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PERIODIC ORBITS OF LAGRANGIAN SYSTEMS WITH

PRESCRIBED ACTION OR PERIOD

MIGUEL PATERNAIN

(Communicated by Yingfei Yi)

Abstract. We show that for every convex Lagrangian quadratic at infinity
there is a real number a0 such that for every a > a0 the Lagrangian has a
periodic orbit with action a. We attain estimates on the period and energy
of the periodic orbits obtained. We also show that such a Lagrangian has
periodic orbits of every period.

1. Introduction

Let M be a closed connected smooth Riemannian manifold. Let

L : TM → R

be a smooth convex Lagrangian. This means that L restricted to each TxM has a
positive definite Hessian. We shall also assume that L is quadratic at infinity, that
is, there exists R > 0 such that for each x ∈ M and |v|x > R, L(x, v) has the form

L(x, v) =
1

2
|v|2x + θx(v)− V (x),

where θ is a smooth 1-form on M and V : M → R is a smooth function.
Let Λ be the set of absolutely continuous curves x : [0, 1] → M , x(0) = x(1),

such that ẋ has finite L2-norm. It is well known ([Pal63], [Con06]) that Λ has a
Hilbert manifold structure compatible with the Riemannian metric on M . Let R+

stand for the set of positive real numbers. Recall that the free-time action

AL : R+ × Λ → R

is given by

AL(b, x) =

∫ 1

0

b L(x(t), ẋ(t)/b) dt.

If the Lagrangian is quadratic at infinity, arguments in Proposition 3.1 in [AS09b]
show that AL is a C1,1 function (i.e. a function with locally Lipschitz derivative).

Periodic orbits with energy larger than Mañé’s critical value were obtained in
[Con06]. In a previous note ([Pat]) we showed the existence of periodic orbits with
large enough abbreviated action. The aim of this note is to complete this picture
by extending this kind of result to the action and period of the periodic orbits
obtained. We show the following theorems.
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Theorem 1. For every convex Lagrangian quadratic at infinity there are positive
numbers a0 and α such that for every a > a0 the Lagrangian has a periodic orbit
with action a so that its period T and energy e satisfy

1

αa
≤ T ≤ α

a
and α−1a2 ≤ e ≤ αa2.

Theorem 2. For every convex Lagrangian quadratic at infinity there are positive
numbers T0 and σ such that for every 0 < T < T0 there is a periodic orbit of period
T so that its action a and energy e satisfy

1

σT
≤ a ≤ σ

T
and

1

σT 2
≤ e ≤ σ

T 2
.

Note that the existence of periodic orbits of every period follows from Theorem
2 by taking iterations. In [Ben84] it is shown that a particular class of Lagrangians
has an infinite set of periodic orbits satisfying similar bounds.

For the proof of Theorem 1 we shall see that there are real numbers a0 and b̄
such that every a > a0 is a regular value of the restriction of AL to (0, b̄)× Λ and
therefore the set Xa of those (b, x) such that AL(b, x) = a and 0 < b < b̄ is a C1,1

manifold. Consider the function Ta : Xa → R given by

Ta(b, x) = b.

In Proposition 5 we show that critical points of Ta correspond to periodic orbits of
the Lagrangian. In the proof of Theorem 1 we show that if a is large enough, then
Ta has a critical point. Theorem 2 is a straightforward adaptation of arguments of
[Con06] which we include at the end of this paper for the sake of completeness. (For
other results and related approaches see [Abb13,AS09a,AS09b,AS10,BT98,CFP10,
CMP04,Con06,GG09,Gin96,GK99,GP12,Maz11,Mer10,Nov82,Tăı91,Tăı92] and
the references therein.)

2. Periodic orbits with prescribed action

2.1. Time function. Recall that the energy EL : TM → R is defined by

EL(x, v) =
∂L

∂v
(x, v).v − L(x, v).

Since L is autonomous, EL is a first integral of the Euler-Lagrange flow of L.
Critical points of AL+k correspond to periodic orbits with energy k:

Proposition 3. If (b, x) is a critical point of AL+k, then y : [0, b] → M given by
y(s) = x(s/b) is a periodic solution of the Euler-Lagrange equation of L with energy
k (see [AM78,CDI97,CI99,AS09b]).

It is useful to define the average energy function

e : R+ × Λ → R

by

e(b, x) =

∫ 1

0

EL(x(t), ẋ(t)/b) =
1

b

∫ b

0

EL(y(s), ẏ(s)) ds.

