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COMPLETELY BOUNDED Λp SETS THAT ARE NOT SIDON

KATHRYN HARE AND PARASAR MOHANTY

(Communicated by Alexander Iosevich)

Abstract. In this paper we construct examples of completely bounded Λp

sets, which are not Sidon, on any compact abelian group. As a consequence,
we have a new proof of the classical result for the existence of non-Sidon, Λp

sets on any compact abelian group.

1. Introduction

Let G be a compact abelian group and Γ its discrete abelian dual group. La-
cunary sets on Γ play important roles in the study of Fourier analysis on compact
abelian groups. J.-P. Kahane [6] first used the term Sidon set and W. Rudin in [9]
introduced the concept of Λp sets. Sidon sets are particular examples of Λp sets.
Among other roles, one of the important features of Λp sets, for p > 2, is that they
are the interpolation sets for Lp(G) multipliers.

In the last decade the study of operator spaces and completely bounded multi-
pliers has attracted much attention. G. Pisier assigned a canonical operator space
structure on Lp spaces by developing complex interpolation for operator spaces.
With this operator space structure on Lp(G) one can define, in the obvious way,
the space of all completely bounded multipliers on Lp(G), and then define the no-
tion of completely bounded Λp sets for p > 2 (also known as non-commutative Λp

sets and denoted Λcb
p ), as the interpolation sets of completely bounded multipliers

on Lp(G).
In [5], A. Harcharras extensively studied various properties of Λcb

p sets and es-

tablished, in particular, the existence of Λp sets which are not Λcb
p . Given that all

Sidon sets are Λcb
p for all p > 2, it is natural to ask, “Is there a non-Sidon, Λcb

p set”?
The analogous question for Λp sets historically attracted much attention following
Rudin’s seminal paper, and was finally solved by Edwards, Hewitt and Ross [4] and
A. Bonami [3] simultaneously.

Harcharras answered this question for the circle group T in [1] by showing that
for any finite set Q of prime numbers, the set of natural numbers whose prime
divisors all lie in Q is Λcb

p for all p, but not Sidon. In this paper, we will show that

on any compact abelian group there is a set which is not Sidon, but is Λcb
p for all p.

Our argument is mainly combinatorial and provides a new proof for the classical
result of Edwards et al. and Bonami.
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2. Preliminaries

2.1. Λp sets and Lp multipliers. Throughout this paper we let G be a compact
abelian group equipped with normalized Haar measure and Γ its dual group. Let
E ⊆ Γ. We call the trigonometric polynomial f an E-polynomial if the Fourier
coefficients of f are supported on E.

Definition 2.1.

(i) A set E ⊆ Γ is called a Sidon set if there is a constant C such that∑
γ∈E

|f̂(γ)| ≤ C‖f‖∞ for all E-polynomials f .

(ii) Let 2 < p < ∞. A set E ⊆ Γ is called a Λp set if there is a constant Cp

such that ‖f‖p ≤ Cp‖f‖2 for all E-polynomials f .

The fact that Lp(G) ⊆ Lq(G) if p ≥ q ensures that any Λp set is also a Λq set
for all q ≤ p. It is known that every Sidon set is a Λp set for all p [9]; however the
converse is not true. Indeed, in every group Γ there are examples known of sets
that are Λp for all p, but not Sidon [3, 4]. Reference [7] is an excellent survey of
basic properties of Sidon and Λ(p) sets.

Sidon and Λp sets play an important role in the study of Fourier multipliers.

Definition 2.2. Let 1 ≤ p ≤ ∞ The function φ ∈ l∞(Γ) is called a Fourier
multiplier for Lp(G), or Lp multiplier for short, if the operator T : Lp(G) → Lp(G)
defined by

T̂ f(γ) = φ(γ)f̂(γ) ∀f ∈ Lp ∩ L2(G)

is bounded.

We denote the space of Lp multipliers by Mp(G). It is well known that M1(G) �
M(G), the set of finite regular Borel measures on G, M2(G) � l∞(Γ) and Mp(G) �
Mp′(G) where 1/p + 1/p′ = 1 (isometrically isomorphic in all cases). A duality
argument proves that E is Sidon if and only if whenever φ ∈ l∞(E), then there
exists μ ∈ M(G) such that μ̂(γ) = φ(γ) for all γ ∈ E. Thus Sidon sets are
interpolation sets for M(G). Similarly, it is known that Λp sets are interpolation
sets for Mp(G) when p > 2 (see [5] for a proof).

