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LINEAR CONGRUENCES WITH RATIOS

IGOR E. SHPARLINSKI

(Communicated by Matthew A. Papanikolas)

Abstract. We use new bounds of double exponential sums with ratios of
integers from prescribed intervals to get an asymptotic formula for the number
of solutions to congruences

n∑

j=1

aj
xj

yj
≡ a0 (mod p),

with variables from rather general sets.

1. Introduction

1.1. Motivation. We count the number of solutions to a linear congruence with
rational variables with restricted numerators and denominators. This includes so-
lutions with rationals of a bounded height or more generally with numerators and
denominators from a certain large class of sets with a regular boundary. For ex-
ample, this class of sets includes all convex sets. In some special cases, the corre-
sponding equation over Q has recently been considered by Blomer and Brüdern [2]
and also by Blomer, Brüdern and Salberger [3]. However, in positive characteristic
this natural question has never been studied before.

More precisely, for a prime p we consider the equation

(1)
n∑

j=1

aj
xj

yj
= a0,

with coefficients a = (a0, a1, . . . , an) ∈ Fn+1
p and variables

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn
p ,

where Fp denotes the finite fields of p elements.
Given a set S ⊆ [0, p− 1]2n , we use N(a;S) to denote the number of solutions

to the equation (1) with variables (x1, y1, . . . , xn, yn) ∈ S .
The equation (1) can be considered over the integers. In particular, recently

Blomer, Brüdern and Salberger [3] have studied it for n = 3, a0 = 0 and a1 =
a2 = a3 = 1. In particular, by [3, Theorem 1], the number of integer solutions
with (x,y) ∈ [−H,H]6 to the analogue of (1) with variables over Z is given by
H3Q(H) + O(H3−δ) , where Q ∈ Q[X] is a polynomial of degree 4 and δ > 0 is
some absolute constant. Blomer and Brüdern [2] have also suggested an alternative
approach which yields a tight upper bound for the same equation but for a slightly
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different way of ordering and counting solutions. The methods of [2,3] can probably
be extended to arbitrary n (see, for example, the comment in [3, Section 1.3]).

In [15], a different approach has been suggested, which is based on some argu-
ments from [13] and leads to bounds that are weaker by a logarithmic factor than
those expected to be produced by the methods of [2, 3]; however it seems to be
more robust and is able to work in more general situations.

Here we combine some ideas from [13] with several other arguments and apply
them to the case of the equation (1) over a finite field.

Throughout the paper, any implied constants in the symbols O , � and � may
depend on the integer parameter n ≥ 1. We recall that the notation U = O(V ) ,
U � V and V � U are all equivalent to the statement that the inequality |U | ≤ cV
holds with some constant c > 0.

1.2. Solutions in boxes. We fix some intervals

(2) Ij = [Aj + 1, Aj +Kj ], Jj = [Bj + 1, Bj + Lj ] ⊆ [0, p− 1],

with integers Aj , Bj , Kj and Lj , j = 1, . . . , n , and obtain the following asymp-
totic formula.

Theorem 1. For n ≥ 3 and arbitrary intervals (2) for the box B = I1×J1× . . .×
In × Jn we have∣∣∣∣∣∣N(a;B)− 1

p

n∏
j=1

(KjLj)

∣∣∣∣∣∣ ≤
√
K1L1K2L2

n∏
j=3

(Kj +
√
pLj)p

o(1).

We now consider the case when B is a cube with the side length H .

Corollary 2. For n ≥ 3 and intervals (2) with Kj = Lj = H , j = 1, . . . , n , for
the cubic box C = I1 × J1 × . . .× In × Jn we have∣∣∣∣N(a; C)− H2n

p

∣∣∣∣ ≤ pn/2−1+o(1)Hn/2+1.

In particular, the asymptotic formula of Corollary 2 is nontrivial starting from
the values of H of order pn/(3n−2)+δ for any fixed δ > 0 and sufficiently large p .
We also record the following result which is convenient for further applications.

For a set Ω ⊆ [0, 1]2n we use pΩ to denote its blowup by p , that is,

pΩ = {pω : ω ∈ Ω}.

Rounding up and down the sides of pΓ for a cubic box

(3) Γ = [α1, α1 + ξ]× [β1, β1 + ξ]× . . .× [αn, αn + ξ]× [βn, βn + ξ] ∈ [0, 1]2n,

we derive

Corollary 3. For n ≥ 3 and a cubic box (3) with ξ > 1/p we have

∣∣N(a; pΓ)− ξ2np2n−1
∣∣ ≤ (

ξ2n−1p2n−2 + ξn/2+1pn
)
po(1).
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1.3. Solutions in well-shaped sets. We combine Corollary 2 with some ideas of
Schmidt [12] to get an asymptotic formula for N(a; Ω) for a rather general class of
sets, which includes all convex sets.

