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Abstract. In this paper we develop new geometric techniques to deal with
the Dirichlet problem for a p-harmonic map from a compact manifold with
boundary to a Cartan-Hadamard target manifold which is either 2-dimensional
or rotationally symmetric.

Introduction

Let (M, g) and (N, h) be Riemannian manifolds of dimensions m and n respec-
tively and suppose that M is compact with smooth non-empty boundary. A C1

map u : intM → N is said to be p-harmonic if it satisfies the p-Laplace equation

(0.1) Δpu = div(|du|p−2du) = 0.

Here du ∈ Γ(T ∗M ⊗ u−1TN) is a vector-valued differential 1-form and T ∗M ⊗
u−1TN is endowed with its Hilbert-Schmidt scalar product. Moreover − div = δ
is the formal adjoint of the exterior differential d, with respect to the standard L2

inner product on vector-valued differential 1-forms on M . Equation (0.1) is the
Euler-Lagrange equation of the p-energy functional

Ep(u) =
1

p

∫
Ω

|du|pHS(x)dVM .

The topic of this paper is the Dirichlet problem for p-harmonic maps into non-
positively curved target N . Namely, given a sufficiently regular boundary da-
tum f : ∂M → N the corresponding Dirichlet problem consists in finding a map
u : M → N which extends f to a p-harmonic map on intM .

In case the target manifold N is closed (i.e., compact without boundary), in
[PV1] we gave a complete solution to the homotopic p-Dirichlet, i.e., the solution
is found in a prescribed homotopy class. The proof therein is purely variational.
Exploiting powerful techniques due to B. White [Wh], one can define the weak
relative d-homotopy type of W 1,p maps, hence minimize the p-energy in the d-
homotopy class of the initial datum, and finally show how to apply R. Hardt and
F.-H. Lin’s regularity theory to the minimizer [HL].

In this paper we focus our attention on a non-compact, but topologically trivial,
target manifold N of non-positive curvature. Such a manifold N is usually said
to be Cartan-Hadamard. Under these assumptions, a solution to the Dirichlet
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problem has been given by Fuchs [Fu, Theorem 5.1]. See also the more recent
[FR]. In order to win the lack of compactness of the target, the proof given in [Fu]
needed to deeply exploit Fuchs’ regularity theory for constrained p-minimizers. Our
main purpose, here, is to show that, even if N is non-compact, one can prove a
posteriori a uniform bound for the solution. In particular, thanks to a gluing and
compactification argument, the problem can be reduced to the closed one, at least
in case the target is either a surface or rotationally symmetric.

Actually, we feel that the geometric construction introduced in this paper will
be useful in more general settings where the analytic problem is related to different
functionals. Indeed, as it will be clear from the proof, the relevant properties
of the p-energy required by the method we propose are: (a) the solvability of
the problem when the target is compact and (b) a maximum principle for regular
enough solutions.

It’s worthwhile to remark that one crucial point in the previous works [Fu,FR]
is a quite implicit use of a tight relation between two different notions of bounded
Sobolev maps: a first one, that we could call intrinsic, is defined in a global coordi-
nate chart of the target space. A second one, somewhat more standard and called
extrinsic, uses a proper isometric embedding of the target into a Euclidean space
of sufficiently large dimension. In a future paper [PV2], we shall investigate care-
fully the relations between these two notions and we will point out some interesting
consequences.

The starting point of the present investigation is that the only interesting case in-
volves target manifolds without compact quotients for, otherwise, the non-compact
problem can be reduced to the compact one where the machinery alluded to above
can be applied without changes.

Proposition A. Let (M, g) be a compact, m-dimensional Riemannian manifold
with smooth boundary ∂M �= ∅ and let (N, h) be a complete, Riemannian man-
ifold of dimension n such that its universal cover supports a strictly convex ex-
haustion function. Assume that there exists a subgroup Γ of isometries of N act-
ing freely, properly and co-compactly on N . Then, for any p ≥ 2 and for every
f ∈ C0 (M,N) ∩ Lip(∂M,N), the homotopy p-Dirichlet problem has a solution
u ∈ C1 ,α (int(M), N) ∩ C0 (M,N). Moreover, the solution is unique provided N
has non-positive sectional curvature.

We aim at facing the general situation where either we have no information on
the structure of the isometry group of N or it is known that N has no compact
quotients.

