > 0 and a positive constant C > 0 such that

(1.12) T ≤
{

Cμ−1/κ, μ ∈ (0, ε0),
2, μ ∈ [ε0,∞),

where κ := p/(p− 1)− k − 1 > 0.

The proofs are based on a test function method used in [3–6]. The key to our
proof is to choose an appropriate test function.

We state the construction of the present paper: In Section 2, we prove a lemma,
which plays an important role in the proofs of the main theorems. In Section 3, we
prove the main theorems. We prove Lemma 1.1 in Appendix A.

2. Preliminaries

Fix l ∈ N satisfying l ≥ 2q + 1, where q := p/(p − 1). Let η ∈ C1
0 ([0,∞)) and

φ ∈ C2
0 (R

d) satisfy

(2.1) η(t) :=

{
(1− t)2, 0 ≤ t ≤ 1,
0, 1 < t,

φ(x) :=

{
1, |x| ≤ 1/2,
0, 1 ≤ |x|,

and 0 ≤ φ ≤ 1. We note that η satisfies

(2.2)

∫ ∞

t

η(s)lds ≤ Cη(t)l,

for any t ∈ [0,∞) where C is a positive constant. Indeed, for t ≥ 0,∫ ∞

t

η(s)lds =

∫ 1

t∧1

(1− s)2lds =
1

2l + 1
{1− (t ∧ 1)}2l+1 ≤ 1

2l + 1
η(t)l.

We define the test function ψτ ∈ C2
0 ([0, T )× Rd) for τ ∈ (0, T ) by

ψτ (t, x) := −
(∫ ∞

t

η
( s

τ

)l

ds

)
φ
(x
τ

)l

.

The following lemma plays an important role in the proofs of the main theorems.

Lemma 2.1. Let s ≥ 0, u0 ∈ Hs(Rd), T > 0, and l ∈ N with l ≥ 2q + 1 where
q := p/(p − 1). We assume Re(λu0) = 0. Let u be a weak solution to (1.1) on
[0, T ). Then, there exists a positive constant C = C(λ, p, d, l) > 0 such that

(2.3) −
∫
Rd

v(0, x)φ
(x
τ

)l

dx ≤ Cτd+1−q +m2qCτd+1+q,

for any τ ∈ (0, T ) where v = Im(λu0).
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Proof. Let T > 0 and let u be a weak solution to (1.1) on [0, T ). By Lemma 1.1, u
is also a weak solution to (1.7) on [0, T ). We set

I(τ ) :=

∫ T

0

(|u(t)|p|∂tψτ (t))dt.

By substituting ψτ for ϕ in Definition 1.2 and using the assumption Re(λu0) = 0,
we obtain

−(v(0)|∂tψτ (0)) = −|λ|2I(τ ) +
∫ T

0

(v(t)|∂2
t ψτ −Δψτ +m2ψτ )dt

= −|λ|2I(τ ) +K1 +K2 +m2K3,

where

K1 :=

∫ T

0

(v(t)|∂2
t ψτ )dt, K2 := −

∫ T

0

(v(t)|Δψτ )dt, K3 :=

∫ T

0

(v(t)|ψτ )dt.

We estimate K1, K2, and K3. First, we consider K1. By l−1 > l/p and the Hölder
inequality,

|K1| = lτ−1

∣∣∣∣∣
∫ τ

0

∫
|x|≤τ

v(t)η′
(
t

τ

)
η

(
t

τ

)l−1

φ
(x
τ

)l

dxdt

∣∣∣∣∣
≤ Cτ−1

∫ τ

0

∫
|x|≤τ

|v(t)|η
(
t

τ

)l−1

φ
(x
τ

)l

dxdt

≤ Cτ−1

∫ τ

0

∫
|x|≤τ

|v(t)|η
(
t

τ

)l/p

φ
(x
τ

)l/p

dxdt

≤ Cτ−1

(∫ τ

0

∫
|x|≤τ

|v(t)|pη
(
t

τ

)l

φ
(x
τ

)l

dxdt

)1/p (∫ τ

0

∫
|x|≤τ

dxdt

)1/q

= Cτ (d+1)/q−1

(∫ τ

0

∫
|x|≤τ

|v(t)|p∂tψτdxdt

)1/p

≤ Cτ (d+1)/q−1I(τ )1/p.

