COMPLETELY BOUNDED Λ_p SETS THAT ARE NOT SIDON

KATHRYN HARE AND PARASAR MOHANTY

(Communicated by Alexander Iosevich)

ABSTRACT. In this paper we construct examples of completely bounded Λ_p sets, which are not Sidon, on any compact abelian group. As a consequence, we have a new proof of the classical result for the existence of non-Sidon, Λ_p sets on any compact abelian group.

1. Introduction

Let G be a compact abelian group and Γ its discrete abelian dual group. Lacunary sets on Γ play important roles in the study of Fourier analysis on compact abelian groups. J.-P. Kahane [6] first used the term Sidon set and W. Rudin in [9] introduced the concept of Λ_p sets. Sidon sets are particular examples of Λ_p sets. Among other roles, one of the important features of Λ_p sets, for p > 2, is that they are the interpolation sets for $L^p(G)$ multipliers.

In the last decade the study of operator spaces and completely bounded multipliers has attracted much attention. G. Pisier assigned a canonical operator space structure on L^p spaces by developing complex interpolation for operator spaces. With this operator space structure on $L^p(G)$ one can define, in the obvious way, the space of all completely bounded multipliers on $L^p(G)$, and then define the notion of completely bounded Λ_p sets for p > 2 (also known as non-commutative Λ_p sets and denoted Λ_p^{cb}), as the interpolation sets of completely bounded multipliers on $L^p(G)$.

In [5], A. Harcharras extensively studied various properties of Λ_p^{cb} sets and established, in particular, the existence of Λ_p sets which are not Λ_p^{cb} . Given that all Sidon sets are Λ_p^{cb} for all p > 2, it is natural to ask, "Is there a non-Sidon, Λ_p^{cb} set"? The analogous question for Λ_p sets historically attracted much attention following Rudin's seminal paper, and was finally solved by Edwards, Hewitt and Ross [4] and A. Bonami [3] simultaneously.

Harcharras answered this question for the circle group \mathbb{T} in [1] by showing that for any finite set Q of prime numbers, the set of natural numbers whose prime divisors all lie in Q is Λ_p^{cb} for all p, but not Sidon. In this paper, we will show that on any compact abelian group there is a set which is not Sidon, but is Λ_p^{cb} for all p. Our argument is mainly combinatorial and provides a new proof for the classical result of Edwards et al. and Bonami.

Received by the editors March 4, 2013 and, in revised form, February 4, 2014.

²⁰¹⁰ Mathematics Subject Classification. Primary 43A46; Secondary 46L07, 47L25.

Key words and phrases. Lacunary sets, completely bounded multipliers, non-commutative Λ_p sets, Sidon sets.

The first author was supported in part by NSERC grant number 45597.

The second author would like to thank the University of Waterloo for their hospitality.

2. Preliminaries

2.1. Λ_p sets and L^p multipliers. Throughout this paper we let G be a compact abelian group equipped with normalized Haar measure and Γ its dual group. Let $E \subseteq \Gamma$. We call the trigonometric polynomial f an E-polynomial if the Fourier coefficients of f are supported on E.

Definition 2.1.

- (i) A set $E \subseteq \Gamma$ is called a *Sidon set* if there is a constant C such that $\sum_{\gamma \in E} |\hat{f}(\gamma)| \leq C ||f||_{\infty}$ for all E-polynomials f.
- (ii) Let $2 . A set <math>E \subseteq \Gamma$ is called a Λ_p set if there is a constant C_p such that $||f||_p \le C_p ||f||_2$ for all E-polynomials f.

The fact that $L^p(G) \subseteq L^q(G)$ if $p \ge q$ ensures that any Λ_p set is also a Λ_q set for all $q \le p$. It is known that every Sidon set is a Λ_p set for all p [9]; however the converse is not true. Indeed, in every group Γ there are examples known of sets that are Λ_p for all p, but not Sidon [3, 4]. Reference [7] is an excellent survey of basic properties of Sidon and $\Lambda(p)$ sets.

Sidon and Λ_p sets play an important role in the study of Fourier multipliers.

