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A REPRESENTATION FOR PSEUDOHOLOMORPHIC

SURFACES IN SPHERES

M. DAJCZER AND TH. VLACHOS

(Communicated by Lei Ni)

Abstract. We give a local representation for the pseudoholomorphic surfaces
in Euclidean spheres in terms of holomorphic data. Similar to the case of the
generalized Weierstrass representation of Hoffman and Osserman for minimal
Euclidean surfaces, we assign such a surface in S2n to a given set of n holo-
morphic functions defined on a simply-connected domain in C.

A basic tool in the study of minimal surfaces in Euclidean space with codimen-
sion higher than one is the generalized Weierstrass representation introduced by
Hoffman and Osserman in [9]. Roughly speaking, to a given set of n holomorphic
functions defined on a simply-connected domain in C it assigns a generalized min-
imal surface in Rn+1. Conversely, any simply-connected minimal surface in Rn+1

can be obtained in this way.
For minimal surfaces in Euclidean spheres, there is no representation similar to

the one in Euclidean space and, maybe, this is not even possible. But inspired
by results and methods in [4], [6] and [7], we provide such a representation for a
class of minimal surfaces, namely, the generalized pseudoholomorphic surfaces in
Euclidean spheres. As above, to a set of n holomorphic functions in a simply-
connected domain in C and some constants of integration we assign a generalized
pseudoholomorphic surface in S2n. Here and above, by the term generalized we
mean that the metric induced on the surface is singular at most at isolated points.

In a seminal paper due to Calabi [3] (see also Barbosa [1]) it was shown that any
two-dimensional sphere minimally immersed in an Euclidean sphere lays in even
substantial codimension and has to be pseudoholomorphic. According to Calabi’s
definition, a minimal surface is pseudoholomorphic means that when parametrized
by an isothermal coordinate z the surface f : S2 → S2n ⊂ R2n+1 satisfies

〈∂jf, ∂kf〉 = 0, j + k > 0,

with respect to the symmetric product where ∂ = ∂/∂z and ∂0f = f .
There are other definitions for minimal surfaces in spheres to be pseudoholomor-

phic that are equivalent to the above. For instance, one may require the ellipses
of curvature of any order and at any point to be circles; see part (iii) in Remarks
5. In turn, this is equivalent to asking the Hopf differentials of all orders to vanish
identically; see [10] for details.

We point out that even in the compact case there are plenty of pseudoholomor-
phic surfaces other than topological spheres. For instance, this is the case of many
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pseudoholomorphic surfaces in the nearly Kaehler sphere S6. These surfaces were
introduced by Bryant [2] and have been intensively studied.

In the sequel, we first describe an algorithm that leads to the representation of
the pseudoholomorphic surfaces and after that we state our main result.

Let βs : U → C, 0 ≤ s ≤ n − 1, be nonzero holomorphic functions defined
on a simply-connected domain U ⊂ C. Setting α0 = β0, define subsequently
isotropic maps with respect to the symmetric product between complex vectors
αr : U → C2r+1, 0 ≤ r ≤ n, by

αr+1 = βr+1

(
1− φ2

r, i(1 + φ2
r), 2φr

)
where φr =

∫ z
αrdz and βn = 1. Now define Fs : U → C2n+1, 1 ≤ s ≤ n+ 1, by

(1) F1 = αn and Fr+1 = ∂Fr −
1

‖Fr‖2
〈∂Fr, F̄r〉Fr, 1 ≤ r ≤ n.

Finally, let g : L2 → S2n be the map given by

g =
1

‖Re(Fn+1)‖
Re(Fn+1)

where L2 = U with the induced metric.

Theorem 1. The map g : L2 → S2n parametrizes a generalized pseudoholomorphic
surface. Conversely, any pseudoholomorphic surface in S2n can be locally obtained
in this way.

To conclude the paper, we show how the above parametrization can be used to
parametrize the real Kaehler hypersurfaces in Euclidean space as well as a class of
ruled minimal submanifolds with codimension two in spheres.

1. The proof

We first collect some basic facts and definitions about minimal surfaces in space
forms and refer to [6] for more details.