First we need to introduce some definitions. We define the distance between a
vector α ∈ [0, 1]m and a set Ξ ⊆ [0, 1]m by

dist(α, Ξ) = inf
β∈Ξ

‖α− β‖,

where ‖γ‖ denotes the Euclidean norm of γ . Given ε > 0 and a set Ξ ⊆ [0, 1]m ,
we define the sets

Ξ+
ε = {α ∈ [0, 1]m\Ξ : dist(α, Ξ) < ε}

and
Ξ−

ε = {α ∈ Ξ : dist(α, [0, 1]m\Ξ) < ε} .
We note that in the definition of Ξ+

ε we discard the part of the outer ε -
neighbourhood that does not belong to [0, 1]m . These parts can also be included
in Ξ+

ε but this does not affect our argument as we work only with inner ε -

neighbourhoods Ξ−
ε and ([0, 1]m\Ξ)

−
ε = Ξ+

ε .
Following [15] (see also [9, 10]), we say that a set Ξ is well-shaped if for every

ε > 0 the Lebesgue measures μ (Ξ−
ε ) and μ (Ξ+

ε ) exist, for some constant C , and
satisfy

(4) μ
(
Ξ±

ε

)
≤ Cε.

As we have mentioned, all convex sets are well-shaped.

Theorem 4. For n ≥ 3 and an arbitrary well-shaped set Ω ⊆ [0, 1]2n of Lebesgue
measure μ(Ω) , we have∣∣N(a; pΩ)− p2n−1μ(Ω)

∣∣ ≤ p2n−(5n−4)/(3n−2)+o(1).

2. Preliminaries

2.1. Multiplicative congruences. We recall the following special case of a result
of Ayyad, Cochrane and Zheng [1, Theorem 1].

Lemma 5. Let Ij ,Jj , j = 1, 2 , be four intervals of the form (2). Then

x1y2 ≡ x2y1 (mod p), xi ∈ Ii, yi ∈ Ji, i = 1, 2,

has K1K2L1L2/p+O
(√

K1K2L1L2p
o(1)

)
solutions.

We also need a version of the result of Cilleruelo and Garaev [5, Theorem 1].

Lemma 6. For any integers B , L and M with 0 ≤ L,M < p , the congruence

(B + y)z ≡ 1 (mod p), 1 ≤ y ≤ L, 1 ≤ z ≤ M,

has at most p−1/2+o(1)L1/2M + po(1) solutions.

Proof. As in the proof of [5, Theorem 1] we note that by the Dirichlet principle, for
any positive integers U < p and V with UV ≥ p one can choose integers u and v
with

1 ≤ u ≤ U, |v| = O(V ), uB ≡ v (mod p)

(see also [6, Lemma 3.2] for a more general statement). With this choice of u and
v the above congruence can be written as

vz + uyz ≡ u (mod p).
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We now take U =
⌈
(p/L)1/2

⌉
and V =

⌈
(pL)1/2

⌉
(thus UV ≥ p).

Since the left hand side is at most O(MV +LMU) = O((pL)1/2M) , we see that
for every solution (y, z) we have

(5) vz + uyz = u+ kp

with some integer k = O
(
(pL)1/2M/p

)
= O

(
p−1/2L1/2M

)
.

We now recall the well-known bound

τ (m) ≤ mo(1)

on the number of integer positive divisors τ (m) of an integer m �= 0; see, for
example, [7, Theorem 317]. Since by (5) we have the divisibility z | |u + kp| and
also 0 < |u + kp| = O(p2) , we conclude that for each of the O

(
p−1/2L1/2M + 1

)
possible values of k , there are at most po(1) possible values for z , and thus for y .
The result now follows. �
2.2. Exponential sums with ratios. For a prime p , we denote ep(z) =
exp(2πiz/p) . Clearly for p � u the expression ep(av/u) is correctly defined (as
ep(aw) for w ≡ v/u (mod p)).

Let

(6) I = [A+ 1, A+K], J = [B + 1, B + L] ⊆ [0, p− 1]

be two intervals with integers A , B , K and L .
The following result is a variation of [13, Lemma 3]. We present it in the slightly

more general form that we need for our applications.