Definition 2.2. Let $1 \leq p \leq \infty$ The function $\phi \in l^{\infty}(\Gamma)$ is called a Fourier multiplier for $L^p(G)$, or L^p multiplier for short, if the operator $T: L^p(G) \to L^p(G)$ defined by

$$\widehat{Tf}(\gamma) = \phi(\gamma)\widehat{f}(\gamma) \ \forall f \in L^p \cap L^2(G)$$

is bounded.

We denote the space of L^p multipliers by $M_p(G)$. It is well known that $M_1(G) \simeq M(G)$, the set of finite regular Borel measures on G, $M_2(G) \simeq l^{\infty}(\Gamma)$ and $M_p(G) \simeq M_{p'}(G)$ where 1/p + 1/p' = 1 (isometrically isomorphic in all cases). A duality argument proves that E is Sidon if and only if whenever $\phi \in l^{\infty}(E)$, then there exists $\mu \in M(G)$ such that $\hat{\mu}(\gamma) = \phi(\gamma)$ for all $\gamma \in E$. Thus Sidon sets are interpolation sets for M(G). Similarly, it is known that Λ_p sets are interpolation sets for $M_p(G)$ when p > 2 (see [5] for a proof).

2.2. Completely bounded multipliers. We now briefly recall the natural operator space structure on $L^p(X)$ where X is a σ -finite measure space. For details see [8, Chapter 2]. We consider the canonical C^* -algebra, operator space structure on $L^\infty(X)$. The operator space structure on $L^1(X)$ is inherited from the dual of $L^\infty(X)$. With this operator space structure the identification $L^1(X)^* \simeq L^\infty(X)$ is completely isometric [2]. The couple $(L^\infty(X), L^1(X))$ is compatible for operator space interpolation and we consider $L^p(X) = (L^\infty(X), L^1(X))_{1/p}$ as an operator space with this interpolating operator space structure.

If an L^p multiplier T is completely bounded in L^p with this operator space structure, then T is called a *completely bounded*, or *cb-multiplier* on $L^p(G)$. We denote the space of all *cb*-multipliers on $L^p(G)$ by $M_n^{cb}(G)$.

The following result of Pisier [8] provides a characterization of the completely bounded maps on $L^p(G)$. For $1 \leq p < \infty$ let S_p be the space of compact operators on $l_2(\mathbb{Z})$ such that $||T||_{S_p} = (tr(T^*T)^{p/2})^{1/p} < \infty$, i.e., S_p is the space of Schattan p-class operators. Let us denote by $L^p(G, S_p)$ the space of S_p -valued, measurable

functions such that

$$||f||_{L^p(G,S_p)} = \left(\int_G ||f(x)||_{S_p}^p dx\right)^{1/p} < \infty.$$

Clearly $L^p(G, S_p)$ is the closure of $L^p(G) \otimes S_p$ in the above-mentioned norm, $\|\cdot\|_{L^p(G, S_p)}$.

Proposition 2.3 ([8]). Let $1 \leq p < \infty$. A linear map $T : L^p(G) \to L^p(G)$ is completely bounded if and only if the mapping $T \otimes I_{S_p}$ is bounded on $L^p(G, S_p)$. Moreover,

$$||T||_{cb} = ||T \otimes I_{S_p}||_{L^p(G,S_p) \to L^p(G,S_p)}$$

where $\|\cdot\|_{cb}$ denotes the cb-norm of the operator $T: L^p(G) \to L^p(G)$.

The notion of completely bounded (or cb) Λ_p sets, denoted Λ_p^{cb} , was introduced in [5] as follows.

Definition 2.4. Let $2 . A subset <math>E \subseteq \Gamma$ is called a Λ_p^{cb} set if there exists a constant C, depending only on p and E, such that

$$||f||_{L^{p}(G,S_{p})} \leq C \max \left\{ \left\| \sum_{\gamma \in E} \left(\hat{f}(\gamma)^{*} \hat{f}(\gamma) \right)^{1/2} \right\|_{S_{p}}, \left\| \sum_{\gamma \in E} \left(\hat{f}(\gamma) \hat{f}(\gamma)^{*} \right)^{1/2} \right\|_{S_{p}} \right\}$$

for all S_p -valued, E-polynomials f defined on G. We denote by $\lambda_p^{cb}(E)$ the least constant C for which the above inequality holds.