Let f : L2 → QN denote an isometric immersion of a two-dimensional Riemann-
ian manifold into an N -dimensional space form. The kth-normal space of f at
x ∈ L2 for k ≥ 1 is defined as

Nf
k (x) = span{αk+1

f (X1, . . . , Xk+1) : X1, . . . , Xk+1 ∈ TxL}
where

αs
f : TL× · · · × TL → NfL, s ≥ 3,

denotes the symmetric tensor called the sth-fundamental form given inductively by

αs
f (X1, . . . , Xs) =

(
∇⊥

Xs
. . . ,∇⊥

X3
αf (X2, X1)

)⊥
and αf : TL × TL → NfL stands for the standard second fundamental form of f
with values in the normal bundle. Here ∇⊥ denotes the induced connection in the
normal bundle NfL of f and ( )⊥ means taking the projection onto the normal

complement of Nf
1 ⊕ . . .⊕Nf

s−2 in NfL.

A surface f : L2 → QN is called regular if for each k the subspaces Nf
k have

constant dimension and thus form normal subbundles of the normal bundle. Notice
that regularity is always verified along connected components of an open dense
subset of L2.
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Assume that f : L2 → QN is a substantial regular minimal surface. Substantial
means that the codimension cannot be reduced. Then, the normal bundle of f
splits as

NfL = Nf
1 ⊕Nf

2 ⊕ · · · ⊕Nf
m, m = [(N − 1)/2],

since all higher normal bundles have rank two except possibly the last one that has

rank one if N is odd. The kth-order curvature ellipse Ef
k (x) ⊂ Nf

k (x) at x ∈ L2 for

each Nf
k , 1 ≤ k ≤ m, is defined by

Ef
k (x) = {αk+1

f (Zϕ, . . . , Zϕ) : Zϕ = cosϕZ + sinϕJZ and ϕ ∈ S1}

where Z ∈ TxL is any vector of unit length and J is the complex structure in TxL.
A substantial regular minimal surface f : L2 → R2n+1 is called isotropic if at any

point the ellipses of curvature Ef
k (x), 1 ≤ k ≤ n− 1, are circles. From the results in

[4] and [7] we have that such a surface can be locally parametrized as f = Re(ψφn)
where ψ is any nowhere vanishing holomorphic function. The condition that the
ellipses of curvature are circles is equivalent to the vector fields F1, ∂F1, . . . , ∂

n−1F1

being orthogonal and isotropic. Notice that different functions ψ yield isotropic
surfaces with the same Gauss map.

For the proof of Theorem 1 we first give several lemmas.

Lemma 2. The following facts hold:

(i) Outside the zeros F1, . . . , Fn span a maximal isotropic subspace of C2n+1.
(ii) The vectors F1, . . . , Fn+1 are orthogonal with respect to the Hermitian prod-

uct.
(iii) The vectors Fn+1, F̄n+1 are collinear.
(iv) It holds that

(2) Fs+1 = ∂Fs − ∂(log ‖Fs‖2)Fs, 1 ≤ s ≤ n.

(v) It holds that

(3) ∂F̄s = − ‖Fs‖2
‖Fs−1‖2

F̄s−1, 2 ≤ s ≤ n.

(vi) The zeros of F1, . . . , Fn+1 are isolated.

Proof. (i) This follows from

spanC{F1, . . . , Fn} = spanC{F1, ∂F1, . . . , ∂
n−1F1},

and that n is the dimension of any maximal isotropic subspace in C2n+1.
(ii) We claim that

(4) ∂F̄s ∈ spanC{F̄1, . . . , F̄s−1}, 2 ≤ s ≤ n.

In fact, since F1 is holomorphic we see that

∂F̄2 = −∂
(
〈∂̄F̄1, F1〉/‖F1‖2

)
F̄1.

Assume that the claim holds for any 2 ≤ s ≤ k. Then, we have

∂F̄k+1 = ∂∂̄F̄k − ∂
(
〈∂̄F̄k, Fk〉/‖Fk‖2

)
F̄k −

(
〈∂̄F̄k, Fk〉/‖Fk‖2

)
∂F̄k.