We state the following straightforward remark for future reference.

Remark 4.
∂AL

∂b
(b, x) = −e(b, x).
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Let a0 and b̄ be as in the introduction, i.e. such that every a > a0 is a regular
value of the restriction of AL to (0, b̄) × Λ (we shall see in Section 4 that such
numbers exist).

Define Ta : Xa → R by

Ta(b, x) = b

and note that Ta is the restriction to Xa of the canonical projection Π : R+ ×Λ →
R

+. Then, ∇Ta(b, x) is the orthogonal projection of ∇Π = (1, 0) onto T(b,x)Xa. We
can find the projection by writing

∇Ta = (vb, vx) , (1, 0) = α
∇AL

||∇AL||
+ (vb, vx).

It follows that

(1) α =
1

||∇AL||
∂AL

∂b
, vb = 1− α2 , vx = − 1

||∇AL||2
∂AL

∂b

∂AL

∂x
.

Note that ∇Ta is locally Lipschitz.

Proposition 5. If (b, x) is a critical point of Ta, then it corresponds to a periodic
orbit.

Proof. Let (b, x) be such that ∇Ta(b, x) = 0. Then vb(b, x) = 0 and vx(b, x) = 0.
Therefore α �= 0 and hence

∂AL

∂x
(b, x) = 0.

�

3. Minimax principle

Definition 6. Let f : X → R be a C1 map where X is an open set of a Hilbert
manifold. We say that f satisfies the Palais-Smale condition at level c if every
sequence {xn} such that f(xn) → c and ||dxn

f || → 0 as n → ∞ has a converging
subsequence.

The following version of the minimax principle (Proposition 7 below) is a par-
ticular case of Proposition 6.3 from [Con06] (which in turn is inspired by that of
[HZ94]; see also [Str96]). Let X be an open set in a Hilbert manifold and f : X → R

be a C1,1 map. Observe that if X is not complete or the vector field Y = −∇f
is not globally Lipschitz, the gradient flow ψt of −f is a priori only a local flow.
Given p ∈ X, t > 0 define

α(p) := sup{ a > 0 | s �→ ψs(p) is defined on s ∈ [0, a] }.

We say that a function τ : X → [0,+∞) is an admissible time if τ is differentiable
and 0 ≤ τ (x) < α(x) for all x ∈ X. Given an admissible time τ and a subset F ⊂ X
define

Fτ := {ψτ(p)(p) | p ∈ F }.
Let F be a family of subsets F ⊂ X. We say that F is forward invariant if

Fτ ∈ F for all F ∈ F and any admissible time τ . Define

c(f,F) = inf
F∈F

sup
p∈F

f(p).
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Proposition 7. Let f be a C1,1 function satisfying the Palais-Smale condition at
level c(f,F). Assume also that F is forward invariant under the gradient flow of
−f . Suppose that c = c(f,F) is finite and that there is ε such that the gradient
flow is relatively complete in the set [c− ε ≤ f ≤ c+ ε]. Then c(f,F) is a critical
value of f .

4. Proof of Theorem 1

For the sequel of this section, we assume that M is simply connected. At the
end we indicate how the nonsimply connected case is treated.

Since M is closed, there is a minimal integer l > 1 such that the homotopy group
πl(M) is nontrivial. This implies the existence of a nontrivial homotopy class H of
continuous maps Γ : Sl−1 → Λ (see e.g. [Kli78, p. 36]). The proof of Th. 2.1.6, pp.
36-37, in [Kli78] shows that

(2) inf
Γ∈H

max
s


(Γ(s)) = ρ > 0,

where 
 denotes the length. Since the set of constant paths is a finite dimensional
sub-manifold of Λ, there is a map s → xs in H such that ||ẋs|| > 0 for every
s ∈ Sl−1. Let μ0, μ be positive and such that

(3) μ0 < ||ẋs||L2 < μ

for every s ∈ Sl−1. The numbers μ0 and μ shall be fixed for the rest of the paper.
Let A,B,A1, B1, C,D,C1, D1 be positive numbers such that

A

2
|v|2−B ≤ L(x, v) ≤ A1

2
|v|2+B1 and

C

2
|v|2−D ≤ EL(x, v) ≤

C1

2
|v|2+D1

for all (x, v) in TM . (These numbers exist because L is quadratic at infinity.)
Therefore

(4) A
||ẋ||2L2

2b
−Bb ≤ AL(b, x) ≤ A1

||ẋ||2L2

2b
+B1b

and

(5) C
||ẋ||2L2

2b2
−D ≤ e(b, x) ≤ C1

||ẋ||2L2

2b2
+D1

for every (b, x) ∈ R
+ × Λ. From (4) and (5) we obtain

(6)
C

A1
(
AL(b, x)

b
−B1)−D ≤ e(b, x) ≤ C1

A
(
AL(b, x)

b
+B) +D1

for every (b, x) ∈ R
+ × Λ. We state the following remark for future reference.

