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ON WEIGHTED L2 ESTIMATES FOR SOLUTIONS

OF THE WAVE EQUATION

YOUNGWOO KOH AND IHYEOK SEO

(Communicated by Joachim Krieger)

Abstract. In this paper we consider weighted L2 integrability for solutions of
the wave equation. For this, we obtain some weighed L2 estimates for the so-
lutions with weights in Morrey-Campanato classes. Our method is based on a
combination of bilinear interpolation and a localization argument which makes

use of the Littlewood-Paley theorem and a property of Hardy-Littlewood max-
imal functions. We also apply the estimates to the problem of well-posedness
for wave equations with potentials.

1. Introduction

Let us first consider the following Cauchy problem associated with the wave
equation in Rn+1, n ≥ 2:

(1.1)

⎧⎪⎨⎪⎩
−∂2

t u+Δu = F (x, t),

u(x, 0) = f(x),

∂tu(x, 0) = g(x).

Then it is well known that the solution is given by

(1.2) u(x, t) = cos(t
√
−Δ)f +

sin(t
√
−Δ)√

−Δ
g −

∫ t

0

sin((t− s)
√
−Δ)√

−Δ
F (s)ds

in view of the Fourier transform.
The aim of this paper is to find a suitable relation between the Cauchy data f, g,

the forcing term F and the weight w(x, t) which guarantee that the solution lies in
weighted L2 spaces, L2

x,t(w).

A natural way of approaching this problem may be to control weighted L2 inte-
grability of the solution in terms of regularity of f, g, F . In fact our basic strategy
is to obtain the following type of estimates:

(1.3) ‖u‖L2
x,t(w) ≤ Cs,s̃,q,r(w)

(
‖f‖Ḣs + ‖g‖Ḣs−1 + ‖F‖Lq

t Ḃ
s̃
r,2

)
,

where Ḃs̃
r,2 is the usual homogeneous Besov space (cf. [3]) and Cs,s̃,q,r(w) is a suit-

able constant depending on the regularity indexes s, s̃, q, r and the weight w. The
point here is that Cs,s̃,q,r(w) reflects some information about the relation between
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the weight and the regularity of f, g, F . By considering the operator eit
√
−Δ, the

estimate (1.3) will consist of the homogeneous estimate∥∥eit√−Δf
∥∥
L2

x,t(w)
≤ Cs(w)‖f‖Ḣs

and the inhomogeneous estimate∥∥∥∥ ∫ t

0

ei(t−s)
√
−ΔF (·, s)ds

∥∥∥∥
L2

x,t(w)

≤ Cs̃,q,r(w)‖F‖Lq
t Ḃ

s̃+1
r,2

.

Before stating our results, we need to introduce a function class. For α > 0 and
1 ≤ p ≤ n/α, a function f ∈ Lp

loc(R
n) is said to be in the Morrey-Campanato class

Lα,p if

‖f‖Lα,p := sup
Q cubes in Rn

|Q|α/n
( 1

|Q|

∫
Q

|f(y)|pdy
) 1

p

< ∞.

In particular, Lα,p = Lp when p = n/α, and even Ln/α,∞ ⊂ Lα,p for p < n/α.
Then we have the following result which can be regarded as the weighted L2

Strichartz estimates for the wave equation. Strichartz estimates on weighted L2

spaces have been studied for the Schrödinger equation ([1, 2, 15, 17]).

Theorem 1.1. Let n ≥ 2. Then we have for (n + 1)/4 ≤ s < n/2 and 1 < p ≤
(n+ 1)/(2s+ 1)

(1.4)
∥∥eit√−Δf

∥∥
L2(w(x,t))

≤ C‖w‖1/2
L2s+1,p‖f‖Ḣs ,

and for s̃ > (n− 1)/2 and 1 ≤ q, r ≤ 2

(1.5)

∥∥∥∥ ∫ t

0

ei(t−s)
√
−ΔF (s)ds

∥∥∥∥
L2(w(x,t))

≤ C‖w‖1/2
Lα,p‖F‖Lq

t Ḃ
s̃+1
r,2

with 1 < p ≤ (n+ 1)/α and

(1.6) α = 2(s̃− 1

q
− n

r
+

n+ 4

2
) + 1.

Remarks. (i) From the definition it is clear that ‖f(λ·)‖Lα,p = λ−α‖f‖Lα,p . Using
this one can see that α = 2s+ 1 is the only possible index which allows (1.4) to be
invariant under the scaling (x, t) → (λx, λt), λ > 0.

(ii) In the special case where s̃+1 = 0, one can see that Lr ⊂ Ḃs̃+1
r,2 for 1 < r ≤ 2,

and (1.6) is just the scaling condition for (1.5) with Lr instead of Ḃs̃+1
r,2 .

(iii) From the classical Strichartz’s estimate ([19]), one can see that∥∥eit√−�f
∥∥
Lr

x,t
≤ C‖f‖Ḣs

for 2(n+ 1)/(n− 1) ≤ r < ∞ and s = n/2− (n+ 1)/r. Then, by this and Hölder’s
inequality, it follows that for 1/2 ≤ s < n/2,

(1.7)
∥∥eit√−�f

∥∥2
L2(w(x,t))

≤ ‖w‖
L

r
r−2

‖eit
√
−�f‖2Lr ≤ C‖w‖

L
n+1
2s+1

‖f‖2
Ḣs .