By assumption, we can write

∂F̄k = λ1F̄1 + · · ·+ λk−1F̄k−1.
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Thus,

∂∂̄F̄k =
k−1∑
j=1

∂̄(λj)F̄j +
k−1∑
j=1

λj ∂̄F̄j

and since ∂̄F̄j ∈ spanC{F̄j , F̄j+1}, the claim follows.
That 〈F2, F̄1〉 = 0 is immediate. Assume that F1, . . . , Fs are orthogonal with

respect to the Hermitian product. For 1 ≤ j ≤ s− 1 we obtain using (4) that

〈Fs+1, F̄j〉 = 〈∂Fs, F̄j〉 −
1

‖Fs‖2
〈∂Fs, F̄j〉〈Fs, F̄j〉

= ∂〈Fs, F̄j〉 − 〈Fs, ∂F̄j〉
= 0.

Since also 〈Fs+1, F̄s〉 = 0 is immediate, the result follows.

(iii) It suffices to show that Fn+1 is orthogonal to Fj , F̄j , 1 ≤ j ≤ n, with respect to
the Hermitian inner product. Then the same holds for F̄n+1 and the result follows.
We have from part (ii) that Fn+1 is orthogonal to Fj , 1 ≤ j ≤ n. The orthogonality
with respect to F̄j , 1 ≤ j ≤ n, follows from (i).

(iv) Immediate using (4).

(v) Follows easily using part (ii) and (4).

(vi) Since F1 is holomorphic, we have using (3) that

∂̄ (F1 ∧ · · · ∧ Fn+1) = 0,

and the result follows. �

Lemma 3. The complexified tangent and normal bundles of f = Re(φn) : U →
R2n+1 are given by

f∗TU ⊗ C = spanC{F1, F̄1},
Nf

s ⊗ C = spanC{Fs+1, F̄s+1}, 1 ≤ s ≤ n− 1,

Nf
n ⊗ C = spanC{Fn+1}.

Proof. The first equality follows from

2∂f = ∂φn = F1.

We claim that the higher fundamental forms satisfy

(5) 2αs+1
f (∂, . . . , ∂) = Fs+1, 1 ≤ s ≤ n.

We proceed by induction. We have that

2αf (∂, ∂) = 2(∂∂f)⊥ = (∂F1)
⊥ = ∂F1 − (∂F1)

f∗TU .

Computing (∂F1)
f∗TU in the real tangent base {F1 + F̄1, i(F1 − F̄1)} gives

(∂F1)
f∗TU =

1

‖F1‖2
〈∂F1, F̄1〉F1,

and (5) follows for s = 1.
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Now assume by induction that (5) holds for any 1 ≤ k ≤ s. A similar computa-
tion as above using parts (i) and (ii) of Lemma 2 gives

2αs+2
f (∂, . . . , ∂) = ∂Fs+1 − (∂Fs+1)

f∗TU −
s∑

j=1

(∂Fs+1)
Nf

j

= ∂Fs+1 − (∂Fs+1)
Nf

s

= ∂Fs+1 −
〈∂Fs+1, F̄s+1〉

‖Fs+1‖2
Fs+1

= Fs+2,

and this completes the proof. �

Lemma 4. The surface g : L2 → S2n is minimal and we have:

g∗TL⊗ C = spanC{Fn, F̄n},(6)

Ng
s ⊗ C = spanC{Fn−s, F̄n−s}, 1 ≤ s ≤ n− 1,(7)

and

(8) αs+1
g (∂, . . . , ∂) =

(−1)s+1

‖Fn−s‖2
〈g, Fn+1〉F̄n−s, 1 ≤ s ≤ n− 1.

Proof. We easily obtain using Lemma 2 that ∂Fn+1, ∂F̄n+1 are orthogonal to Fs, F̄s,
1 ≤ s ≤ n − 1. From part (iii) of Lemma 2 we obtain that ∂Fn+1, ∂F̄n+1 are
orthogonal to Fn+1, and this gives (6).

Using (6) and Lemma 2 it follows easily that

(9) ∂g = −〈g, Fn+1〉
‖Fn‖2

F̄n.

Hence,

αg(∂, ∂̄) = (∂∂̄g)⊥ = −〈g, F̄n+1〉
‖Fn‖2

(∂Fn)
⊥.