Lemma 7. Let I and J be two intervals of the form (6) and let W ⊆ I × J be
an arbitrary convex set. Then uniformly over the integers a with gcd(a, p) = 1 , we
have ∑

(x,y)∈W
ep(ax/y) � (K + p1/2L1/2)po(1),

where the summation is over all integral points (x, y) ∈ W .

Proof. Since W is convex, for each y there are integers K ≥ Ky > Hy ≥ 1 such
that ∑

(x,y)∈W
ep(ax/y) =

∑
y∈J

A+Ky∑
x=A+Hy

ep(ax/y).

Following the proof of [13, Lemma 3], we define

I = �log(2p/K)� and J = �log(2p)� .
Furthermore, for a rational number α = u/v with gcd(v, p) = 1, we denote by

ρ(α) the unique integer w with w ≡ u/v (mod p) and |w| < p/2 (we can assume
that p ≥ 3). Using the bound

A+Ky∑
x=A+Hy

ep(αx) � min

{
K,

p

|ρ(α)|

}
,

which holds for any rational α with the denominator that is not a multiple of p
(see [8, Bound (8.6)]), we obtain a version of [13, Equation (1)],

(7)
∑

(x,y)∈W
ep(ax/y) � KR+ p

J∑
j=I+1

Tje
−j ,



LINEAR CONGRUENCES WITH RATIOS 2841

where

R = #
{
y : B + 1 ≤ y ≤ B + L, |ρ(a/y)| < eI

}
,

Tj = #
{
y : B + 1 ≤ y ≤ B + L, ej ≤ |ρ(a/y)| < ej+1

}
.

We now see that Lemma 6 implies the bounds

R ≤ p−1/2+o(1)L1/2eI + po(1) ≤ p1/2+o(1)L1/2K−1 + po(1)

and

Tj ≤ p−1/2+o(1)L1/2ej + po(1).

Substituting these bounds in (7), we obtain∣∣∣∣∣∣
∑

(x,y)∈W
ep(ax/y)

∣∣∣∣∣∣
� p1/2+o(1)L1/2 +Kpo(1) + p

J∑
j=I+1

(
p−1/2+o(1)L1/2ej + po(1)

)
e−j

= p1/2+o(1)L1/2 +Kpo(1) + Jp1/2+o(1)L1/2 + p1+o(1)e−I

= p1/2+o(1)L1/2 +Kpo(1),

which concludes the proof. �

We also need a version of Lemma 7 on average over a .

Lemma 8. Let I and J be two intervals of the form (6). Then we have

p−1∑
a=1

∣∣∣∣∣∣
∑
x∈I

∑
y∈J

ep(ax/y)

∣∣∣∣∣∣
2

≤ KLp1+o(1).

Proof. First we write

(8)

p−1∑
a=1

∣∣∣∣∣∣
∑
x∈I

∑
y∈J

ep(ax/y)

∣∣∣∣∣∣
2

=

p−1∑
a=0

∣∣∣∣∣∣
∑
x∈I

∑
y∈J

ep(ax/y)

∣∣∣∣∣∣
2

−K2L2.

Expanding the square of the inner sum on the right hand side of (8), changing
the order of summations and using the orthogonality of characters, we obtain

p−1∑
a=0

∣∣∣∣∣∣
∑
x∈I

∑
y∈J

ep(ax/y)

∣∣∣∣∣∣
2

=
∑

x1,x2∈I

∑
y1,y2∈J

p−1∑
a=0

ep(a(x1/y1 − x2/y2)) = pT,

where T is the number of solutions to the congruence

(9) x1/y1 ≡ x2/y2 (mod p), x1, x2 ∈ I, y1, y2 ∈ J .

Extending the admissible region of solutions to I × J and evoking Lemma 5, we
conclude that

T =
K2L2

p
+O

(
KLpo(1)

)
,

which together with (8) completes the proof. �



2842 I. E. SHPARLINSKI

3. Proofs of the main results

3.1. Proof of Theorem 1. Using the orthogonality of the exponential function,
we write

N(a;B) =
∑

. . .
∑

(x1,y1,...,xn,yn)∈B

1

p

p−1∑
λ=0

ep

⎛
⎝λ

⎛
⎝ n∑

j=1

aj
xj

yj
− a0

⎞
⎠
⎞
⎠ .

Changing the order of summation, and recalling that B is a direct product of the
intervals Ij and Jj , j = 1, . . . , n , we obtain

N(a;B) = 1

p

p−1∑
λ=0

ep (−λa0)

n∏
j=1

∑
xj∈Ij

∑
yj∈Jj

ep (λajxj/yj) .

Now, the contribution from λ = 0 gives the main term

1

p

n∏
j=1

∑
xj∈Ij

∑
yj∈Jj

1 =
1

p

n∏
j=1

(KjLj).