Hence our estimate (1.4) can be seen as natural extensions to the Morrey-Campanato
classes of (1.7).

Some weighted L2
x,t estimates are known for the wave equation. In particular,

(1.4) can be found in [15] for w(x, t) satisfying supt w(x, t) ∈ L2,p(Rn) with p >
(n−1)/2, n ≥ 3. In fact, it is easy to see that this condition implies w ∈ L2,p(Rn+1)
for the same p. For a specific weight w(x, t) = |x|−(2s+1), 0 < s < (n − 1)/2,
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(1.4) is proved in [8] (see (3.6) there). Note that |x|−(2s+1) ∈ L2s+1,p(Rn+1) for
p < n/(2s+ 1). But, our theorem gives estimates for more general time-dependent
weights w(x, t). Also, the smoothing estimates (known as Morawetz estimates)

(1.8)
∥∥|x|−b/2eitD

a

f
∥∥
L2

t,x
≤ C‖D(b−a)/2f‖2

have been proved by many authors for the wave equation (a = 1) [14] and for the
Schrödinger equation (a = 2) [10,17,22]. For more general Morawetz estimates with
angular smoothing, see [6, 9, 17]. These estimates can be compared with (1.4) for
the wave equation (a = 1). Indeed, since w(x) is in Lα,p(Rn+1) if w(x) ∈ Lα,p(Rn)
for 1 ≤ p ≤ n/α, the following corollary is directly deduced from (1.4) with s =
(b− 1)/2. Then, (1.8) with a = 1 and (n+3)/2 ≤ b < n is just a particular case of
(1.9) because |x|−b ∈ Lb,p(Rn).

Corollary 1.2. Let n > 3. Then we have

(1.9)
∥∥|w(x)|1/2eit√−�f

∥∥
L2

t,x
≤ C‖D(b−1)/2f‖2

if w ∈ Lb,p(Rn) for (n+ 3)/2 ≤ b < n and 1 < p ≤ n/b.

Compared with the index α = 2s+ 1 in (1.4), we can have the same index of α
in (1.5) if

n+ 1

4
≤ s̃− 1

q
− n

r
+

n+ 4

2
<

n

2

(see (1.6)). Hence, setting s = s̃− 1/q − n/r + (n+ 4)/2 and using the fact that

‖(
√
−Δ)−1f‖Ḃs̃+1

r,2
≤ C‖f‖Ḃs̃

r,2
,

the following corollary is deduced from a simple combination of (1.2), (1.4) and
(1.5).

Corollary 1.3. Let n ≥ 2. If u is a solution of the Cauchy problem (1.1), then

‖u‖L2(w(x,t)) ≤ C‖w‖1/2
L2s+1,p

(
‖f‖Ḣs + ‖g‖Ḣs−1 + ‖F‖Lq

t Ḃ
s̃
r,2

)
if n+1

4 ≤ s < n
2 , 1 < p ≤ n+1

2s+1 , s̃ >
n−1
2 , and 1 ≤ q, r ≤ 2, with s = s̃− 1

q −
n
r +

n+4
2 .

Let us sketch the organization of the paper. In Section 2, we obtain a property
of the Morrey-Campanato class regarding the Hardy-Littlewood maximal function,
which is to be used for the proof of the weighted L2 estimates in Theorem 1.1. Then,
using bilinear interpolation and a localization argument based on the Littlewood-
Paley theorem in weighted L2 spaces, we prove Theorem 1.1 in Section 3. Finally in
Section 4, we apply the estimates to the well-posedness theory for wave equations
with potentials.

Throughout this paper, we will use the letter C to denote a constant which may

be different at each occurrence. We also denote by f̂ the Fourier transform of f and
by 〈f, g〉 the usual inner product of f, g on L2. Given two complex Banach spaces
A0 and A1, we denote by (A0, A1)θ,q the real interpolation spaces for 0 < θ < 1
and 1 ≤ q ≤ ∞. In particular, (A0, A1)θ,q = A0 = A1 if A0 = A1. See [3, 21] for
details.
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2. Preliminary lemmas

In this section we present some preliminary lemmas which will be used for the
proof of Theorem 1.1.

A weight w : Rn → [0,∞] is a locally integrable function that is allowed to be zero
or infinite only on a set of Lebesgue measure zero, and we denote by w ∈ A2(R

n)
that w is in the Muckenhoupt A2(R

n) class which is defined by

sup
Q cubes in Rn

(
1

|Q|

∫
Q

w(x)dx

)(
1

|Q|

∫
Q

w(x)−1dx

)
< CA2

.

Also, w is said to be in the class A1 if there is a constant CA1
such that for almost

every x
M(w)(x) ≤ CA1

w(x),

where M(w) is the Hardy-Littlewood maximal function of w given by

M(w)(x) = sup
Q

1

|Q|

∫
Q

w(y)dy,

where the sup is taken over all cubes Q in R
n with center x. Then,

(2.1) A1 ⊂ A2 with CA2
≤ CA1

.

See, for example, [7] for more details. Also, the following lemma can be found in
Chapter 5 of [18]. (See also Proposition 2 in [5].)

Lemma 2.1. If M(w)(x) < ∞ for almost every x ∈ Rn, then for 0 < δ < 1

(M(w))δ ∈ A1,

with CA1
independent of w.

Next we obtain the following property of the Morrey-Campanato class regarding
the Hardy-Littlewood maximal function. A similar property when α = 2 can also
be found in [4].