Of course, any Λ_p^{cb} set is Λ_p . It is a consequence of the non-commutative Khintchine's inequality that the Λ_p^{cb} sets are the interpolation sets for M_p^{cb} when $2 [5]. The inclusion <math>M_q^{cb} \subseteq M_p^{cb}$ when $2 < q < p < \infty$ shows that if E is Λ_q^{cb} , then it is also Λ_p^{cb} .

A useful combinatorial property for Λ_p^{cb} is also given in [5]. Before we state this property let us recall Rudin's [9] combinatorial property that allows one to construct Λ_p sets.

Notation 2.5. For $p \geq 2$ an integer, let

$$A_p(E) = \sup_{\gamma \in \Gamma} |\{(\gamma_1, \dots, \gamma_p) \in E^p : \gamma_1 \gamma_2 \dots \gamma_p = \gamma\}| \text{ and }$$

$$B_p(E) = \sup_{\gamma \in \Gamma} \left| \left\{ (\gamma_1, \dots, \gamma_p) \in E^p : \ \gamma_1^{-1} \gamma_2 \dots \gamma_p^{(-1)^p} = \gamma \right\} \right|.$$

Rudin proved that if $A_p(E) < \infty$, then E is a Λ_{2p} set. In his proof, if the identity $|\underline{f}|^{2p} = f^p \overline{f}^p$ is replaced by $|f|^{2p} = g\overline{g}$, where $g = (f\overline{f})^{p/2}$ when p is even or $g = f\overline{f} \cdots f$ (p factors) when p is odd, then one can easily see that E is also Λ_{2p} if $B_p(E) < \infty$.

In the above notation, characters γ_j may be repeated and this can cause complications with the counting, particularly when the characters have finite order. Motivated by [10], Harcharras in [5] was able to extend this result to Λ_p^{cb} sets, under the weaker assumption that the characters γ_j were distinct.

Definition 2.6. Let $p \geq 2$ be an integer. The set E has the Z(p) property if

$$Z_p(E) = \sup_{\gamma \in \Gamma} \left| \left\{ (\gamma_1, \dots, \gamma_p) \in E^p : \forall i \neq j, \gamma_i \neq \gamma_j, \text{ and } \gamma_1^{-1} \gamma_2 \dots \gamma_p^{(-1)^p} = \gamma \right\} \right| < \infty.$$

Theorem 2.7 ([5]). Let $p \geq 2$ be an integer. Then every subset E of Γ with the Z(p) property is a Λ_{2p}^{cb} set. Moreover, there exists a constant C_p , depending only on p, such that $\lambda_{2p}^{cb}(E) \leq C_p Z_p(E)^{1/2p}$ for each $E \subseteq \Gamma$.

In section 3 we will first prove the existence of a non-Sidon set that is Λ_4^{cb} by constructing sets that have property Z(2). The combinatorial arguments are less complicated in this case than for general 2p, which we take up in section 4. Since Λ_p^{cb} sets are always Λ_p , section 4 provides an alternate proof of the classical result of the existence of non-Sidon sets that are Λ_p for all $p < \infty$.

3. A non-Sidon,
$$\Lambda_4^{cb}$$
 set

Our strategy will be to find size limitations on the arithmetic structures that Sidon sets can contain, and then to construct Λ_p^{cb} sets, using Harcharras' sufficient condition, which violate this size limitation. Towards this end we have the following lemma which can also be deduced from the result on 'test families' in [4]. Because of the simplicity of the argument for the special case we need, we have included a proof here.

Lemma 3.1. If
$$E \subseteq \prod_{j=1}^{\infty} \mathbb{Z}_p^{(j)}$$
 is a Sidon set, then $\left| E \cap \prod_{j=1}^{N} \mathbb{Z}_p^{(j)} \right| \leq O(N)$, where $\mathbb{Z}_p^{(j)} = \mathbb{Z}_p$ for each j .