Remark 8. e(b, x) > 0 if b < ||ẋ||L2

√
C/2D.

Fix a1 > 0. Let b̄ be such that

C

A1
(
a1
b̄

−B1)−D > 0 and b̄ < μ0

√
C

2D
.

For every a > a1 define Xa as the set of those (b, x) such that AL(b, x) = a and
b < b̄.

Lemma 9. Xa does not contain critical points AL for every a > a1.

Proof. By the choice of b̄ and (6) we have e(b, x) > 0 for every (b, x) in Xa. The
lemma is finished by Remark 4. �
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Let Ga be the set of continuous maps Γ : Sl−1 → R
+ × Λ of the form Γ(s) =

(bs, xs), where s → xs belongs to H and such that Γ(s) ∈ Xa for every s ∈ Sl−1.
Let Fa be the family of sets Γ(Sl−1) with Γ ∈ Ga.

Recall that Ta : Xa → R is defined by Ta(b, x) = b.

Lemma 10. There are positive numbers a0 and α such that Fa is nonvoid and

1

αa
≤ c(Ta,Fa) ≤

α

a

for every a > a0.

Proof. Let a0 be such that

a0 >
A1μ

2

2b̄
+B1b̄ , a0 > 2B1b̄ and 2a >

√
a2 + 2BAρ2

for every a > a0. Let α be such that

α > A1μ
2 and α−1 <

Aρ2

4
.

For the sequel of this proof we fix a > a0. We are going to show that for each x
such that μ0 < ||ẋ||L2 < μ there is 0 < τ (x) < b̄ so that AL(τ (x), x) = a. Take x
such that μ0 < ||ẋ||L2 < μ and set

g(b) = AL(b, x).

Then

g(b̄) = AL(b̄, x) ≤ A1
||ẋ||2L2

2b̄
+B1b̄ < a0.

By Remarks 4 and 8 we have g′(b) < 0 for b < b̄. On the other hand, g goes to
infinity as b goes to zero by (4) (taking into account that ||ẋ||L2 > 0).

Then there is a unique real number τ (x) < b̄ such that AL(τ (x), x) = a. By
the implicit function theorem, the map x → τ (x) is a real C1 function defined on
the set μ0 < ||ẋ||L2 < μ and satisfying AL(τ (x), x) = a. Let s → xs be a map in
H satisfying (3). Set bs = τ (xs) for every s. Define Γ(s) = (bs, xs) and note that
Γ ∈ Ga, showing that Fa is nonvoid.

For every a > a0 define φ(a) as the minimum b > 0 satisfying

A
ρ2

2b
−Bb ≤ a.

Therefore

φ(a) =
Aρ2√

a2 + 2BAρ2 + a
>

1

αa

for every a > a0.
Let Γ ∈ Ga be such that Γ(s) = (bs, xs). Let s0 be such that 
(xs0) ≥ ρ. Then

A
ρ2

2bs0
−Bbs0 ≤ A

||ẋs0 ||2L2

2bs0
−Bbs0 ≤ AL(bs0 , xs0) = a.

By the definition of φ(a) we have

1

αa
< φ(a) ≤ bs0 = Ta(Γ(s0)),
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showing that 1/αa ≤ sups Ta(Γ(s)). Since Γ ∈ Ga is arbitrary we obtain the
leftmost inequality in the statement of the lemma. For the other inequality consider
Γ(s) = (bs, xs), where xs satisfies μ0 < ||ẋs||L2 < μ. Then

a ≤ AL(bs, xs) ≤ A1
μ2

2bs
+B1b̄

for every s, and hence

bs ≤
A1μ

2

2(a−B1b̄)
≤ α

a

for every s, finishing the lemma. �

Lemma 11. The flow of −∇Ta is relatively complete in 0 < c1 ≤ Ta ≤ c2.