Theorem B. Let (M, g) be a compact, m-dimensional Riemannian manifold with
smooth boundary ∂M �= ∅ and let N be an n-dimensional simply connected man-
ifold of non-positive curvature Nn

σ which is either rotationally symmetric or 2-
dimensional. Then, for any p ≥ 2 and any given f ∈ C0 (M,N)∩Lip (∂M,N), the
p-Dirichlet problem

(0.2)

{
Δpu = 0 on M,
u = f on ∂M,

has a unique solution u ∈ C1,α (int(M), N) ∩ C0 (M).
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1. Scheme of the proofs

We start this section giving the simple proof of Proposition A.

Proof (of Proposition A). By assumption, N ′ = N/Γ is a compact, aspherical Rie-
mannian manifold covered by N via the quotient projection P : N → N ′. The
original datum f projects to a new function P (f) : M → N ′ which, in turn, can
be used to state the corresponding p-Dirichlet problem{

Δpu
′ = 0 on M,

u′ = P (f) on ∂M.

Thanks to the analysis of the compact target case provided in [PV1], this problem
admits a solution u′ ∈ C1 ,α (int(M), N ′) ∩ C0 (M,N ′) in the homotopy class of
P (f) relative to ∂M . Let H ′ : [0, 1]×M → N ′ be such a homotopy. The classical
theory of fibrations (see e.g. [Ha]) then tells us that H ′ lifts to a homotopy H :
[0, 1] × M → N satisfying H (1, x) = f (x). The homotopy H is relative to ∂M
because, for every y ∈ ∂M, H ([0, 1]× {y}) is contained in the (discrete) fibre over
P (f) (y). Let u (x) = H (0, x) . Since P is a local isometry and P (u) = u′, then
u is p-harmonic in M of class C1 ,α (int(M), N) ∩ C0 (M,N). On the other hand,
using the fact that H is relative to ∂M we deduce that u = f on ∂M . This proves
that the original homotopy p-Dirichlet problem has a solution. In case N Sect ≤ 0,
uniqueness follows easily from the following few facts: (a) solutions of the homotopy
p-Dirichlet problem with target N project to solutions of the corresponding problem
with target N ′; (b) in the case of compact targets, the solution is unique; (c) liftings
are uniquely determined by their values at a single point. �

The approach we propose to prove Theorem B relates to the reduction proce-
dure used to obtain Proposition A. This latter implies that the Dirichlet problem is
easily solved when N has a compact quotient, but this is not the case for a general
Cartan-Hadamard model manifold Nn

σ . The possible lack of discrete, co-compact
isometry subgroups is overcome by using a combination of cut and paste and peri-
odization arguments. Namely, we will show that it is possible to perturb the metric
of Nn

σ in the exterior of a fixed geodesic ball in Nn
σ such that the complete manifold

thus obtained is again Cartan-Hadamard and has compact quotients. A new maxi-
mum principle for the composition of the p-harmonic map and the convex distance
function of Nn

σ then gives that this perturbation does not affect the solution to the
original problem. The uniqueness part of the theorem can be clearly considered
as a bypass product of the reduction to the compact case. We recall also that
a comprehensive uniqueness result for general complete targets with non-positive
curvature was obtained in [PV1].

To perform the cut and paste procedure we need a local explicit control on the
sectional curvatures of N . To this purpose, we first focus our attention on rota-
tionally symmetric targets. That is, having fixed a smooth function σ : [0,+∞) →
[0,+∞) satisfying

(1.1) σ(2k) (0) = 0, ∀k ∈ N, σ′ (0) = 1, σ (r) > 0, ∀r > 0,

we shall denote by Nn
σ the smooth n-dimensional Riemannian manifold given by

(1.2)
(
[0,+∞)× S

n−1, dr2 + σ2 (r) dθ2
)
,

where dθ2 denotes the standard metric on Sn−1. Clearly, Nn
σ is diffeomorphic to

Rn and geodesically complete for any choice of σ. Usually, Nn
σ is called a model
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manifold with warping function σ and pole 0. The r-coordinate in the expression
(1.2) of the metric represents the distance from the pole. Standard formulas for
warped product metrics reveal that

(1.3) Sectrad = −σ′′

σ
, Secttg =

1− (σ′)
2

σ2
.