However,

(∂Fn)
⊥ = ∂Fn − 〈∂Fn, g〉g − (∂Fn)

g∗TL

= ∂Fn − 〈Fn+1, g〉g − ∂(log ‖Fn‖2)Fn

= Fn+1 − 〈Fn+1, g〉g
= 0,

and thus g is minimal.
To prove (7) and (8) we proceed by induction. Using Lemma 2 and (9), we

obtain

αg(∂, ∂) = ∂∂g − 〈∂∂g, g〉g − (∂∂g)g∗TL

= −∂

(
〈g, Fn+1〉
‖Fn‖2

)
F̄n +

〈g, Fn+1〉
‖Fn−1‖2

F̄n−1

+∂

(
〈g, Fn+1〉
2‖Fn‖2

)
(Fn + F̄n)− ∂

(
〈g, Fn+1〉
2‖Fn‖2

)
(Fn − F̄n)

=
1

‖Fn−1‖2
〈g, Fn+1〉F̄n−1.
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Now assume that (8) holds for any 1 ≤ k ≤ s. Similarly, we have

αs+2
g (∂, . . . , ∂) = ∂αs+1

g (∂, . . . , ∂)− (∂αs+1
g (∂, . . . , ∂))g∗TL −

s∑
j=1

(∂αs+1
g (∂, . . . , ∂))N

g
j

= (−1)s+1∂

(
〈g, Fn+1〉
‖Fn−s‖2

)
F̄n−s +

(−1)s

‖Fn−s−1‖2
〈g, Fn+1〉F̄n−s−1

+(−1)s∂

(
〈g, Fn+1〉
2‖Fn−s‖2

)
(Fn−s + F̄n−s)

+(−1)s+1∂

(
〈g, Fn+1〉
2‖Fn−s‖2

)
(Fn−s − F̄n−s)

=
(−1)s

‖Fn−s−1‖2
〈g, Fn+1〉F̄n−s−1,

and this completes the proof. �

Proof of Theorem 1. The direct statement follows from the previous lemmas. For
the converse, let g : L2 → S2n be a simply-connected pseudoholomorphic surface
and z a local complex chart. Define G0 = g and

Gs+1 = ∂Gs −
〈∂Gs, Ḡs〉
‖Gs‖2

Gs, s ≥ 0.

We have that

g∗TL⊗ C = spanC{G1, Ḡ1}.
Clearly, the higher fundamental forms are given by

(10) αs+1
g (∂, . . . , ∂) = Gs+1, 1 ≤ s ≤ n.

Thus G1, . . . , Gn span an isotropic subspace of C2n+1. Moreover,

(11) Ng
s ⊗ C = spanC{Gs+1, Ḡs+1}, 1 ≤ s ≤ n− 1.

We claim that

(12) ∂Ḡs ∈ spanC{Ḡ0, . . . , Ḡs−1}, s ≥ 1.

Since ‖g‖ = 1 we have G1 = ∂g, and hence Ḡ1 = ∂̄g. Therefore,

∂Ḡ1 = ∂∂̄g ∈ spanC{g}.

Assume that (12) holds for 1 ≤ k ≤ s− 1. Then,

∂Ḡk+1 = ∂̄∂Ḡk − ∂

(
〈∂̄Ḡk, Gk〉
‖Gk‖2

)
Ḡk −

〈∂̄Ḡk, Gk〉
‖Gk‖2

∂Ḡk,

and the claim follows.
Using (11) we see that G1, . . . , Gn are orthogonal with respect to the Hermitian

product and thus span a maximal isotropic subspace of C2n+1. Hence (12) gives

(13) ∂Ḡs = − ‖Gs‖2
‖Gs−1‖2

Ḡs−1, s ≥ 1.

We have that

(14) C2n+1 = spanC{g,G1, . . . , Gn, Ḡ1, . . . , Ḡn}
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where all vectors are orthogonal with respect to the Hermitian product. It is easy
to check that Gn+1 is orthogonal to all vectors in (14) and thus Gn+1 = 0 or,
equivalently, it holds that

∂Gn = ∂ log ‖Gn‖2Gn,

and therefore ξ = Ḡn/‖Gn‖2 is holomorphic.
Consider the map f : L2 → R2n+1 given by

(15) f = Re

∫
ξdz.

Then,

f∗TL⊗ C = spanC{Gn, Ḡn}.

We have that f is minimal since

αf (∂, ∂̄) = (∂̄∂f)⊥ = 0.