Lemma 2.2. Let w ∈ Lα,p be a weight on Rn+1, and let w∗(x, t) be the n-
dimensional maximal function defined by

w∗(x, t) = sup
Q′

( 1

|Q′|

∫
Q′

w(y, t)ρdy
) 1

ρ

, ρ > 1,

where Q′ denotes a cube in Rn with center x. Then, if p > ρ and p > 1/α, we have

sup
Q

|Q| α
n+1

( 1

|Q|

∫
Q

w∗(x, t)
pdxdt

) 1
p ≤ C sup

Q
|Q| α

n+1

( 1

|Q|

∫
Q

w(y, t)pdydt
) 1

p

.

Namely, if p > ρ and p > 1/α, ‖w∗‖Lα,p ≤ C‖w‖Lα,p . Furthermore, w∗(·, t) ∈
A2(R

n) in the x variable with a constant CA2
uniform in almost every t ∈ R.

Proof. Fix a cube Q in R
n+1 with center at (z, τ ) and side length δ. Let us define

the rectangles Rk, k ≥ 1, such that (y, t) ∈ Rk if |t− τ | < 2δ and y ∈ Q̃(z, 2k+1δ) \
Q̃(z, 2kδ). Here, Q̃(z, r) denote a cube in R

n with center z and side length r. Also,
let R0 = 4Q.

Now, setting w(k) = wχRk
with the characteristic function χRk

of the set Rk,
we may write

w(y, t) =
∑
k≥0

w(k)(y, t) + φ(y, t),
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where φ(y, t) is supported on Rn+1 \
⋃

k≥0 Rk. Then it is easy to see that

w∗(x, t) ≤
∑
k≥0

w
(k)
∗ (x, t) + φ∗(x, t)

and ( 1

|Q|

∫
Q

w∗(x, t)
pdxdt

) 1
p ≤

∑
k≥0

( 1

|Q|

∫
Q

w
(k)
∗ (x, t)pdxdt

) 1
p

+
( 1

|Q|

∫
Q

φ∗(x, t)
pdxdt

) 1
p

.

Since (x, t) ∈ Q, it is clear that φ∗(x, t) = 0. Also, applying the well-known maximal
theorem, ‖M(f)‖q ≤ C‖f‖q, q > 1, with q = p/ρ, we see that if p > ρ,

|Q| α
n+1

( 1

|Q|

∫
Q

w
(0)
∗ (x, t)pdxdt

) 1
p ≤ C|Q| α

n+1

( 1

|Q|

∫
4Q

w(y, t)pdydt
) 1

p

≤ C‖w‖Lα,p .(2.2)

Consequently, we only need to consider the case where k ≥ 1.
Let k ≥ 1. Since (x, t) ∈ Q, it follows that

w
(k)
∗ (x, t) = sup

Q′

(
1

|Q′|

∫
Q′

w(y, t)ρχRk
(y, t)dy

) 1
ρ

≤ C

(
1

(2kδ)n

∫
˜Q(z,2k+1δ)\ ˜Q(z,2kδ)

w(y, t)ρdy

) 1
ρ

≤ C

(
1

(2kδ)n

∫
˜Q(z,2k+1δ)\ ˜Q(z,2kδ)

w(y, t)pdy

) 1
p

,

where we used Hölder’s inequality for the last inequality since p ≥ ρ. Thus,∫
Q

w
(k)
∗ (x, t)pdxdt ≤ C

(2kδ)n

∫
|τ−t|<δ

∫
˜Q(z,2k+1δ)\ ˜Q(z,2kδ)

w(y, t)p
∫
|z−x|<δ

1 dxdydt

≤ C

2kn

∫
Rk

w(y, t)pdydt.

Since we can clearly choose a cube Qk in Rn+1 such that Rk ⊂ Qk and |Qk| ∼
(2kδ)n+1, we now get

|Q| α
n+1

( 1

|Q|

∫
Q

w
(k)
∗ (x, t)pdxdt

) 1
p ≤ C|Q| α

n+1

( 1

2kn|Q|

∫
Rk

w(y, t)pdydt
) 1

p

≤ C|Q| α
n+1

( 2k

|Qk|

∫
Qk

w(y, t)pdydt
) 1

p

≤ C2−αk+k
p |Qk|

α
n+1

( 1

|Qk|

∫
Qk

w(y, t)pdydt
) 1

p

.

Hence, if p > 1/α and p ≥ ρ, we conclude that∑
k≥1

|Q| α
n+1

( 1

|Q|

∫
Q

w
(k)
∗ (x, t)pdxdt

) 1
p ≤ C‖w‖Lα,p .

By combining this and (2.2), if p > ρ and p > 1/α, we get ‖w∗‖Lα,p ≤ C‖w‖Lα,p

as desired.
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Finally, to show the last assertion in the lemma, note first that

w∗(x, t) = (M(w(·, t)ρ))1/ρ.