Thus, in particular, the model manifold Nn
σ is Cartan-Hadamard if and only if

σ′′ ≥ 0.

We point out that, when the Cartan-Hadamard target is 2-dimensional, the first
equation in (1.3) defines its Gaussian curvature in polar coordinates regardless
of any rotational symmetry condition. Namely, given a 2-dimensional Cartan-
Hadamard manifold (N, hN ), in the global geodesic chart (r, θ) around some fixed
pole o ∈ N , the metric hN can be expressed as

hN |(r,θ) = dr2 + ν2(r, θ)dθ2.

Direct computations show that the only (radial) sectional curvature of N2
ν satisfies

at any point (r, θ) the formula

(1.4) Sect(r, θ) = Sectrad(r, θ) = −ν−1(r, θ)
∂2ν(r, θ)

∂r2
.

2. Gluing model manifolds keeping Sect ≤ 0

In this section we show that, in some sense, it is possible to prescribe a hyperbolic
infinity to a Cartan-Hadamard model, as well as to a generic Cartan-Hadamard 2-
manifold, without violating the non-positive curvature condition.

Theorem 2.1. Let N be a rotationally symmetric (resp. 2-dimensional) Cartan-
Hadamard manifold. Fix R̄ > 0. Then, for every R > R̄ there exist a k = k(R) >>
1 and a Cartan-Hadamard Mn

τ such that:

(i) BN
R̄
(0) ⊂ Mn

τ .

(ii) Mn
τ \ BM

R (0) = H
n
k\ B

H
n
k

R (0).

Proof. We prove the theorem in case N = Nn
ρ is rotationally symmetric. Replacing

(1.3) with (1.4), the 2-dimensional case can be handled in a completely analogous
way.

Thanks to (1.3), it is enough to produce a warping function τ : [0,+∞) →
[0,+∞) satisfying the following requirements:

(a) τ (r) = ρ(r) on [0, R̄).
(b) τ (r) = σk := k−1/2 sinh

(
k1/2r

)
on (R,+∞).

(c) τ ′ ≥ 1 and τ ′′ ≥ 0 on [0,+∞).

To this end, let R̄ < R1 < R2 < R. By the assumptions on σ, we can choose
k = k (R1, R2) > 0 large enough so that

(2.1) ρ′ (R1) ≤
σk (R2)− ρ (R1)

R2 −R1
≤ σ′

k (R2) .

Define

τ1 (r) =

⎧⎨
⎩

ρ (r) on [0, R1),

ρ (R1) +
σk(R2)−ρ(R1)

R2−R1
r on [R1, R2],

σk (r) on (R2,+∞).
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Then, τ1 is a piecewise smooth, convex function with τ ′1 ≥ 1. To complete the
construction of τ , it remains to smooth out the angles with a convex function. This
can be done using the approximation procedure described by M. Ghomi in [Gh]. �

Remark 2.2. As is clear from the proof, Theorem 2.1 holds for a class of “external”
manifolds wider than hyperbolic spaces. In fact, all we need is relation (2.1) to hold.

3. Compact hyperbolic manifolds with large injectivity radii

It is intuitively clear that actions of small discrete groups on a complete Riemann-
ian manifold give rise to large fundamental domains. The intuition is confirmed in
the next simple result.

Lemma 3.1. Let (N, h) be a complete Riemannian manifold. Suppose that there
exists a filtration

Γ0 � Γ1 � Γ2 � · · · � Γk � · · · � {1}
of discrete groups Γk ⊂ Iso (N) acting freely and properly on N . Then, for every
arbitrarily large ball BR (p), there exists K > 0 such that the following holds: for
every k > K we find a fundamental domain Ωk of Γk containing p and satisfying

(3.1) BN
R (p) ⊂⊂ Ωk.