Proof. Let χ_j be a generator for $\mathbb{Z}_p^{(j)}$ and consider $f_j=1+\chi_j+\chi_j^2+\cdots+\chi_j^{p-1}$. Since $\chi_j(x)$ is a p-th root of unity, $f_j(x)=0$ if $x\neq e$ and thus for any $q'<\infty$ we have $\|f_j\|_{q'}^{q'}=p^{q'-1}$. Hence, if $P_N=\prod_{j=1}^N f_j$, then $\|P_N\|_{q'}=p^{\frac{N}{q}}$. Now $\widehat{P_N}(\psi)=1$ if $\psi\in\prod_{j=1}^N\mathbb{Z}_p^{(j)}$ and 0 elsewhere, so $\|\widehat{P_N}|_E\|_2=|E\cap\prod_{j=1}^N\mathbb{Z}_p^{(j)}|^{1/2}$. It is well known (see [7]) that if E is Sidon, then for all q>2 we have $\|\widehat{P_N}|_E\|_2\leq C\sqrt{q}\|P_N\|_{q'}$. Thus $|E\cap\prod_{j=1}^N\mathbb{Z}_p^{(j)}|\leq C^2qp^{\frac{2N}{q}}$. Take q=2N to complete the proof.

It is also well known that Sidon sets can only contain small proportions of any arithmetic progression.

Lemma 3.2 ([9]). Let $E \subset \Gamma$ be a Sidon set. If A is any arithmetic progression, then $|E \cap A| \leq O(\log |A|)$.

The key technical idea is the following elementary combinatorial result that enables us to construct sets with the Z(2) property, which contain more than O(N) elements from predetermined subsets of 2^N characters.

Lemma 3.3. Let $E = \{\chi_j\}_{j=1}^{\infty} \subseteq \Gamma$, where χ_j^2 are all distinct and non-trivial. We can choose an infinite subset $E' \subseteq E$ such that $Z_2(E') = 1$ and for sufficiently large n,

$$\left| E' \cap \{\chi_j\}_{2^{n+1}}^{2^{n+2}} \right| \ge n^2.$$

Proof. Choose N such that $2(n+1)^9 < 2^n$ for all $n \ge N$. Put $\psi_1 = \chi_{2^N}$. We proceed inductively and assume that we have chosen $\psi_1, \dots, \psi_{N^3} \in \{\chi_j\}_{j=2^N}^{2^{N+1}}$ and $\psi_{k^3+1}, \dots, \psi_{(k+1)^3} \in \{\chi_j\}_{j=2^{k+1}+1}^{2^{k+2}}$ for each N < k < n so that $Z_2(\{\psi_j\}_{j=1}^{n^3}) = 1$. We will see how to choose distinct characters $\psi_{n^3+1}, \dots, \psi_{(n+1)^3} \in \{\chi_j\}_{j=2^{n+1}+1}^{2^{n+2}}$, with $Z_2(\{\psi_j\}_{j=1}^{(n+1)^3}) = 1$.

First, observe that in order to ensure that $Z_2(\{\psi_j\}_{j=1}^{n^3+1})=1$, it will be enough to choose ψ_{n^3+1} so that $\psi_{n^3+1}\psi_i^{-1}\neq\psi_j\psi_k^{-1}$ whenever $i,j,k\leq n^3+1$ and $i,j\neq n^3+1$. Thus we will want $\psi_{n^3+1}\neq\psi_j\psi_k^{-1}\psi_i$ for any $i,j,k\leq n^3$ (which also ensures $\psi_{n^3+1}\notin\{\psi_j\}_{j=1}^{n^3}$) and $\psi_{n^3+1}^2\neq\psi_j\psi_i$ for any $i,j\leq n^3$. (This is sometimes known as the 'greedy' method.) There are n^9 and n^6 terms, respectively, that ψ_{n^3+1} and $\psi_{n^3+1}^2$ must avoid. As all squares are assumed to be distinct and $2^n>2n^9$, we can certainly find such a choice in the set $\{\chi_j\}_{j=2^{n+1}+1}^{2^{n+2}}$. Having made such a choice, we now consider the selection of ψ_{n^3+2} . Similarly to the arguments for ψ_{n^3+1} , the characters ψ_{n^3+2} and $\psi_{n^3+2}^2$ must avoid $(n^3+1)^3$ and $(n^3+1)^2$ terms, respectively, and this is again possible when choosing from the set $\{\chi_j\}_{j=2^{n+1}+1}^{2^{n+2}}$. We repeat this process until $\psi_{(n+1)^3} \in \{\chi_j\}_{j=2^{n+1}+1}^{2^{n+2}}$ has been chosen, which can be done because $2(n+1)^9 < 2^n$.