Proof. By contradiction let s → Γ(s) = (b(s), x(s)) be a flow semi-trajectory defined
in the maximal interval [0, s̄) and contained in c1 ≤ Ta ≤ c2. Let tn ∈ [0, s̄) be a
sequence converging to s̄. By the same argument as in Lemma 6.9 of [Con06], the
sequence Γ(tn) is a Cauchy sequence, implying that b(tn) converges to b0 ∈ [0,∞).
Since b(tn) ≥ c1 > 0 we know that b0 > 0, and hence the sequence Γ(tn) converges
in Xa, which allows the flow semi-trajectory to be extended. �

Lemma 12. Ta satisfies the Palais-Smale condition at level c(Ta,Fa).

Proof. Let {(bn, xn)} be a sequence inXa such that Ta(bn, xn) → c(Ta,Fa) and such
that ||∇Ta(bn, xn)|| → 0. By Lemma 10, bn is bounded and bounded away from
zero. Then ||∇AL(bn, xn)|| is bounded away from zero since otherwise arguments
of Proposition 3.12 in [Con06] (see also [CIPP00] and [Ben86]) show that {(bn, xn)}
has a subsequence converging to a critical point of AL, which is impossible because
a is a regular value of AL. Since AL(bn, xn) = a and taking into account that
bn is bounded and bounded away from zero, we conclude, by (4), that ||ẋn||L2 is
bounded, which implies, by (5), that e(bn, xn) = −∂AL

∂b (bn, xn) is bounded.
Let vb, vx, α be as in (1); then vb(bn, xn) converges to 0 and thus α(bn, xn)

is bounded and bounded away from zero. Then ||∇AL(bn, xn)|| is bounded and
∂AL

∂b (bn, xn) is bounded away from zero.
On the other hand, taking into account that ||vx(bn, xn)|| also converges to 0,

we obtain

||∂AL

∂x
(bn, xn)|| → 0.

Hence, by the argument of Proposition 3.12 of [Con06], the sequence {(bn, xn)} has a
converging subsequence in Xa. In fact Proposition 3.12 assumes that ||d(bn,xn)AL||
converges to zero, but it is enough to have ||∂AL

∂x (bn, xn)|| → 0 as is shown in Lemma
5.3 of [Abb13]. �

Proof of Theorem 1. Lemmas 10, 11 and 12 allow us to apply Proposition 7, com-
pleting the proof in the simply connected case. Note that the orbits obtained are
nontrivial: if (b, x) is a critical point such that b = Ta(b, x) = c(Ta,Fa), then
x cannot be constant because otherwise (4) would yield a0 < a = AL(b, x) ≤
B1c(Ta,Fa) ≤ B1b̄, contradicting the choice of a0. The estimates on the period
follow from Lemma 10, and the estimates on the energy follow from the estimates
on the period and (6) (possibly after taking larger α and a0).

If M is not simply connected, there exists λ, a connected component of Λ con-
sisting of noncontractible loops. Let F be the family of sets F = {(b, x)} such that
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x ∈ λ and AL(b, x) = a. Since all curves in λ have length bounded away from zero,
equation (2) holds and thus all arguments of the simply connected case apply.

5. Periodic orbits with prescribed period

Proof of Theorem 2. Assume that M is simply connected. Let H be the family of
maps of the previous section and let F be the family of sets Γ(Sl−1) with Γ ∈ H.
Take ρ as in (2).

Let T0 be such that

Bb <
Aρ2

4b
, B1b <

A1μ
2

2b
and B1b <

Aρ2

2b
−Bb

for 0 < b < T0. Let σ be such that

σ > A1μ
2 and σ−1 <

Aρ2

4
.

Fix 0 < b < T0 and set Ab(x) = AL(b, x). Let s → xs be a map in H and s0 be
such that 
(xs0) > ρ. Then

(7) Ab(xs0) ≥ A
ρ2

2b
−Bb > A

ρ2

4b
>

1

σb
.

Take s → xs such that ||ẋs||L2 < μ for every s. Then

(8) Ab(xs) ≤ A1
μ2

2b
+B1b < A1

μ2

b
<

σ

b

for every s. By (7) and (8) we conclude that

1

σb
< c(Ab,F) <

σ

b
.

The flow of −∇Ab is relatively complete on sets of the form c1 ≤ Ab ≤ c2 because Λ
is complete. On the other hand, the Palais-Smale condition for Ab follows directly
by arguments of Proposition 3.12 in [Con06]. Therefore, Proposition 7 completes
the theorem in the simply connected case. Observe that the periodic orbits obtained
are nontrivial: if x is trivial, then AL(b, x) < B1b, contradicting the inequality
B1b < Aρ2/2b−Bb which holds for all b < T0.