2.2. Completely bounded multipliers. We now briefly recall the natural oper-
ator space structure on Lp(X) where X is a σ-finite measure space. For details
see [8, Chapter 2]. We consider the canonical C∗-algebra, operator space structure
on L∞(X). The operator space structure on L1(X) is inherited from the dual of
L∞(X). With this operator space structure the identification L1(X)∗ � L∞(X)
is completely isometric [2]. The couple (L∞(X), L1(X)) is compatible for operator
space interpolation and we consider Lp(X) = (L∞(X), L1(X))1/p as an operator
space with this interpolating operator space structure.

If an Lp multiplier T is completely bounded in Lp with this operator space
structure, then T is called a completely bounded, or cb-multiplier on Lp(G). We
denote the space of all cb-multipliers on Lp(G) by M cb

p (G).
The following result of Pisier [8] provides a characterization of the completely

bounded maps on Lp(G). For 1 ≤ p < ∞ let Sp be the space of compact operators

on l2(Z) such that ‖T‖Sp
= (tr(T ∗T )p/2)1/p < ∞, i.e., Sp is the space of Schattan

p-class operators. Let us denote by Lp(G,Sp) the space of Sp-valued, measurable
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functions such that

‖f‖Lp(G,Sp) =

(∫
G

‖f(x)‖pSp
dx

)1/p

< ∞.

Clearly Lp(G,Sp) is the closure of Lp(G) ⊗ Sp in the above-mentioned norm,
‖.‖Lp(G,Sp).

Proposition 2.3 ([8]). Let 1 ≤ p < ∞. A linear map T : Lp(G) → Lp(G) is
completely bounded if and only if the mapping T ⊗ ISp

is bounded on Lp(G,Sp).
Moreover,

‖T‖cb = ‖T ⊗ ISp
‖Lp(G,Sp)→Lp(G,Sp)

where ‖ · ‖cb denotes the cb-norm of the operator T : Lp(G) → Lp(G).

The notion of completely bounded (or cb) Λp sets, denoted Λcb
p , was introduced

in [5] as follows.

Definition 2.4. Let 2 < p < ∞. A subset E ⊆ Γ is called a Λcb
p set if there exists

a constant C, depending only on p and E, such that

‖f‖Lp(G,Sp) ≤ Cmax

⎧⎪⎨⎪⎩
∥∥∥∥∥∥
∑
γ∈E

(
f̂(γ)∗f̂(γ)

)1/2

∥∥∥∥∥∥
Sp

,

∥∥∥∥∥∥
∑
γ∈E

(
f̂(γ)f̂(γ)∗

)1/2

∥∥∥∥∥∥
Sp

⎫⎪⎬⎪⎭
for all Sp-valued, E-polynomials f defined on G. We denote by λcb

p (E) the least
constant C for which the above inequality holds.

Of course, any Λcb
p set is Λp. It is a consequence of the non-commutative

Khintchine’s inequality that the Λcb
p sets are the interpolation sets for M cb

p when

2 < p < ∞ [5]. The inclusion M cb
q ⊆ M cb

p when 2 < q < p < ∞ shows that if E is

Λcb
q , then it is also Λcb

p .

A useful combinatorial property for Λcb
p is also given in [5]. Before we state

this property let us recall Rudin’s [9] combinatorial property that allows one to
construct Λp sets.

Notation 2.5. For p ≥ 2 an integer, let

Ap(E) = sup
γ∈Γ

|{(γ1, . . . , γp) ∈ Ep : γ1γ2 . . . γp = γ}| and

Bp(E) = sup
γ∈Γ

∣∣∣{(γ1, . . . , γp) ∈ Ep : γ−1
1 γ2 . . . γ

(−1)p

p = γ}
∣∣∣ .