Since w ∈ Lα,p and p ≥ ρ, it is not difficult to see that M(w(·, t)ρ) < ∞ for
almost every x ∈ R

n. Now, applying Lemma 2.1 with δ = 1/ρ, we conclude that
w∗(·, t) ∈ A1 with CA1

uniform in t ∈ R, which in turn implies that w∗(·, t) ∈ A2

with CA2
uniform in t ∈ R (see (2.1)). �

3. Proof of Theorem 1.1

Since w ≤ w∗ and ‖w∗‖Lα,p ≤ C‖w‖Lα,p for p > ρ > 1 and p > 1/α (see Lemma
2.2), it is enough to prove Theorem 1.1 by replacing w with w∗. The motivation
behind this replacement is that w∗(·, t) ∈ A2(R

n) in the x variable with a constant
CA2

uniform in almost every t ∈ R (see Lemma 2.2). This A2 condition will enable
us to use a localization argument in weighted L2 spaces. Consequently, we may
assume that w satisfies the same A2 condition in proving the theorem.

3.1. Homogeneous estimates. First we prove the homogeneous estimate (1.4).
Let φ be a smooth function supported in (1/2, 2) such that

∞∑
k=−∞

φ(2kt) = 1, t > 0.

For k ∈ Z, we define the multiplier operators Pkf by

P̂kf(ξ) = φ(2−k|ξ|)f̂(ξ).

First we claim that if (n+ 1)/4 ≤ s < n/2 and 1 < p ≤ (n+ 1)/(2s+ 1),

(3.1)
∥∥eit√−ΔP0f

∥∥
L2(w(x,t))

≤ C‖w‖1/2
L2s+1,p‖f‖2.

Then it follows from scaling that∥∥eit√−ΔPkf
∥∥2
L2(w(x,t))

≤ C2−kn2−k
∥∥eit√−ΔP0(f(2

−k·))
∥∥2
L2(w(2−kx,2−kt))

≤ C2−kn2−k‖w(2−kx, 2−kt)‖L2s+1,p‖f(2−k·)‖22
≤ C22ks‖w‖L2s+1,p‖f‖22.

Since w(·, t) ∈ A2(R
n) uniformly for almost every t ∈ R, by the Littlewood-Paley

theorem on weighted L2 spaces (see Theorem 1 in [12]), we see that∥∥eit√−Δf
∥∥2
L2(w(x,t))

=

∫ ∥∥eit√−Δf
∥∥2
L2(w(·,t))dt

≤ C

∫ ∥∥∥∥(∑
k

∣∣Pke
it
√
−Δf

∣∣2)1/2∥∥∥∥2
L2(w(·,t))

dt

= C
∑
k

∥∥eit√−ΔPkf
∥∥2
L2(w(x,t))

.



WEIGHTED L2 ESTIMATES FOR THE WAVE EQUATION 3053

On the other hand, since PkPjf = 0 if |j − k| ≥ 2, it follows that∑
k

∥∥eit√−ΔPkf
∥∥2
L2(w(x,t))

=
∑
k

∥∥eit√−ΔPk

( ∑
|j−k|≤1

Pjf
)∥∥2

L2(w(x,t))

≤ C‖w‖L2s+1,p

∑
k

22ks
∥∥ ∑

|j−k|≤1

Pjf
∥∥2
2

≤ C‖w‖L2s+1,p‖f‖2
Ḣs .

Consequently, we get the desired estimate∥∥eit√−Δf
∥∥
L2(w(x,t))

≤ C‖w‖1/2
L2s+1,p‖f‖Ḣs

for (n+ 1)/4 ≤ s < n/2 and 1 < p ≤ (n+ 1)/(2s+ 1).
Now it remains to show (3.1). By duality (3.1) is equivalent to∥∥∥∥ ∫ e−is

√
−ΔP0F (·, s)ds

∥∥∥∥
L2

x

≤ C‖w‖1/2
L2s+1,p‖F‖L2(w−1).

Hence it suffices to show the following bilinear form estimate:∣∣∣∣〈 ∫
R

ei(t−s)
√
−ΔP 2

0F (·, s)ds,G(x, t)

〉∣∣∣∣ ≤ C‖w‖L2s+1,p‖F‖L2(w−1)‖G‖L2(w−1).

To show this, we first write∫
R

ei(t−s)
√
−ΔP 2

0F (·, s)ds = K ∗ F,

where

K(x, t) =

∫
Rn

ei(x·ξ+t|ξ|)φ(|ξ|)2dξ.

Next, we decompose the kernel K in the following way:∣∣〈K ∗ F,G
〉∣∣ ≤ ∑

j≥0

∣∣〈(ψjK) ∗ F,G
〉∣∣,

where ψj : Rn+1 → [0, 1] is a smooth function which is supported in B(0, 2j) \
B(0, 2j−2) for j ≥ 1 and in B(0, 1) for j = 0, such that

∑
j≥0 ψj = 1. Then it

suffices to show that

(3.2)
∑
j≥0

∣∣〈(ψjK) ∗ F,G
〉∣∣ ≤ C‖w‖L2s+1,p‖F‖L2(w−1)‖G‖L2(w−1).

For this, we assume for the moment that∣∣〈(ψjK) ∗ F,G
〉∣∣ ≤ C2j(

n+3
2 −(2s+1)p)‖w‖p

L2s+1,p‖F‖L2(w−p)‖G‖L2(w−p),(3.3) ∣∣〈(ψjK) ∗ F,G
〉∣∣ ≤ C2j(

n+3
2 − 2s+1

2 p)‖w‖p/2
L2s+1,p‖F‖L2(w−p)‖G‖2,(3.4) ∣∣〈(ψjK) ∗ F,G

〉∣∣ ≤ C2j(
n+3
2 − 2s+1

2 p)‖w‖p/2
L2s+1,p‖F‖2‖G‖L2(w−p),(3.5)

and use the following bilinear interpolation lemma (see [3, Section 3.13, Exercise
5(b)]) as in [1, 11].