By construction, the set $E' = \{\psi_j\}$ satisfies $Z_2(E') = 1$ and for all $n \ge N$,

$$\left| E' \cap \{\chi_j\}_{j=2^{n+1}+1}^{2^{n+2}} \right| = \left| \{\psi_j\}_{j=n^3+1}^{(n+1)^3} \right| \ge n^2.$$

Observe that if the set E consists only of characters of order 2, then to have $Z_2(E') = 1$ we simply require $\psi_l \psi_i \neq \psi_j \psi_k$ except in the trivial cases $\{i, l\} = \{j, k\}$. Thus similar arguments give the following.

Lemma 3.4. Let $E = \{\chi_j\}_{j=1}^{\infty} \subseteq \Gamma$, where χ_j are order 2. We can choose an infinite subset $E' \subseteq E$ such that $Z_2(E') = 1$ and for each sufficiently large n,

$$\left| E' \cap \{\chi_j\}_{2^{n+1}}^{2^{n+2}} \right| \ge n^2.$$

Now we state our main result of this section.

Theorem 3.5. Let G be any infinite compact abelian group. Then Γ contains a Λ_A^{cb} set that is not a Sidon set.

Proof. One of the following three possibilities will occur in Γ :

- (1) Γ contains an element χ of infinite order.
- (2) For every integer N there is a character $\chi \in \Gamma$ with order greater than N.
- (3) There is an integer N such that every element of Γ has order less than N.

Case 1. Let χ be an element of Γ of infinite order and consider $\chi_j = \chi^j$. As χ has infinite order all χ_j^2 are distinct and non-trivial. Applying Lemma 3.3 we obtain $E' \subseteq \{\chi^j\}$ with $Z_2(E') = 1$ and $\left| E' \cap \{\chi_j\}_{2^{n+1}}^{2^{n+2}} \right| \ge n^2$. By Theorem 2.7, E' is a Λ_4^{cb} set, but it is not Sidon by Lemma 3.2.

Case 2. For each j, choose $\chi_j \in \Gamma$ with order $N_j > \max(2N_{j-1}, 3 \cdot 2^j)$ and consider

$$E = \bigcup_{j=1}^{\infty} E_j$$
 where $E_j = \{\chi_j, \dots, \chi_j^{2^j}\}.$

If j>k and $\chi_j^2=\chi_k^2$, then χ_j would have order dividing $2N_k< N_j$, which is a contradiction. If, instead, $\chi_j^{2l}=\chi_j^{2m}$ where $l,m\leq 2^j$, then the order of χ_j would be at most 2^{j+1} , again a contradiction. Thus we can apply Lemma 3.3, as in Case 1, to obtain a subset E' which is Λ_4^{cb} and with $|E_j\cap E'|\geq j^2$ for large enough j. Since the sets E_j are arithmetic progressions of length 2^j we again conclude that E' is not Sidon.

Case 3. Suppose Γ is of bounded order K. Being an infinite abelian group, $\Gamma = \bigoplus_{j \in J} \mathbb{Z}_{n_j}$ where $n_j \leq K$ and $|J| = \infty$. There must be some integer n with $n = n_j$ for infinitely many indices j and therefore Γ contains an infinite subgroup $\bigoplus_{j=1}^{\infty} \mathbb{Z}_p^{(j)}$ for some prime p dividing n.

Consider

$$E_n = \prod_{j=n^2+1}^{(n+1)^2} \mathbb{Z}_p^{(j)}$$
 and let $E = \bigcup_{n=1}^{\infty} E_n$.

The sets E_n are disjoint and have cardinality at least p^n . Yet another application of either Lemma 3.3 (if $p \neq 2$) or Lemma 3.4 (if p = 2) shows we can choose an infinite subset E' of E which is Λ_4^{cb} and such that $|E' \cap E_n| \geq n^2$. By Lemma 3.1, E' is not Sidon.