Rudin proved that if Ap(E) < ∞, then E is a Λ2p set. In his proof, if the

identity |f |2p = fpf
p
is replaced by |f |2p = gg, where g = (ff)p/2 when p is even

or g = ff · · · f (p factors) when p is odd, then one can easily see that E is also Λ2p

if Bp(E) < ∞.
In the above notation, characters γj may be repeated and this can cause com-

plications with the counting, particularly when the characters have finite order.
Motivated by [10], Harcharras in [5] was able to extend this result to Λcb

p sets,
under the weaker assumption that the characters γj were distinct.

Definition 2.6. Let p ≥ 2 be an integer. The set E has the Z(p) property if

Zp(E) = sup
γ∈Γ

∣∣∣{(γ1, . . . , γp) ∈ Ep : ∀i 
= j, γi 
= γj , and γ−1
1 γ2 . . . γ

(−1)p

p = γ}
∣∣∣ < ∞.
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Theorem 2.7 ([5]). Let p ≥ 2 be an integer. Then every subset E of Γ with the
Z(p) property is a Λcb

2p set. Moreover, there exists a constant Cp, depending only

on p, such that λcb
2p(E) ≤ CpZp(E)1/2p for each E ⊆ Γ.

In section 3 we will first prove the existence of a non-Sidon set that is Λcb
4 by

constructing sets that have property Z(2). The combinatorial arguments are less
complicated in this case than for general 2p, which we take up in section 4. Since
Λcb
p sets are always Λp, section 4 provides an alternate proof of the classical result

of the existence of non-Sidon sets that are Λp for all p < ∞.

3. A non-Sidon, Λcb
4 set

Our strategy will be to find size limitations on the arithmetic structures that
Sidon sets can contain, and then to construct Λcb

p sets, using Harcharras’ sufficient
condition, which violate this size limitation. Towards this end we have the following
lemma which can also be deduced from the result on ‘test families’ in [4]. Because
of the simplicity of the argument for the special case we need, we have included a
proof here.

Lemma 3.1. If E ⊆
∞∏
j=1

Z
(j)
p is a Sidon set, then

∣∣∣∣∣E ∩
N∏
j=1

Z
(j)
p

∣∣∣∣∣ ≤ O(N), where

Z
(j)
p = Zp for each j.

Proof. Let χj be a generator for Z
(j)
p and consider fj = 1 + χj + χ2

j + · · · + χp−1
j .

Since χj(x) is a p-th root of unity, fj(x) = 0 if x 
= e and thus for any q′ < ∞ we

have ‖fj‖q
′

q′ = pq
′−1. Hence, if PN =

N∏
j=1

fj , then ‖PN‖q′ = p
N
q . Now P̂N (ψ) = 1 if

ψ ∈
N∏
j=1

Z
(j)
p and 0 elsewhere, so ‖P̂N |E‖2 = |E ∩

N∏
j=1

Z
(j)
p |1/2. It is well known (see

[7]) that if E is Sidon, then for all q > 2 we have ‖P̂N |E‖2 ≤ C
√
q‖PN‖q′ . Thus

|E ∩
N∏
j=1

Z
(j)
p | ≤ C2qp

2N
q . Take q = 2N to complete the proof. �

It is also well known that Sidon sets can only contain small proportions of any
arithmetic progression.

Lemma 3.2 ([9]). Let E ⊂ Γ be a Sidon set. If A is any arithmetic progression,
then |E ∩A| ≤ O(log |A|).

The key technical idea is the following elementary combinatorial result that
enables us to construct sets with the Z(2) property, which contain more than O(N)
elements from predetermined subsets of 2N characters.

Lemma 3.3. Let E = {χj}∞j=1 ⊆ Γ, where χ2
j are all distinct and non-trivial. We

can choose an infinite subset E′ ⊆ E such that Z2(E
′) = 1 and for sufficiently large

n, ∣∣∣E′ ∩ {χj}2
n+2

2n+1

∣∣∣ ≥ n2.
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Proof. Choose N such that 2(n + 1)9 < 2n for all n ≥ N . Put ψ1 = χ2N . We

proceed inductively and assume that we have chosen ψ1, . . . , ψN3 ∈ {χj}2
N+1

j=2N and

ψk3+1, . . . , ψ(k+1)3 ∈ {χj}2
k+2

j=2k+1+1 for each N < k < n so that Z2({ψj}n
3

j=1) = 1.