The estimates on the energy follow from the estimates on the action and (6)
(possibly after taking a larger σ and a smaller T0).

The nonsimply connected case is treated similarly by taking F , the family of
sets F = {x} such that x belongs to a connected component of Λ consisting of
noncontractible loops.
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Textbooks], Birkhäuser Verlag, Basel, 1994. MR1306732 (96g:58001)

[Kli78] Wilhelm Klingenberg, Lectures on closed geodesics, Springer-Verlag, Berlin-New York,
1978. Grundlehren der Mathematischen Wissenschaften, Vol. 230. MR0478069
(57 #17563)

http://www.ams.org/mathscinet-getitem?mr=2597650
http://www.ams.org/mathscinet-getitem?mr=2597650
http://www.ams.org/mathscinet-getitem?mr=2560122
http://www.ams.org/mathscinet-getitem?mr=2560122
http://www.ams.org/mathscinet-getitem?mr=2679580
http://www.ams.org/mathscinet-getitem?mr=2679580
http://www.ams.org/mathscinet-getitem?mr=779875
http://www.ams.org/mathscinet-getitem?mr=779875
http://www.ams.org/mathscinet-getitem?mr=848265
http://www.ams.org/mathscinet-getitem?mr=848265
http://www.ams.org/mathscinet-getitem?mr=1458315
http://www.ams.org/mathscinet-getitem?mr=1458315
http://www.ams.org/mathscinet-getitem?mr=1479500
http://www.ams.org/mathscinet-getitem?mr=1479500
http://www.ams.org/mathscinet-getitem?mr=2679582
http://www.ams.org/mathscinet-getitem?mr=2679582
http://www.ams.org/mathscinet-getitem?mr=1720372
http://www.ams.org/mathscinet-getitem?mr=1720372
http://www.ams.org/mathscinet-getitem?mr=1785184
http://www.ams.org/mathscinet-getitem?mr=1785184
http://www.ams.org/mathscinet-getitem?mr=2036336
http://www.ams.org/mathscinet-getitem?mr=2036336
http://www.ams.org/mathscinet-getitem?mr=2260806
http://www.ams.org/mathscinet-getitem?mr=2260806
http://www.ams.org/mathscinet-getitem?mr=2534483
http://www.ams.org/mathscinet-getitem?mr=2534483
http://www.ams.org/mathscinet-getitem?mr=1432462
http://www.ams.org/mathscinet-getitem?mr=1432462
http://www.ams.org/mathscinet-getitem?mr=1732375
http://www.ams.org/mathscinet-getitem?mr=1732375
http://www.ams.org/mathscinet-getitem?mr=2928169
http://www.ams.org/mathscinet-getitem?mr=1306732
http://www.ams.org/mathscinet-getitem?mr=1306732
http://www.ams.org/mathscinet-getitem?mr=0478069
http://www.ams.org/mathscinet-getitem?mr=0478069


PERIODIC ORBITS 3007

[Maz11] Marco Mazzucchelli, The Lagrangian Conley conjecture, Comment. Math. Helv. 86
(2011), no. 1, 189–246, DOI 10.4171/CMH/222. MR2745280 (2012f:37131)

[Mer10] Will J. Merry, Closed orbits of a charge in a weakly exact magnetic field, Pacific J. Math.
247 (2010), no. 1, 189–212, DOI 10.2140/pjm.2010.247.189. MR2718211 (2012b:37168)

[Nov82] S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory
(Russian), Uspekhi Mat. Nauk 37 (1982), no. 5(227), 3–49, 248. MR676612 (84h:58032)

[Pal63] Richard S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299–340.

MR0158410 (28 #1633)
[Pat] Miguel Paternain, Periodic orbits with prescribed abbreviated action, Proc. Amer. Math.

Soc. 143 (2015), no. 9, 4001–4008, DOI 10.1090/S0002-9939-2015-12597-X. MR3359588
[Str96] Michael Struwe, Variational methods, 2nd ed., Applications to nonlinear partial differ-

ential equations and Hamiltonian systems. Ergebnisse der Mathematik und ihrer Gren-
zgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 34, Springer-Verlag,
Berlin, 1996. MR1411681 (98f:49002)
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