4. A non-Sidon set that is Λ_p^{cb} for all 2

In this section, we will construct a non-Sidon set, E, with the property that for each integer $s \geq 2$, a cofinite subset of E has the Z(s) property. Consequently, E will be Λ_{2s}^{cb} for all integers $s \geq 2$ and since any Λ_{2s}^{cb} is Λ_p^{cb} for all $p \leq 2s$, E will be Λ_p^{cb} for all $p < \infty$.

In fact, we will construct sets, E_s , with the property that if $\{\chi_j, \beta_j\}_{j=1}^s \subseteq E_s$ with $\chi_j \neq \chi_k$ and $\beta_j \neq \beta_k$ for all $j \neq k$, then

$$\chi_1^{-1}\chi_2\chi_3^{-1}\dots\chi_s^{(-1)^s} = \beta_1^{-1}\beta_2\beta_3^{-1}\dots\beta_s^{(-1)^s}$$

if and only if (when s is odd)

$$\{\chi_1, \chi_3, \dots, \chi_s\} = \{\beta_1, \beta_3, \dots, \beta_s\}$$
 and $\{\chi_2, \chi_4, \dots, \chi_{s-1}\} = \{\beta_2, \beta_4, \dots, \beta_{s-1}\}$

(and a similar statement for s even). In this case, we will say that E_s has alternating s-products distinct up to permutation and write $Z_s^{\sigma}(E_s) = 1$, for short. Having $Z_s^{\sigma}(E_s) = 1$ is clearly more than enough to ensure E_s has property Z(s). Notice that $Z_2^{\sigma}(E) = 1$ if and only if $Z_2(E) = 1$.

To begin, we will first explain how to modify the construction of Lemma 3.3 to produce a set that, for a given s, has alternating t-products distinct up to permutation for all integers $t \leq s$.

We will assume $\{\chi_j\} \subseteq \Gamma$ is given with all $\chi_j^2 \neq 1$ (the case when all $\chi_j^2 = 1$ is similar and will be briefly discussed later). Put $\psi_1 = \chi_1$ and inductively assume

 $Z_t^{\sigma}(\{\psi_k\}_{k=1}^n)=1$ for all $t\leq s$, where $\{\psi_1,\ldots,\psi_n\}$ is a (given) subset of $\{\chi_j\}$. Choose, if possible, $\psi_{n+1}\in\{\chi_j\}$ such that

$$\psi_{n+1} \neq \prod_{j=1}^{2t-1} \psi_{i_j}^{\epsilon_j}$$
 and $\psi_{n+1}^2 \neq \prod_{j=1}^{2t-1} \psi_{i_j}^{\epsilon_j}$,

whenever $\psi_{i_j} \in \{\psi_k\}_{k=1}^n$, $\varepsilon_j = \pm 1$ and $t \leq s$. We will verify that $Z_t^{\sigma}(\{\psi_k\}_{k=1}^{n+1}) = 1$ for all $t \leq s$. Towards that end suppose that for some $t \leq s$,

(4.1)
$$\psi_{n+1}^{-1}\alpha_2\alpha_3^{-1}\dots\alpha_t^{(-1)^t} = \beta_1^{-1}\beta_2\beta_3^{-1}\dots\beta_t^{(-1)^t}$$

where $\alpha_j, \beta_j \in \{\psi_k\}_{k=1}^{n+1}, \alpha_j \neq \alpha_k \text{ or } \psi_{n+1}, \text{ and } \beta_j \neq \beta_k \text{ when } j \neq k.$ There are three possibilities to consider: (1) $\psi_{n+1} \neq \beta_j$ for any j, (2) $\psi_{n+1} = \beta_j$ for one index j and that index is even, or (3) $\psi_{n+1} = \beta_j$ for one index j and that index is odd.