To estimate the error term, we apply Lemma 7 to n − 2 sums with j = 3, . . . , n ,
getting

(10) N(a;B)− 1

p

n∏
j=1

(KjLj) ≤ p−1+o(1)
n∏

j=3

(Kj + p1/2L
1/2
j )W,

where

W =

p−1∑
λ=1

∣∣∣∣∣∣
∑

x1∈I1

∑
y1∈J1

ep (λa1x1/y1)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

x2∈I2

∑
y2∈J2

ep (λa2x2/y2)

∣∣∣∣∣∣ .
Hence, by the Cauchy inequality,

(11) W ≤
√
W1W2,

where, for ν = 1, 2,

Wν =

p−1∑
λ=1

∣∣∣∣∣∣
∑

xν∈Iν

∑
yν∈Jν

ep (λaνxν/yν)

∣∣∣∣∣∣
2

=

p−1∑
a=1

∣∣∣∣∣∣
∑

xν∈Iν

∑
yν∈Jν

ep (axν/yν)

∣∣∣∣∣∣
2

.

We now apply Lemma 8 to estimate W1 and W2 and see from (11) that

W ≤
√
K1L1K2L2p

1+o(1),

which together with (10) concludes the proof.

3.2. Proof of Corollaries 2 and 3. For Corollary 2, we see that the first term
appearing in the bound of Theorem 1 is H2 while each term in the product becomes
O(p1/2H1/2) . The result now follows.

For Corollary 3, we approximate the set pΓ by two cubes with side lengths �ξp�
and �ξp� . Since ξ > 1/p , we have (ξp + O(1))2n = (ξp)2n + O

(
(ξp)2n−1

)
. The

result now follows from Corollary 2.
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3.3. Proof of Theorem 4. The proof follows the arguments of the proofs of [10,
Theorem 1] or [14, Theorem 3.1] (however the concrete details are different).

First we observe that since the complementary set [0, 1]2n\Ω is also well-shaped,
it is enough to establish only the lower bound

(12) N(a; pΩ) ≥ N(pΩ)

p
+O

(
p2n−4/3+o(1)

)
.

We now recall some constructions and arguments from the proof of [12, Theo-
rem 2]. Pick a point α = (α1, . . . , α2n) ∈ [0, 1]2n such that all its coordinates are
irrational. For a positive integer k , let C(k) be the set of cubes of the form[

α1 +
u1

k
, α1 +

u1 + 1

k

]
× . . .×

[
α2n +

u2n

k
, α2n +

u2n + 1

k

]
,

with u1, . . . , u2n ∈ Z .
We consider the set of points

(13)

(
x1

p
,
y1
p
, . . . ,

xn

p
,
yn
p

)
∈ [0, 1]2n

taken over all solutions (x,y) ∈ F2n
p to the equation (1).

Note that the above irrationality condition on α guarantees that the points (13)
all belong to the interior of the cubes from C(k) .

Furthermore, let C0(k) be the set of cubes from C(k) that are contained inside
of Ω. By [12, Equation (9)], for any well-shaped set Ω ∈ [0, 1]2n , we have

(14) #C0(k) = k2nμ(Ω) + O(k2n−1).

Let B1 = C0(2) and for i = 2, 3, . . . , let Bi be the set of cubes Γ ∈ C0(2
i) that

are not contained in any cube from C0(2
i−1) . Clearly

(15) 2−2in#Bi + 2−2(i−1)n#C0(2
i−1) ≤ μ(Ω), i = 2, 3, . . . .

We now infer from (14) that

μ(Ω)− 2−2(i−1)n#C0(2
i−1)

= μ(Ω)− 2−2(i−1)n
(
22(i−1)nμ(Ω) +O(2(i−1)(2n−1))

)
� 2(i−1)(2n−1)−2(i−1)n = 2−i+1.

Therefore, the inequality (15) implies the bound

(16) #Bi � 2i(2n−1).

We also see that for any integer M ≥ 1,

(17) Ω \ Ω−
ε ⊆

M⋃
i=1

⋃
Γ∈Bi

Γ ⊆ Ω,

with ε = (2n)1/22−M . Indeed, for any point γ ∈ Ω\Ω−
ε there is a cube Γγ ∈ C(2M )

with γ ∈ Γ (since for any integer k ≥ 1, the cubes from C(k) tile the whole space
R2n ). Because the diameter (that is, the largest distance between the points) of Γγ
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is (2n)1/22−M , we see from the definition of Ω−
ε that Γγ ∩ [0, 1]2n\Ω = ∅ . Thus

Γγ ⊆ Ω. This implies

Γγ ⊆
2n⋃
i=1

⋃
Γ∈Bi

Γ

and (17) follows.
Since Ω is well-shaped, from (4) we deduce that

(18) μ

(
2n⋃
i=1

⋃
Γ∈Bi

Γ

)
= μ (Ω) +O(2−M ).