Second, we consider K2. Note that the following holds by (2.2):

∫ ∞

t

η
( s

τ

)l

ds = τ

∫ ∞

t/τ

η(s)lds ≤ Cτη

(
t

τ

)l

.(2.4)
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By l − 2 > l/p, (2.4), and the Hölder inequality,

|K2| ≤ Cτ−2

∫ τ

0

∫
|x|≤τ

|v(t)|
∣∣∣∣
∫ ∞

t

η
( s

τ

)l

ds

∣∣∣∣
×
{
φ
(x
τ

)l−2 ∣∣∣(∇φ)
(x
τ

)∣∣∣2 + φ
(x
τ

)l−1 ∣∣∣(Δφ)
(x
τ

)∣∣∣} dxdt

≤ Cτ−2

∫ τ

0

∫
|x|≤τ

|v(t)|
(∫ ∞

t

η
( s

τ

)l

ds

)
φ
(x
τ

)l−2

dxdt

≤ Cτ−1

∫ τ

0

∫
|x|≤τ

|v(t)|η
(
t

τ

)l

φ
(x
τ

)l−2

dxdt

≤ Cτ−1

∫ τ

0

∫
|x|≤τ

|v(t)|η
(
t

τ

)l/p

φ
(x
τ

)l/p

dxdt

≤ Cτ (d+1)/q−1I(τ )1/p.

Finally, we consider K3. By l > l/p, (2.4), and the Hölder inequality,

|K3| ≤
∫ τ

0

∫
|x|≤τ

|v(t)|
∣∣∣∣
∫ ∞

t

η
( s

τ

)l

ds

∣∣∣∣φ(x
τ

)l

dxdt

≤ Cτ

∫ τ

0

∫
|x|≤τ

|v(t)|η
(
t

τ

)l

φ
(x
τ

)l

dxdt

≤ Cτ (d+1)/q+1I(τ )1/p.

By these estimates and the Young inequality, we obtain

−(v(0)|∂tψτ (0)) ≤ −|λ|2I(τ ) + Cτ (d+1)/q−1I(τ )1/p +m2Cτ (d+1)/q+1I(τ )1/p

≤ Cτd+1−q +m2qCτd+1+q.

Therefore, we obtain the statement. �

3. Proofs of the main theorems

In this section, we prove the main theorems. First, we prove Theorem 1.2.

Proof of Theorem 1.2. By the assumption for the initial data,

−(v(0)|∂tψτ (0)) = −
∫
Rd

v(0, x)φ
(x
τ

)l

dx

≥ μ

∫
|x|≤1

|x|−kφ
(x
τ

)l

dx

≥ μτd−k

∫
|y|≤ 1

τ

|y|−kφ (y)l dy.

Let L(τ ) :=
∫
|y|≤ 1

τ
|y|−kφ (y)

l
dy. Then, by Lemma 2.1, we get

μ ≤ (L(τ ))−1(Cτk+1−q +m2qCτk+1+q).

Claim. There exists μ0 such that T ≤ 2 if μ > μ0.
We suppose T > 2 and μ > μ0. Taking τ = 2, μ satisfies

μ ≤ (L(2))−1(C2k+1−q +m2qC2k+1+q) =: μ0.
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Noting that L(2) is a finite positive constant, this contradicts μ > μ0. Hence, the
Claim is true.

Let μ > μ0. L(τ ) > L(2) for any τ < T (< 2) since L is decreasing. For any
τ < T ,

μ ≤ (L(τ ))−1(Cτk+1−q +m2qCτk+1+q)

≤ (L(2))−1(Cτk+1−q +m2qC22qτk+1−q)

≤ Cτk+1−q.

Hence, τ ≤ Cμ−1/(q−k−1) for any τ < T , where C depends on k, m, p, and λ. We
note q−k−1 > 0 since k < d/2−s ≤ 1/(p−1). Taking the limit τ → T , we obtain

T ≤ Cμ−1/(q−k−1).