In case (1), we have $\psi_{n+1} = \prod_{j=1}^{2t-1} \psi_{i_j}^{\epsilon_j}$ for some choice of $\psi_{i_j} \in \{\psi_j\}_{j=1}^n$ and $\varepsilon_j = 0$

 ± 1 ; but that is not possible by construction. In case (2), we have $\psi_{n+1}^2 = \prod_{j=1}^{2t-2} \psi_{ij}^{\epsilon_j}$

where $\psi_{i_j} \in {\{\psi_j\}_{j=1}^n}$, $\varepsilon_j = \pm 1$; again impossible. In case (3), we can assume without loss of generality that $\psi_{n+1} = \beta_1$ and rewrite identity (4.1) as

$$\alpha_2 \alpha_3^{-1} \dots \alpha_t^{(-1)^t} = \beta_2 \beta_3^{-1} \dots \beta_t^{(-1)^t}$$

where $\alpha_j, \beta_k \in \{\psi_k\}_{k=1}^n$. By the inductive assumption this can only occur if the even and odd labelled characters are permutations.

These observations show that this choice for ψ_{n+1} ensures that $\{\psi_k\}_{k=1}^{n+1}$ has alternating t-products distinct up to permutation.

Notice that there are at most $(2n)^{2t-1}$ terms for ψ_{n+1} to avoid for each $t \leq s$ and $(2n)^{2t-2}$ terms for ψ_n^2 to avoid. If all χ_j^2 are distinct, then in any subset of $\{\chi_j\}$ of cardinality at least $[(2n)^{4s}]^s$ we will be able to find such a choice for ψ_{n+1} .

By repeatedly applying this argument it follows that in any subset of $\{\chi_j\}$ of cardinality at least 2^N , it is possible to choose a subset E of cardinality N^2 with $Z_t^{\sigma}(E) = 1$ for all $t \leq s$, provided $2^N > \left[(2N^2)^{4s}\right]^s$.

To summarize:

Lemma 4.1. Let $\{\chi_j\}_{j=1}^{\infty} \subseteq \Gamma$, where $\chi_j^2 \neq 1$ are all distinct. For any integers s, n, with $s \geq 2$ and $2^n > \left[(2n^2)^{4s} \right]^s$, we can choose $E_s \subseteq \{\chi_j\}_{j=2^n}^{n+1}$ with $Z_t^{\sigma}(E_s) = 1$ for all $t \leq s$ and $|E_s| = n^2$.

If all the characters χ_j are order two, we need only pick $\psi_{n+1} \neq \prod_{j=1}^{2t-1} \psi_{i_j}$ in the construction above to ensure that $Z_t^{\sigma}(\{\psi_k\}_{k=1}^{n+1}) = 1$. The details are left to the reader.

We will use this construction to prove the main result of the paper.

Theorem 4.2. Let G be any infinite, compact abelian group. Then Γ contains a non-Sidon subset that is Λ_p^{cb} for all 2 .

Proof. To prove this, it will be enough to construct a set that is Λ_{2s}^{cb} for all integers $s \geq 2$. As in Theorem 3.5 we consider different cases.

First, suppose Γ contains an element χ of infinite order. The set we construct will be a subset of $\{\chi^j\}_{j=1}^\infty$. Using Lemma 3.3, for suitably large n_2 choose $E_2 \subseteq \{\chi^j\}_{2^{n_2+1}}^{2^{n_2+1}}$, with $|E_2|=(n_2)^2$ and all alternating 2-products distinct. We then proceed inductively and assume we have chosen an increasing sequence of integers $n_2 < n_3 < \dots < n_{J-1}$ and subsets $E_j \subseteq \{\chi_k\}_{k=2^{n_j+1}}^{2^{n_j+1}}$, with $|E_j|=n_j^2$ for each

$$2 \leq j < J$$
, and having $Z_t^{\sigma} \left(\bigcup_{j=k}^{J-1} E_j \right) = 1$ for all $t \leq k$ and each $2 \leq k < J$.