Lemma 3.1. For i = 0, 1, let Ai, Bi, Ci be Banach spaces and let T be a bilinear
operator such that T : A0 × B0 → C0, T : A0 × B1 → C1, and T : A1 × B0 → C1.
Then one has for θ = θ0 + θ1 and 1/q + 1/r ≥ 1,

T : (A0, A1)θ0,q × (B0, B1)θ1,r → (C0, C1)θ,1.
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Here 0 < θi < θ < 1 and 1 ≤ q, r ≤ ∞.

Indeed, let us first define the bilinear vector-valued operator T by

(3.6) T (F,G) =
{〈

(ψjK) ∗ F,G
〉}

j≥0
.

Then (3.2) is equivalent to

(3.7) T : L2(w−1)× L2(w−1) → 01(C)

with the operator norm C‖w‖L2s+1,p . Here, for a ∈ R and 1 ≤ p ≤ ∞, ap(C)
denotes the weighted sequence space with the norm

‖{xj}j≥0‖�ap =

{(∑
j≥0 2

jap|xj |p
) 1

p , if p �= ∞,

supj≥0 2
ja|xj |, if p = ∞.

Note that the above three estimates (3.3), (3.4) and (3.5) become

‖T (F,G)‖
�
β0∞ (C)

≤ C‖w‖p
L2s+1,p‖F‖L2(w−p)‖G‖L2(w−p),

‖T (F,G)‖
�
β1∞ (C)

≤ C‖w‖p/2
L2s+1,p‖F‖L2(w−p)‖G‖2,(3.8)

‖T (F,G)‖
�
β1∞ (C)

≤ C‖w‖p/2
L2s+1,p‖F‖2‖G‖L2(w−p),(3.9)

respectively, with β0 = −(n+3
2 − (2s + 1)p) and β1 = −(n+3

2 − 2s+1
2 p). Then,

applying Lemma 3.1 with θ0 = θ1 = 1/p′ and q = r = 2, we get for 1 < p < 2,

T : (L2(w−p), L2)1/p′,2 × (L2(w−p), L2)1/p′,2 → (β0
∞(C), β1

∞(C))2/p′,1,

with the operator norm C‖w‖L2s+1,p . Now, we use the following real interpolation
space identities (see Theorems 5.4.1 and 5.6.1 in [3]):

Lemma 3.2. Let 0 < θ < 1. Then one has

(L2(w0), L
2(w1))θ,2 = L2(w), w = w1−θ

0 wθ
1,

and for 1 ≤ q0, q1, q ≤ ∞ and s0 �= s1,

(s0q0 , 
s1
q1)θ,q = sq, s = (1− θ)s0 + θs1.

Then, for 1 < p < 2, we have

(L2(w−p), L2)1/p′,2 = L2(w−1),

and

(β0
∞(C), β1

∞(C))2/p′,1 = 01(C)

if (1 − 2
p′ )β0 +

2
p′ β1 = 0 (i.e., s = (n+ 1)/4). Hence, we get (3.7) if s = (n+ 1)/4

and 1 < p ≤ n+1
2s+1 (< 2). When s > (n+1)/4, note that γ := p′

2 (2s+1− n+3
2 ) > 0.

Since j ≥ 0 and β1 < 0, the estimates (3.8) and (3.9) are trivially satisfied for
β1 replaced by β1 − γ. Hence, by the same argument we only need to check that
(1− 2

p′ )β0 +
2
p′ (β1 − γ) = 0. But this is an easy computation. Consequently we get

(3.7) if (n+ 1)/4 ≤ s < n/2 and 1 < p ≤ n+1
2s+1 , and so the proof is completed.
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Finally, we have to show the estimates (3.3), (3.4) and (3.5). For j ≥ 0, let
{Qλ}λ∈2jZn+1 be a collection of cubes Qλ ⊂ Rn+1 centered at λ with side length
2j . Then by disjointness of cubes, we see that∣∣〈(ψjK) ∗ F,G

〉∣∣ ≤ ∑
λ,μ∈2jZn+1

∣∣〈(ψjK) ∗ (FχQλ
), GχQμ

〉∣∣
≤

∑
λ∈2jZn+1

∣∣〈(ψjK) ∗ (FχQλ
), Gχ

˜Qλ

〉∣∣,
where Q̃λ denotes the cube with side length 2j+2 and the same center as Qλ. By
the Young and Cauchy-Schwartz inequalities, it follows that∣∣〈(ψjK) ∗ F,G

〉∣∣ ≤ ∑
λ∈2jZn+1

‖(ψjK) ∗ (FχQλ
)‖∞‖Gχ

˜Qλ
‖1

≤
∑

λ∈2jZn+1

‖ψjK‖∞‖FχQλ
‖1‖Gχ

˜Qλ
‖1

≤ ‖ψjK‖∞
( ∑

λ∈2jZn+1

‖FχQλ
‖21
) 1

2
( ∑

λ∈2jZn+1

‖Gχ
˜Qλ
‖21
) 1

2

.(3.10)

Now we need to bound the terms

‖ψjK‖∞,
∑

λ∈2jZn+1

‖FχQλ
‖21,

∑
λ∈2jZn+1

‖Gχ
˜Qλ
‖21.