We will see how to choose distinct characters ψn3+1, . . . , ψ(n+1)3 ∈ {χj}2
n+2

j=2n+1+1,

with Z2({ψj}(n+1)3

j=1 ) = 1.

First, observe that in order to ensure that Z2({ψj}n
3+1

j=1 ) = 1, it will be enough

to choose ψn3+1 so that ψn3+1ψ
−1
i 
= ψjψ

−1
k whenever i, j, k ≤ n3 + 1 and i, j 
=

n3+1. Thus we will want ψn3+1 
= ψjψ
−1
k ψi for any i, j, k ≤ n3 (which also ensures

ψn3+1 /∈ {ψj}n
3

j=1) and ψ2
n3+1 
= ψjψi for any i, j ≤ n3. (This is sometimes known

as the ‘greedy’ method.) There are n9 and n6 terms, respectively, that ψn3+1 and
ψ2
n3+1 must avoid. As all squares are assumed to be distinct and 2n > 2n9, we can

certainly find such a choice in the set {χj}2
n+2

j=2n+1+1. Having made such a choice,

we now consider the selection of ψn3+2. Similarly to the arguments for ψn3+1, the
characters ψn3+2 and ψ2

n3+2 must avoid (n3+1)3 and (n3+1)2 terms, respectively,

and this is again possible when choosing from the set {χj}2
n+2

j=2n+1+1. We repeat this

process until ψ(n+1)3 ∈ {χj}2
n+2

j=2n+1+1 has been chosen, which can be done because

2(n+ 1)9 < 2n.
By construction, the set E′ = {ψj} satisfies Z2(E

′) = 1 and for all n ≥ N ,∣∣∣E′ ∩ {χj}2
n+2

j=2n+1+1

∣∣∣ = ∣∣∣{ψj}(n+1)3

j=n3+1

∣∣∣ ≥ n2.

�

Observe that if the set E consists only of characters of order 2, then to have
Z2(E

′) = 1 we simply require ψlψi 
= ψjψk except in the trivial cases {i, l} = {j, k}.
Thus similar arguments give the following.

Lemma 3.4. Let E = {χj}∞j=1 ⊆ Γ, where χj are order 2. We can choose an

infinite subset E′ ⊆ E such that Z2(E
′) = 1 and for each sufficiently large n,∣∣∣E′ ∩ {χj}2

n+2

2n+1

∣∣∣ ≥ n2.

Now we state our main result of this section.

Theorem 3.5. Let G be any infinite compact abelian group. Then Γ contains a
Λcb
4 set that is not a Sidon set.

Proof. One of the following three possibilities will occur in Γ:

(1) Γ contains an element χ of infinite order.
(2) For every integer N there is a character χ ∈ Γ with order greater than N .
(3) There is an integer N such that every element of Γ has order less than N .

Case 1. Let χ be an element of Γ of infinite order and consider χj = χj . As χ has
infinite order all χ2

j are distinct and non-trivial. Applying Lemma 3.3 we obtain

E′ ⊆ {χj} with Z2(E
′) = 1 and

∣∣∣E′ ∩ {χj}2
n+2

2n+1

∣∣∣ ≥ n2. By Theorem 2.7, E′ is a Λcb
4

set, but it is not Sidon by Lemma 3.2.
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Case 2. For each j, choose χj ∈ Γ with order Nj > max(2Nj−1, 3 ·2j) and consider

E =

∞⋃
j=1

Ej where Ej = {χj , . . . , χ
2j

j }.

If j > k and χ2
j = χ2

k, then χj would have order dividing 2Nk < Nj , which is a

contradiction. If, instead, χ2l
j = χ2m

j where l,m ≤ 2j , then the order of χj would

be at most 2j+1, again a contradiction. Thus we can apply Lemma 3.3, as in Case
1, to obtain a subset E′ which is Λcb

4 and with |Ej ∩ E′| ≥ j2 for large enough j.
Since the sets Ej are arithmetic progressions of length 2j we again conclude that
E′ is not Sidon.

Case 3. Suppose Γ is of bounded order K. Being an infinite abelian group, Γ =⊕
j∈J Znj

where nj ≤ K and |J | = ∞. There must be some integer n with n = nj

for infinitely many indices j and therefore Γ contains an infinite subgroup
⊕∞

j=1 Z
(j)
p

for some prime p dividing n.