From (13) we see that

∂sḠn ∈ spanC{Ḡn−s, . . . , Ḡn−1}, 1 ≤ s ≤ n− 1.

Therefore, the subspace

spanC{∂Ḡn, . . . , ∂
n−1Ḡn}

is isotropic, and hence f is an isotropic surface.
We have that

F1 = ∂f = Ḡn/‖Gn‖2.

Using (13) we obtain that Fs, 1 ≤ s ≤ n, defined by (1) satisfies

Fs ∈ spanC{Ḡn, . . . , Ḡn−s+1}.

Thus,

spanC{F1, . . . , Fn, F̄1, . . . , F̄n} = spanC{G1, . . . , Gn, Ḡ1, . . . , Ḡn}.

Hence,

(16) g =
1

‖Re(Fn+1)‖
Re(Fn+1),

and this completes the proof. �

Remarks 5. (i) Observe that in (15) we can replace ξ by ψξ where ψ is any nowhere
vanishing holomorphic function. Hence, different holomorphic data may generate
the same pseudoholomorphic spherical surface.
(ii) That the first two definitions of pseudoholomorphicity given in the introduction
are equivalent follows using (10).
(iii) The proof of the converse of the theorem can also be obtained from [6] by
means of the quite different techniques developed there for the more general context
of elliptic surfaces which, in particular, do not yield (16).
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2. Applications

In this section, we first provide a local Weierstrass type representation for the
real Kaehler Euclidean hypersurfaces free of flat points.

The following result was obtained in [5].

Theorem 6. Let g : L2 → S2n, n ≥ 2, be a pseudoholomorphic surface and γ ∈
C∞(L) an arbitrary function. Then the induced metric on the open subset of regular
points of the map Ψ: NgL → R2n+1 given by

Ψ(x,w) = γ(x)g(x) + g∗∇γ(x) + w

is Kaehler. Conversely, any real Kaehler hypersurface f : M2n → R2n+1, n ≥ 2,
free of flat points can be locally parametrized in this way.

We have that

∇γ =
1

‖∂‖2 (γz̄∂ + γz ∂̄),

g =
1

‖Re(Fn+1)‖
Re(Fn+1) and ∂g = −〈g, Fn+1〉

‖Fn‖2
F̄n.

Using (7) we see that any w ∈ NgL can be written as w =
∑n−1

j=1 Re(wjFj) where
the wj = uj + ivj , 1 ≤ j ≤ n− 1, are complex parameters.

Theorem 7. Any real Kaehler hypersurface f : M2n → R2n+1, n ≥ 2, without flat
points can be locally parametrized as

Ψ(z, wj) =
γ

‖Re(Fn+1)‖
Re(Fn+1)

− 2

‖∂‖2‖Fn‖2‖Re(Fn+1)‖
Re

(
γz〈Re(Fn+1), F̄n+1〉Fn

)

+

n−1∑
j=1

(ujRe(Fj)− vjIm(Fj)).

Proof. A straightforward computation using (9). �

Next, we describe how to parametrize the minimal ruled submanifolds in spheres
with codimension two given in [8] but only when associated to a pseudoholomorphic
surface.

Let g : L2 → S2n, n ≥ 3, be a pseudoholomorphic surface. We constructed in [8]
an associated ruled minimal submanifold Fg : M

2n−2 → S2n by attaching at each
point of g the totally geodesic (2n− 4)-sphere of S2n whose tangent space at that
point is the fiber of the vector bundle Λg = (Ng

1 )
⊥, that is,

(p, w) ∈ Λg �→ Fg(p, w) = expg(p) w

(outside singular points) where exp is the exponential map of S2n.

As above, any w ∈ Λg can be written as w =
∑n−2

j=1 Re(wjFj) where wj = uj+ivj ,

1 ≤ j ≤ n−2. Then, the submanifold Fg : M
2n−2 → S2n in [8] can be parametrized
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as

Fg(z, wj) =
1

‖Re(Fn+1)‖
cos ‖

n−2∑
j=1

(ujRe(Fj)− vjIm(Fj))‖Re(Fn+1)

+h(‖
n−2∑
j=1

(ujRe(Fj)− vjIm(Fj))‖)
n−2∑
j=1

(ujRe(Fj)− vjIm(Fj))

where h(x) = 1
x sinx if x �= 0 and h(0) = 1.
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