For the first term we use the following well-known lemma, Lemma 3.3, which
is essentially due to Littman [13]. (See also [18, VIII, Section 5, B].) Indeed, by
applying the lemma with ψ(ξ) = |ξ|, it follows that

|K(x, t)| =
∣∣∣∣ ∫

Rn

ei(x·ξ+t|ξ|)φ(|ξ|)2dξ
∣∣∣∣ ≤ C(1 + |(x, t)|)−

n−1
2 ,

since the Hessian matrix Hψ has n− 1 non-zero eigenvalues for each ξ ∈ {ξ ∈ Rn :
|ξ| ∼ 1}. Thus we get

(3.11) ‖ψjK‖∞ ≤ C2−j n−1
2 .

Lemma 3.3. Let Hψ be the Hessian matrix given by ( ∂2ψ
∂ξi∂ξj

). Suppose that φ is

a compactly supported smooth function on Rn and ψ is a smooth function which
satisfies rank Hψ ≥ k on the support of φ. Then, for (x, t) ∈ R

n+1,∣∣∣∣ ∫ ei(x·ξ+tψ(ξ))φ(ξ)dξ

∣∣∣∣ ≤ C(1 + |(x, t)|)−k
2 .

Next, we have the bound∑
λ∈2jZn+1

‖FχQλ
‖21 =

∑
λ∈2jZn+1

(∫
Qλ

|FχQλ
|w− p

2w
p
2 dxdt

)2

≤
∑

λ∈2jZn+1

(∫
Qλ

|FχQλ
|2w−pdxdt

)(∫
Qλ

wpdxdt
)

≤ sup
λ∈2jZn+1

(∫
Qλ

wpdxdt
) ∑

λ∈2jZn+1

(∫
Qλ

|FχQλ
|2w−pdxdt

)
≤ C2j(n+1−(2s+1)p)‖w‖p

L2s+1,p‖F‖2L2(w−p),(3.12)
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while ∑
λ∈2jZn+1

‖FχQλ
‖21 ≤

∑
λ∈2jZn+1

‖FχQλ
‖22‖χQλ

‖22

≤ C2j(n+1)‖F‖22.(3.13)

Similarly for
∑

λ∈2jZn+1 ‖Gχ
˜Qλ
‖21. Now, combining (3.10), (3.11), (3.12) and (3.13),

we get the desired estimates (3.3), (3.4) and (3.5).

3.2. Inhomogeneous estimates. Now we prove the inhomogeneous estimate (1.5).
First we claim that for α > 2n+ 4− 2n/r − 2/q and 1 < p ≤ (n+ 1)/α,

(3.14)

∥∥∥∥ ∫ t

0

ei(t−s)
√
−ΔP0F (·, s)ds

∥∥∥∥
L2(w(x,t))

≤ C‖w‖1/2
Lα,p‖F‖Lq

tL
r
x

if 1 ≤ r, q ≤ 2. Then, by the Littlewood-Paley theorem on weighted L2 spaces as
before, it follows that∥∥∥∥ ∫ t

0

ei(t−s)
√
−ΔF (·, s)ds

∥∥∥∥2
L2(w(x,t))

≤ C
∑
k

∥∥∥∥ ∫ t

0

ei(t−s)
√
−ΔPk

( ∑
|j−k|≤1

PjF (·, s)
)
ds

∥∥∥∥2
L2(w(x,t))

.

By using (3.14) and scaling, the right-hand side in the above is bounded by

C‖w‖Lα,p

∑
k

2k(α−n−3+ 2n
r + 2

q )
∥∥ ∑

|j−k|≤1

PjF (·, s)
∥∥2
Lq

tL
r
x
,

which is in turn bounded by

C‖w‖Lα,p

∑
k

2k(α−n−3+ 2n
r + 2

q )‖PkF (·, s)‖2Lq
tL

r
x
.

Since q ≤ 2, by Minkowski’s integral inequality we see that∑
k

2k(α−n−3+ 2n
r + 2

q )‖PkF (·, t)‖2Lq
tL

r
x
≤

∥∥∥(∑
k

2k(α−n−3+ 2n
r + 2

q )‖PkF (·, t)‖2Lr
x

) 1
2
∥∥∥2
Lq

t

= ‖F‖2
Lq

t Ḃ
s̃+1
r,2

with s̃+ 1 = 1
2 (α− n− 3 + 2n

r + 2
q ). Thus, we get the desired estimate∥∥∥∥ ∫ t

0

ei(t−s)
√
−ΔF (·, s)ds

∥∥∥∥
L2(w(x,t))

≤ C‖w‖1/2
Lα,p‖F‖Lq

t Ḃ
s̃+1
r,2

for α > 2n+ 4− 2n/r − 2/q and 1 < p ≤ (n+ 1)/α if 1 ≤ q, r ≤ 2 and

(3.15) s̃+ 1 =
1

2
(α− n− 3 +

2n

r
+

2

q
).

Note that from (3.15) the condition α > 2n + 4 − 2n/r − 2/q is equivalent to the
condition s̃ > (n− 1)/2 in Theorem 1.1, and so the proof is completed.