Consider

En =

(n+1)2∏
j=n2+1

Z
(j)
p and let E =

∞⋃
n=1

En.

The sets En are disjoint and have cardinality at least pn. Yet another application
of either Lemma 3.3 (if p 
= 2) or Lemma 3.4 (if p = 2) shows we can choose an
infinite subset E′ of E which is Λcb

4 and such that |E′ ∩En| ≥ n2. By Lemma 3.1,
E′ is not Sidon. �

4. A non-Sidon set that is Λcb
p for all 2 < p < ∞

In this section, we will construct a non-Sidon set, E, with the property that for
each integer s ≥ 2, a cofinite subset of E has the Z(s) property. Consequently, E
will be Λcb

2s for all integers s ≥ 2 and since any Λcb
2s is Λcb

p for all p ≤ 2s, E will be

Λcb
p for all p < ∞.
In fact, we will construct sets, Es, with the property that if {χj , βj}sj=1 ⊆ Es

with χj 
= χk and βj 
= βk for all j 
= k, then

χ−1
1 χ2χ

−1
3 . . . χ(−1)s

s = β−1
1 β2β

−1
3 . . . β(−1)s

s

if and only if (when s is odd)

{χ1, χ3, . . . , χs} = {β1, β3, . . . , βs} and

{χ2, χ4, . . . , χs−1} = {β2, β4, . . . , βs−1}

(and a similar statement for s even). In this case, we will say that Es has alternating
s-products distinct up to permutation and write Zσ

s (Es) = 1, for short. Having
Zσ
s (Es) = 1 is clearly more than enough to ensure Es has property Z(s). Notice

that Zσ
2 (E) = 1 if and only if Z2(E) = 1.

To begin, we will first explain how to modify the construction of Lemma 3.3 to
produce a set that, for a given s, has alternating t-products distinct up to permu-
tation for all integers t ≤ s.

We will assume {χj} ⊆ Γ is given with all χ2
j 
= 1 (the case when all χ2

j = 1 is
similar and will be briefly discussed later). Put ψ1 = χ1 and inductively assume
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Zσ
t ({ψk}nk=1) = 1 for all t ≤ s, where {ψ1, . . . , ψn} is a (given) subset of {χj}.

Choose, if possible, ψn+1 ∈ {χj} such that

ψn+1 
=
2t−1∏
j=1

ψ
εj
ij

and ψ2
n+1 
=

2t−1∏
j=1

ψ
εj
ij
,

whenever ψij ∈ {ψk}nk=1, εj = ±1 and t ≤ s. We will verify that Zσ
t ({ψk}n+1

k=1) = 1
for all t ≤ s. Towards that end suppose that for some t ≤ s,

(4.1) ψ−1
n+1α2α

−1
3 . . . α

(−1)t

t = β−1
1 β2β

−1
3 . . . β

(−1)t

t

where αj , βj ∈ {ψk}n+1
k=1 , αj 
= αk or ψn+1, and βj 
= βk when j 
= k. There are

three possibilities to consider: (1) ψn+1 
= βj for any j, (2) ψn+1 = βj for one index
j and that index is even, or (3) ψn+1 = βj for one index j and that index is odd.

In case (1), we have ψn+1 =
2t−1∏
j=1

ψ
εj
ij

for some choice of ψij ∈ {ψj}nj=1 and εj =

±1; but that is not possible by construction. In case (2), we have ψ2
n+1 =

2t−2∏
j=1

ψ
εj
ij

where ψij ∈ {ψj}nj=1, εj = ±1; again impossible. In case (3), we can assume
without loss of generality that ψn+1 = β1 and rewrite identity (4.1) as

α2α
−1
3 . . . α

(−1)t

t = β2β
−1
3 . . . β

(−1)t

t

where αj , βk ∈ {ψk}nk=1. By the inductive assumption this can only occur if the
even and odd labelled characters are permutations.

These observations show that this choice for ψn+1 ensures that {ψk}n+1
k=1 has

alternating t-products distinct up to permutation.
Notice that there are at most (2n)2t−1 terms for ψn+1 to avoid for each t ≤ s

and (2n)2t−2 terms for ψ2
n to avoid. If all χ2

j are distinct, then in any subset of

{χj} of cardinality at least
[
(2n)4s

]s
we will be able to find such a choice for ψn+1.