Proof. Let Dk (p) be the Dirichlet domain of Γk centered at p. Recall that Dk (p) =⋂
γ∈Γk

Hγ (p) where

Hγ (p) = {x ∈ N : dN (x, p) < dN (x, γ · p)} .
One can easily verify that if BN

R (p) ∩ (N\Dk (p)) �= ∅, then

(3.2) BN
R (p) ∩ γ ·BN

R (p) �= ∅,
for some γ ∈ Γk ⊂ Γ0. Since Γ0 acts properly on N , it follows that (3.2) can be
satisfied for at most a finite number of γ1, ..., γN ∈ Γ0. To conclude the validity of
(3.1), we now use that

⋂
Γk = {1} and, therefore, γ1, ..., γN /∈ Γk, for every large

enough k. �

A case of special interest is obtained by taking N = Hn
−k2 , the standard hyper-

bolic spaceform of constant curvature −k2 < 0. If Γ is a co-compact discrete group
of isometries acting freely and properly on Hn

−k2 , the corresponding Riemannian

orbit space Hn
−k2/Γ is named a compact hyperbolic manifold (of constant curvature

−k2). The existence of a co-compact discrete group of isometries of Hn
−k2 with large

fundamental domain is equivalent to the existence of a compact quotient manifold
with large injectivity radius. The following result was first observed in [Fa], see
p. 74.

Proposition 3.2. Let n ≥ 0, R > 0 and p ∈ Hn
−k2 . Then, there exists a co-

compact, discrete group Γ of isometries of Hn
−k2 acting freely and properly on Hn

−k2

and whose fundamental domain Ω containing p satisfies

BR (p) ⊂⊂ Ω.

Equivalently,

inj
(
H

n
−k2/Γ

)
≥ R.
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Proof. By a result of A. Borel [Bo], Hn
−k2 has a co-compact, discrete group of

isometries Γ0 acting freely and properly. According to a result by A. Malcev, Γ0 is
residually finite, i.e., there exists a filtration

Γ0 � Γ1 � Γ2 � · · · � Γk � · · · � {1} ,

satisfying [Γk : Γk−1] = |Γk/Γk−1| < +∞. To conclude, we now apply Lemma
3.1. �

4. A maximum principle for p-harmonic maps

It is well known, and an easy consequence of the composition law of the Hessians,
that composing a harmonic map u : M → N with a convex function h : N → R

gives a subharmonic function v = h ◦ u : M → R, i.e., Δv ≥ 0. In particular, if
M is compact with smooth boundary ∂M �= 0 and N is Cartan-Hadamard, we can
choose h (x) = d2N (x, o) and apply the usual maximum principle to conclude that
the image u (M) ⊂ N is confined in a ball BN

R (o) of radius R > 0 depending only
on the values of u on ∂Ω, namely, R = max∂Ω dN (u, o). It was proved in [Ve] that,
in general, the nice composition property of harmonic maps does not extend to
p-harmonic maps, p > 2. Nevertheless, we are able to recover the above conclusion,
thus establishing a new maximum principle for the composition of a p-harmonic
map and a convex function.

Theorem 4.1. Let M be a compact Riemannian manifold with boundary ∂M �= ∅,
and let u ∈ C1(M,N) be a p (> 1)-harmonic map. Assume that N supports a
smooth convex function f : N → R. Set w = f ◦ u : M → R. Then

sup
M

w = sup
∂M

w.

Proof. We give the proof for p ≥ 2 without taking care of the regularity issues.
Similar distributional computations permit us to deal with the general case.

Let w∗ = sup∂M w and, by contradiction, suppose that w (x0) > w∗ for some
x0 ∈ int(M). Fix 0 < ε << 1 so that w (x0)− w∗ > 2ε. Let λ : R → [0, 1] satisfy
λ′ ≥ 0, λ′ > 0 on (ε,+∞), λ = 0 on (−∞, ε]. Define the vector field

Z = |du|p−2 λ(w − w∗)∇w,

and note that suppZ ⊂ int(M). Direct computations show that

divZ = λ′ ◦ (w − w∗) |du|p−2 |∇w|2

+ λ ◦ (w − w∗) trHess (f)
(
|du|p−2

du, du
)

+ λ ◦ (w − w∗)df (Δpu)

≥ |∇w|2 |du|p−2 λ′ ◦ (w − w∗),

and applying the divergence theorem, we get

0 ≤
∫
M

|∇w|2 |du|p−2 λ′ ◦ (w − w∗) ≤
∫
M

divZ = 0.

This proves that

(4.1) |∇w|2 |du|p−2 = 0 on Mε,
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where we have denoted with Mε the connected component containing x0 of the
open set

{x ∈ M : w − w∗ − ε > 0} .
Since, by (4.1), dw = df (du) = 0 where du �= 0 and dw = df (du) = 0 where
du = 0, it follows that w is constant on Mε, and this easily gives the desired
contradiction. �

5. Proof of the main results

In this last section we put all the previous ingredients together to get a proof of
Theorem B.