Now it remains to show (3.14). We will show the estimate

(3.16)

∥∥∥∥ ∫ t

−∞
ei(t−s)

√
−ΔP0F (·, s)ds

∥∥∥∥
L2(w(x,t))

≤ C‖w‖1/2
Lα,p‖F‖Lq

tL
r
x
,
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which implies (3.14). Indeed, to obtain (3.14) from (3.16), we first decompose the
L2
t norm in the left-hand side of (3.14) into two parts, t ≥ 0 and t < 0. Then the

second part can be reduced to the first one by changing the variable t �→ −t, and so
we only need to consider the first part. But, since [0, t) = (−∞, t)∩ [0,∞), applying
(3.16) with F replaced by χ[0,∞)(s)F , we can bound the first part as desired. To
show (3.16), by duality it suffices to show that∣∣∣∣〈 ∫ t

−∞
ei(t−s)

√
−ΔP0F (·, s)ds,G

〉∣∣∣∣ ≤ C‖w‖1/2
Lα,p‖F‖Lq

tL
r
x
‖G‖L2(w−1).

Let us first write∫ t

−∞
ei(t−s)

√
−ΔP0F (·, s)ds =

∫
R

χ(0,∞)(t− s)ei(t−s)
√
−�P0F (·, s)ds

= K ∗ F,
where

K(x, t) =

∫
Rn

χ(0,∞)(t)e
i(x·ξ+t|ξ|)φ(|ξ|)dξ.

Then, with the same notation as in the previous section, it is enough to show that

(3.17)
∑
j≥0

∣∣〈(ψjK) ∗ F,G
〉∣∣ ≤ C‖w‖1/2

Lα,p‖F‖Lq
tL

r
x
‖G‖L2(w−1).

For this, we assume for the moment that

(3.18)
∣∣〈(ψjK) ∗ F,G

〉∣∣ ≤ C2
j( n

r′ +
1
q′ +1)‖F‖Lq

tL
r
x
‖G‖L2

and

(3.19)
∣∣〈(ψjK) ∗ F,G

〉∣∣ ≤ C2
j( n

r′ +
1
q′ +1−α

2 p)‖w‖p/2
Lα,p‖F‖Lq

tL
r
x
‖G‖L2(w−p).

Then these estimates say that for β0 = −( n
r′ +

1
q′ +1) and β1 = −( n

r′ +
1
q′ +1− α

2 p),

‖T (F,G)‖
�
β0∞ (C)

≤ C‖F‖Lq
tL

r
x
‖G‖L2

and

‖T (F,G)‖
�
β1∞ (C)

≤ C‖w‖p/2
Lα,p‖F‖Lq

tL
r
x
‖G‖L2(w−p),

where T is given as in (3.6). Now, by the bilinear interpolation (see [3, Section
3.13, Exercise 5(a)]) between these two estimates, it follows that for 1 < p < ∞,

T : (Lq
tL

r
x, L

q
tL

r
x)1/p,2 × (L2, L2(w−p))1/p,2 → (β0

∞(C), β1
∞(C))1/p,∞

with the operator norm C‖w‖1/2
Lα,p . Using Lemma 3.2, we get

‖T (F,G)‖�β∞(C) ≤ C‖w‖1/2
Lα,p‖F‖Lq

tL
r
x
‖G‖L2(w−1)

with β = (1− 1
p )β0 +

1
pβ1 = −( n

r′ +
1
q′ + 1− α

2 ). That is to say,∣∣〈(ψjK) ∗ F,G
〉∣∣ ≤ C2

j( n
r′ +

1
q′ +1−α

2 )‖w‖1/2
Lα,p‖F‖Lq

tL
r
x
‖G‖L2(w−1).

Thus, when α > 2n+ 4− 2n/r − 2/q, we get the desired estimate (3.17).
Finally, we have to show (3.18) and (3.19). Recall from (3.10) that∣∣〈(ψjK) ∗ F,G

〉∣∣ ≤ ‖ψjK‖∞
( ∑

λ∈2jZn+1

‖FχQλ
‖21
) 1

2
( ∑

λ∈2jZn+1

‖Gχ
˜Qλ
‖21
) 1

2

.
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First, using Lemma 3.3 as before, we have

(3.20) ‖ψjK‖∞ ≤ C2−j n−1
2 .

Next, we may write Qλ = Qλ(x) ×Qλ(t), where Qλ(x) is a cube in Rn with respect
to the x variable, and Qλ(t) is an interval in R with respect to the t variable. Then,
since q, r ≤ 2, by Minkowski’s integral inequality it follows that( ∑

λ∈2jZn+1

‖FχQλ
‖21
) 1

2 ≤
( ∑

λ∈2jZn+1

(∫
Qλ(t)

‖FχQλ
‖Lr

x
|Qλ(x)|

1
r′ dt

)2
) 1

2

≤
( ∑

λ∈2jZn+1

‖FχQλ
‖2Lq

tL
r
x
|Qλ(x)|

2
r′ |Qλ(t)|

2
q′
) 1

2

≤ C2
j( n

r′ +
1
q′ )‖F‖Lq

tL
r
x
.

On the other hand, we have the following bound:∑
λ∈2jZn+1

‖FχQλ
‖21 =

∑
λ∈2jZn+1

(∫
Qλ

|FχQλ
|w− p

2w
p
2 dxdt

)2

≤
∑

λ∈2jZn+1

(∫
Qλ

|FχQλ
|2w−pdxdt

)(∫
Qλ

wpdxdt
)

≤ sup
λ∈2jZn+1

(∫
Qλ

wpdxdt
) ∑

λ∈2jZn+1

(∫
Qλ

|FχQλ
|2w−pdxdt

)
≤ C2j(n+1−αp)‖w‖p

Lα,p‖F‖2L2(w−p).(3.21)

Combining (3.13), (3.20) and (3.21), we get the desired estimates (3.18) and (3.19).