The subset $E_J = \{\psi_1^{(J)}, \dots, \psi_{n_J^2}^{(J)}\}$ will be constructed as follows: If $\psi_1^{(J)}, \dots, \psi_{i-1}^{(J)}$ have already been (appropriately) chosen, then we will choose $\psi_i^{(J)}$ so that for each $2 \le q \le J$ and any $t \le q$,

$$\psi_i^{(J)} \neq \prod_{j=1}^{2t-1} \psi_{ij}^{\epsilon_j} \text{ and } \left(\psi_i^{(J)}\right)^2 \neq \prod_{j=1}^{2t-2} \psi_{ij}^{\epsilon_j}$$

whenever $\varepsilon_j = \pm 1$ and $\psi_{i_j} \in \{\psi_1^{(J)}, \dots, \psi_{i-1}^{(J)}\} \cup \bigcup_{j=q}^{J-1} E_j$. As explained above, this choice will ensure that

$$Z_t^{\sigma}\left(\left\{\psi_1^{(J)},\dots,\psi_i^{(J)}\right\} \cup \bigcup_{j=q}^{J-1} E_j\right) = 1 \text{ for all } t \le q.$$

Furthermore, as the number of characters which $\psi_i^{(J)}$ and $\left(\psi_i^{(J)}\right)^2$ must avoid is a polynomial in n_J , we can choose E_J from the subset $\{\chi^j\}_{j=2^{n_J+1}}^{2^{n_J+1}}$ provided n_J is sufficiently large. This is the choice we make for n_J and E_J .

Now put $E = \bigcup_{j=1}^{\infty} E_j$. For any integer $J \geq 2$, the subset $\bigcup_{j=J}^{\infty} E_j$ has all alternating

J-products distinct up to permutation and hence is Λ_{2J}^{cb} . Being a finite set, $\bigcup_{j=1}^{J-1} E_j$

is also Λ^{cb}_{2J} , and hence so is the finite union, $E = \bigcup_{j=J}^{\infty} E_j \cup \bigcup_{j=1}^{J-1} E_j$.

However, E_j consists of n_j^2 terms chosen from the arithmetic progression $\{\chi^j\}_{j=2^{n_j}+1}^{2^{n_j+1}}$ of length 2^{n_j} . As $n_j \to \infty$, an application of Lemma 3.2 shows that E is not Sidon, completing the proof of the theorem for this first case.

Otherwise Γ does not contain a character of infinite order. As in the proof of Theorem 3.5, we consider separately the case when Γ has elements of unbounded order and the case when Γ is of bounded order. Both arguments are similar to the first case, using the construction outlined above together with the strategy of cases 2 and 3 in the proof of Theorem 3.5.

References

- [1] William D. Banks and Asma Harcharras, New examples of noncommutative $\Lambda(p)$ sets, Illinois J. Math. 47 (2003), no. 4, 1063–1078. MR2036990 (2005e:46122)
- [2] David P. Blecher, The standard dual of an operator space, Pacific J. Math. 153 (1992), no. 1, 15–30. MR1145913 (93d:47083)
- [3] Aline Bonami, Ensembles $\Lambda(p)$ dans le dual de D^{∞} (French), Ann. Inst. Fourier (Grenoble) **18** (1968), no. fasc. 2, 193–204 (1969). MR0249940 (40 #3181)

- [4] Robert E. Edwards, Edwin Hewitt, and Kenneth A. Ross, Lacunarity for compact groups. I, Indiana Univ. Math. J. 21 (1971/72), 787–806. MR0297929 (45 #6981)
- [5] Asma Harcharras, Fourier analysis, Schur multipliers on S^p and non-commutative Λ(p)-sets,
 Studia Math. 137 (1999), no. 3, 203–260. MR1736011 (2001f:43004)
- [6] Jean-Pierre Kahane, Sur les fonctions moyenne-périodiques bornées (French), Ann. Inst. Fourier, Grenoble 7 (1957), 293–314. MR0102702 (21 #1489)
- [7] Jorge M. López and Kenneth A. Ross, Sidon sets, Marcel Dekker, Inc., New York, 1975. Lecture Notes in Pure and Applied Mathematics, Vol. 13. MR0440298 (55 #13173)
- [8] Gilles Pisier, Non-commutative vector valued L_p-spaces and completely p-summing maps (English, with English and French summaries), Astérisque 247 (1998), vi+131. MR1648908 (2000a:46108)
- [9] Walter Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203–227. MR0116177 (22 #6972)
- [10] A. Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia Math. 50 (1974), 189–201. MR0387950 (52 #8788)

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF WATERLOO, ONTARIO, CANADA N2L 3G1 E-mail address: kehare@uwaterloo.ca

Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, India, 208016

E-mail address: parasar@iitk.ac.in