The boundary datum f has image confined in a ball BN
R0

(0) of Nn. Using

Theorem 2.1, we glue BN
R0

(0) to the exterior of a large ball in the hyperbolic

spaceform H
n
−k2 of sufficiently negative curvature −k2 << −1, say H

n
−k2\BR1

(0),

R1 >> R0, thus obtaining a new Cartan-Hadamard rotationally symmetric (resp.
2-dimensional) manifold (N ′, h′). On the other hand, by Proposition 3.2, Hn

−k2

has compact quotients with arbitrarily large injectivity radii. Accordingly, we can
choose a discrete subgroup Γ of isometries acting freely and co-compactly on Hn

−k2

in such a way that BR1
(0) is contained in a relatively compact, fundamental domain

of the action, say BR1
(0) ⊂⊂ Ω. Making use of Γ we extend the deformed metric

of Ω̄ periodically thus obtaining a new Riemannian manifold N ′′ diffeomorphic to
Hm

−k2 . More precisely, the metric h′′ of N ′′ is defined by setting

h′′
γ·p =

(
γ−1

)∗
γ·p h

′
p.

Since h′ is hyperbolic in a neighborhood of ∂Ω, the definition of h′′ is well posed.
Moreover, (N ′′, h′′) has non-positive curvature, hence it is Cartan-Hadamard, and,
by construction, Γ acts freely and co-compactly by isometries on N ′′. In particular,
each copy of Ω contains an isometric image of BN

R0
(0). Now, we take the quotient

manifold N ′′/Γ which is compact and covered by N ′′ via the quotient projection
P : N ′′ → N ′′/Γ. By construction, the original datum f well defines f ′′ = f :
M → N ′′. Applying Proposition A we get a unique solution u′′ ∈ C0(M,N ′′) ∩
C1,α(int(M), N ′′) to the Dirichlet problem{

Δpu
′′ = 0 on M,

u′′ = f ′′ on ∂M.

To complete the argument, it remains to show that, actually, u′′ gives rise to a
solution of the original problem. This clearly follows if we are able to show that
its image is confined in BN

R0
(0) ⊂ N ′′. To prove that this is the case, we recall

that N ′′ is Cartan-Hadamard and, therefore, the function d2N ′′ (y, 0) is smooth and
strictly convex. By means of Theorem 4.1, we deduce that d2N ′′ (u′′, 0) achieves its
maximum on ∂M . To conclude, it suffices to recall that f (M) ⊂ BN

R0
(0) and to

use the equality u′′ = f on ∂M .
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Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS ( UMR 7539) 99, avenue Jean-

Baptiste Clément F-93430 Villetaneuse, France

E-mail address: veronelli@math.univ-paris13.fr

http://www.ams.org/mathscinet-getitem?mr=0146301
http://www.ams.org/mathscinet-getitem?mr=0146301
http://www.ams.org/mathscinet-getitem?mr=1896406
http://www.ams.org/mathscinet-getitem?mr=1896406
http://www.ams.org/mathscinet-getitem?mr=3054627
http://www.ams.org/mathscinet-getitem?mr=1452860
http://www.ams.org/mathscinet-getitem?mr=1452860
http://www.ams.org/mathscinet-getitem?mr=1080214
http://www.ams.org/mathscinet-getitem?mr=1080214
http://www.ams.org/mathscinet-getitem?mr=896767
http://www.ams.org/mathscinet-getitem?mr=896767
http://www.ams.org/mathscinet-getitem?mr=1867354
http://www.ams.org/mathscinet-getitem?mr=1867354
http://www.ams.org/mathscinet-getitem?mr=3370036
http://www.ams.org/mathscinet-getitem?mr=2592096
http://www.ams.org/mathscinet-getitem?mr=2592096
http://www.ams.org/mathscinet-getitem?mr=926523
http://www.ams.org/mathscinet-getitem?mr=926523

	Introduction
	1. Scheme of the proofs
	2. Gluing model manifolds keeping §≤0
	3. Compact hyperbolic manifolds with large injectivity radii
	4. A maximum principle for 𝑝-harmonic maps
	5. Proof of the main results
	Acknowledgements
	References