4. Further applications

In this final section we consider the following Cauchy problem for wave equations
with potentials:

(4.1)

⎧⎪⎨⎪⎩
∂2
t u−Δu+ V (x, t)u = 0,

u(x, 0) = f(x),

∂tu(x, 0) = g(x),

where (x, t) ∈ Rn+1, n = 2, 3. The well-posedness for this problem in the space
L2
x,t(|V |) was studied for n ≥ 3 in [15], when V = V1 + V2 with V1 ∈ L∞

t L2,p
x ,

(n − 1)/2 < p ≤ n/2, V2 ∈ Lr
tL

∞
x , r > 1, and ‖V1‖L∞

t L
2,p
x

small enough. Here our

main aim is to deal with the two-dimensional case n = 2. Our result is the following
theorem.

Theorem 4.1. Let n = 2, 3. If n = 2 we assume that V ∈ L1
tL

1−s,r
x ∩ L

2s+1,p
x,t for

3/4 ≤ s < 1, 1 < r ≤ 2/(1− s) and 1 < p ≤ (n+1)/(2s+1), with ‖V ‖L1
tL

1−s,r
x

and

‖V ‖
L

2s+1,p
x,t

small enough. Similarly, we assume for n = 3 the same conditions with

s = 1 and L1−s,r
x replaced by L∞

x . Then, if f ∈ Ḣs and g ∈ Ḣs−1, there exists a
unique solution of (4.1) in the space L2

x,t(|V |). Furthermore,

(4.2) ‖u‖L2
x,t(|V |) ≤ C(‖f‖Ḣs + ‖g‖Ḣs−1).
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Proof. As a preliminary step, we recall from [16] that the fractional integral Iα of
convolution with |x|−n+α, 0 < α < n, satisfies the inequality

(4.3) ‖Iαf‖L2(w(x)) ≤ C‖w‖1/2
Lα,r‖f‖L2 ,

where α > 0 and 1 < r ≤ n/α. Indeed, this inequality follows directly from
[16, (1.10)] with w = v−1 and p = 2. Then, using this inequality, we see that∥∥∥∥ ∫ t

0

ei(t−s)
√
−Δ|∇|−αF (·, s)ds

∥∥∥∥
L2

x(w(x,t))

≤ C‖w‖1/2
L

α,r
x

∥∥∥∥ ∫ t

0

ei(t−s)
√
−ΔF (·, s)ds

∥∥∥∥
L2

x

≤ C‖w‖1/2
L

α,r
x

∥∥∥∥ ∫ e−is
√
−Δχ(0,t)(s)F (·, s)ds

∥∥∥∥
L2

x

because the integral kernel of the multiplier operator |∇|−α is given by |x|−n+α,
0 < α < n. Combining this estimate and the following dual estimate of (1.4),∥∥∥∥ ∫ e−is

√
−ΔF (·, s)ds

∥∥∥∥
L2

x

≤ C‖w‖1/2
L2s+1,p‖|∇|sF‖L2

x,t(w
−1),

we get for α > 0, 1 < r ≤ n/α, (n+ 1)/4 ≤ s < n/2, and 1 < p ≤ (n+ 1)/(2s+ 1),
(4.4)∥∥∥∥ ∫ t

0

ei(t−s)
√
−ΔF (·, s)ds

∥∥∥∥
L2

x,t(w(x,t))

≤ C‖w‖1/2
L1

tL
α,r
x

‖w‖1/2
L2s+1,p‖|∇|α+sF‖L2

x,t(w
−1).

Now we consider the solution of (4.1) which is given by

(4.5) u(x, t) = cos(t
√
−Δ)f +

sin(t
√
−Δ)√

−Δ
g −

∫ t

0

sin((t− s)
√
−Δ)√

−Δ
(V u)(s)ds,

where f ∈ Ḣs and g ∈ Ḣs−1. Then by the homogeneous estimate (1.4), we only
need to show that

(4.6)

∥∥∥∥ ∫ t

0

ei(t−s)
√
−Δ

√
−Δ

(V u)(·, s)ds
∥∥∥∥
L2

x,t(|V |)
≤ 1

2
‖u‖L2

x,t(|V |)

in order to obtain the well-posedness using the standard fixed-point argument. But,
when n = 2, one can use (4.4), with α = 1− s and w = |V |, to conclude that∥∥∥∥ ∫ t

0

ei(t−s)
√
−Δ

√
−Δ

(V u)(·, s)ds
∥∥∥∥
L2

x,t(V )

≤ C‖V ‖1/2
L1

tL
1−s,r
x

‖V ‖1/2
L2s+1,p‖V u‖L2

x,t(|V |−1)

≤ 1

2
‖u‖L2

x,t(|V |−1)

if ‖V ‖L1
tL

1−s,r
x

and ‖V ‖L2s+1,p are sufficiently small. Also, (4.2) follows easily from

combining (4.5), (1.4) and (4.6). Now the proof is complete for n = 2.
When n = 3, by repeating the above argument with α = 0 using (4.3) replaced

by the trivial inequality ‖f‖L2(w(x)) ≤ C‖w‖1/2L∞‖f‖L2 , one can similarly obtain
(4.6) under the conditions given in the theorem. We omit the details. �
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