This completes the proof. �

Next, we prove Theorem 1.3.

Proof of Theorem 1.3. By the same argument as in the proof of Theorem 1.2, for
τ ∈ (0, T ∧ 2),

μ ≤ Cτk+1−q,

where C depends on k, m, p, and λ. We note k + 1− q > 0 since 1/(p− 1) < k <
d/2− s. Taking the limit τ → 0, we obtain μ = 0. This completes the proof. �

Finally, we prove Theorem 1.4.

Proof of Theorem 1.4. Let ε0 satisfy C0ε
−1/(q−k−1)
0 = 2 where C0 is defined later.

First, we consider the case of μ > ε0. We assume that T > 2. By the assumption
for the initial data, for any τ ∈ (0, T ),

−(v(0)|∂tψτ (0)) = −
∫
Rd

v(0, x)φ
(x
τ

)l

dx

≥ μ

∫
|x|≥1

|x|−kφ
(x
τ

)l

dx

≥ μτd−k

∫
|y|≥ 1

τ

|y|−kφ (y)
l
dy.

Let M(τ ) :=
∫
|y|≥ 1

τ
|y|−kφ (y)

l
dy. For any τ ∈ (2, T ), M(τ ) ≥ M(2) > 0 since M

is increasing. Therefore, by Lemma 2.1 and m = 0, we get

M(2)Cμ ≤ τk+1−q,

for τ ∈ (2, T ). We set C0 := (M(2)C)−1/(q−k−1). We note q − k − 1 > 0 since
d/2 < k ≤ 1/(p − 1). Hence, τ ≤ C0μ

−1/(q−k−1). Taking the limit τ → T , we
obtain

T ≤ C0μ
−1/(q−k−1) ≤ 2.

This contradicts T > 2. Therefore, T ≤ 2 for μ ∈ [ε0,∞). Next, we consider
the case of μ < ε0. If T ≤ 2, then the statement is true since 2 < C0μ

−1/(q−k−1).
Hence, it is sufficient to consider the case T > 2. By the above argument, we obtain
T ≤ C0μ

−1/(q−k−1) for μ ∈ (0, ε0). �
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Appendix A. Proof of Lemma 1.1

Proof. Let ϕ ∈ C2
0 ([0, T ) × Rd). Then (m2 − Δ)1/2ϕ and ∂tϕ belong to XT . By

taking the imaginary part of (1.6) with ϕ replaced by λ(m2 −Δ)1/2ϕ,

Im

∫ T

0

(λu(t)|i∂t(m2 −Δ)1/2ϕ± (m2 −Δ)ϕ)dt

= (Re(λu0)|(m2 −Δ)1/2ϕ(0)),∫ T

0

(Re(λu)|∂t(m2 −Δ)1/2ϕ)dt∓
∫ T

0

(v(t)|(m2 −Δ)ϕ)dt

= −(Re(λu0)|(m2 −Δ)1/2ϕ(0)).

On the other hand, by taking the real part of (1.6) with ϕ replaced by λ∂tϕ,

Re

∫ T

0

(λu(t)|i∂2
t ϕ± (m2 −Δ)1/2∂tϕ)dt

= −(v(0)|∂tϕ(0)) + |λ|2
∫ T

0

(|u(t)|p|∂tϕ(t))dt,

∫ T

0

(v|∂2
t ϕ)dt±

∫ T

0

(Re(λu)|(m2 −Δ)1/2∂tϕ)dt

= −(v(0)|∂tϕ(0)) + |λ|2
∫ T

0

(|u(t)|p|∂tϕ(t))dt.

By combining these equalities, we get∫ T

0

(v|∂2
t ϕ)dt+

∫ T

0

(v(t)|(m2 −Δ)ϕ)dt∓ (Re(λu0)|(m2 −Δ)1/2ϕ(0))

= −(v(0)|∂tϕ(0)) + |λ|2
∫ T

0

(|u(t)|p|∂tϕ(t))dt.

Therefore, this completes the proof. �
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