By repeatedly applying this argument it follows that in any subset of {χj} of
cardinality at least 2N , it is possible to choose a subset E of cardinality N2 with
Zσ
t (E) = 1 for all t ≤ s, provided 2N >

[
(2N2)4s

]s
.

To summarize:

Lemma 4.1. Let {χj}∞j=1 ⊆ Γ, where χ2
j 
= 1 are all distinct. For any integers s,

n, with s ≥ 2 and 2n >
[
(2n2)4s

]s
, we can choose Es ⊆ {χj}2

n+1

j=2n with Zσ
t (Es) = 1

for all t ≤ s and |Es| = n2.

If all the characters χj are order two, we need only pick ψn+1 
=
2t−1∏
j=1

ψij in the

construction above to ensure that Zσ
t ({ψk}n+1

k=1) = 1. The details are left to the
reader.

We will use this construction to prove the main result of the paper.

Theorem 4.2. Let G be any infinite, compact abelian group. Then Γ contains a
non-Sidon subset that is Λcb

p for all 2 < p < ∞.

Proof. To prove this, it will be enough to construct a set that is Λcb
2s for all integers

s ≥ 2. As in Theorem 3.5 we consider different cases.
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First, suppose Γ contains an element χ of infinite order. The set we construct
will be a subset of {χj}∞j=1 . Using Lemma 3.3, for suitably large n2 choose E2 ⊆
{χj}2n2+1

2n2+1, with |E2| = (n2)
2 and all alternating 2-products distinct. We then

proceed inductively and assume we have chosen an increasing sequence of integers

n2 < n3 < · · · < nJ−1 and subsets Ej ⊆ {χk}2
nj+1

k=2nj+1, with |Ej | = n2
j for each

2 ≤ j < J, and having Zσ
t

(
J−1⋃
j=k

Ej

)
= 1 for all t ≤ k and each 2 ≤ k < J .

The subset EJ = {ψ(J)
1 , . . . , ψ

(J)

n2
J
} will be constructed as follows: If ψ

(J)
1 , . . . , ψ

(J)
i−1

have already been (appropriately) chosen, then we will choose ψ
(J)
i so that for each

2 ≤ q ≤ J and any t ≤ q,

ψ
(J)
i 
=

2t−1∏
j=1

ψ
εj
ij

and
(
ψ
(J)
i

)2


=
2t−2∏
j=1

ψ
εj
ij

whenever εj = ±1 and ψij ∈ {ψ(J)
1 , . . . , ψ

(J)
i−1} ∪

J−1⋃
j=q

Ej . As explained above, this

choice will ensure that

Zσ
t

⎛⎝{ψ(J)
1 , . . . , ψ

(J)
i } ∪

J−1⋃
j=q

Ej

⎞⎠ = 1 for all t ≤ q.

Furthermore, as the number of characters which ψ
(J)
i and

(
ψ
(J)
i

)2

must avoid is a

polynomial in nJ , we can choose EJ from the subset {χj}2nJ+1

j=2nJ+1 provided nJ is
sufficiently large. This is the choice we make for nJ and EJ .

Now put E =
∞⋃
j=1

Ej . For any integer J ≥ 2, the subset
∞⋃
j=J

Ej has all alternating

J -products distinct up to permutation and hence is Λcb
2J . Being a finite set,

J−1⋃
j=1

Ej

is also Λcb
2J , and hence so is the finite union, E =

∞⋃
j=J

Ej ∪
J−1⋃
j=1

Ej .

However, Ej consists of n2
j terms chosen from the arithmetic progression

{χj}2nj+1

j=2nj+1 of length 2nj . As nj → ∞, an application of Lemma 3.2 shows that

E is not Sidon, completing the proof of the theorem for this first case.
Otherwise Γ does not contain a character of infinite order. As in the proof of

Theorem 3.5, we consider separately the case when Γ has elements of unbounded
order and the case when Γ is of bounded order. Both arguments are similar to the
first case, using the construction outlined above together with the strategy of cases
2 and 3 in the proof of Theorem 3.5. �
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