We now assume that

(19) 2M < p,

so Corollary 3 applies to all cubes Γ ∈ C0(2
i) , i = 1, . . . ,M . Together with (17),

this implies the inequality:

(20) N(a; pΩ) ≥
M∑
i=1

∑
Γ∈Bi

N(a; pΓ) = p2n−1
M∑
i=1

∑
Γ∈Bi

μ(Γ) +O(R),

where

R =
M∑
i=1

#Bi

(
2−i(2n−1)p2n−2 + 2−i(n/2+1)pn

)
po(1).

We see from (18) that

p2n−1
M∑
i=1

∑
Γ∈Bi

μ(Γ) = p2n−1μ

(
M⋃
i=1

⋃
Γ∈Bi

Γ

)

= p2n−1μ (Ω) +O
(
p2n−12−M

)
.

(21)

Furthermore, using (16), we derive

R ≤
M∑
i=1

(
p2n−2 + 2i(3n/2−2)pn

)
po(1)

=
(
Mp2n−2 + 2M(3n/2−2)pn

)
po(1).

(22)

Substituting (21) and (22) in (20) with the above choice of M , noticing that (19)
implies M = O(log p) , we obtain

(23) N(a; pΩ) ≥ p2n−1μ (Ω)−Qpo(1),

where

(24) Q ≤ p2n−12−M + p2n−2 + 2M(3n/2−2)pn.

We now choose M to satisfy

2M ≤ p2(n−1)/(3n−2) < 2M+1,

which asymptotically optimises the right hand side of the bound (24), verifies (19)
and produces the bound Q � p2n−(5n−4)/(3n−2)+p2n−2 � p2n−5n/(3n−2) . We now
see from (23) that (12) holds, which concludes the proof.
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4. Comments

We note that for B1 = . . . = Bn = 0, using [13, Lemma 3] instead of Lemma 7
in this special case, one can improve Theorem 1 as follows:∣∣∣∣∣∣N(a;B)− 1

p

n∏
j=1

(KjLj)

∣∣∣∣∣∣
≤

(
K1L1

p1/2
+

√
K1L1

)(
K2L2

p1/2
+
√

K2L2

) n∏
j=3

(Kj + Lj)p
o(1).

Furthermore, it is easy to see that one can get a version of Lemma 8 for the more
general sums of Lemma 7, which now becomes

p−1∑
a=1

∣∣∣∣∣∣
∑

(x,y)∈W
ep(ax/y)

∣∣∣∣∣∣
2

≤ K2L2 +KLp1+o(1),

that is, there is no cancellation of the main term for the number of solutions to the
congruence (9) anymore. Thus the same arguments lead to the following result.
For n ≥ 3 and arbitrary intervals (2) and arbitrary convex sets Wj ⊆ Ij × Jj ,
j = 1, . . . , n , for the set S = W1 × . . .×Wn we have∣∣∣∣N(a;S)− N(S)

p

∣∣∣∣
≤

(
K1L1

p1/2
+
√
K1L1

)(
K2L2

p1/2
+
√
K2L2

) n∏
j=3

(Kj +
√
pLj)p

o(1),

where N(S) = #
(
S ∩ Z2n

)
. For example, this can be used for counting solutions

to the equation (1) with variables in disks

(xj − bj)
2 + (yj − cj)

2 ≤ r2j , j = 1, . . . , n.

One can also ask about solutions to (1) with the additional co-primality condition
gcd(xj , yj) = 1, j = 1, . . . , n , that is, essentially in Farey fractions . Using simple
inclusion-exclusion arguments, one can easily derive relevant asymptotic formulas
from our results.

Finally, we remark that Lemma 7 can be viewed as a statement about cancella-
tions among short Kloosterman sums of the form

K(λ;J ) =
∑
u∈J

ep(λ/u)

over an interval J = [B+1, B+L] when λ runs over an interval I = [A+1, A+K] .
Say, for K = L we have a nontrivial cancellation starting with L ≥ p1/3+δ for any
fixed δ > 0, which is beyond the range of modern bounds of individual short
Kloosterman sums over intervals that are not at the origin; we refer to the recent
work of Bourgain and Garaev [4] for an outline of the state of art and several results.
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