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(Communicated by Alexander Iosevich)

Abstract. We determine lower and exact estimates of Kolmogorov, Gelfand
and linear n-widths of unit balls in Sobolev norms in Lp-spaces on compact
Riemannian manifolds. As it was shown by us previously these lower estimates
are exact asymptotically in the case of compact homogeneous manifolds. The
proofs rely on two-sides estimates for the near-diagonal localization of kernels
of functions of elliptic operators.

1. Introduction and the main results

The goal of this paper is to determine lower and exact estimates of Kolmogorov,
Gelfand and linear n-widths of unit balls in Sobolev norms in Lp(M)-spaces on a
compact connected Riemannian manifold M.

Let us recall [15], [17] that for a given subset H of a normed linear space Y , the
Kolmogorov n-width dn(H,Y ) is defined as

dn(H,Y ) = inf
Zn

sup
x∈H

inf
z∈Zn

‖x− z‖Y

where Zn runs over all n-dimensional subspaces of Y . The linear n-width δn(H,Y )
is defined as

δn(H,Y ) = inf
An

sup
x∈H

‖x−Anx‖Y

where An runs over all bounded operators An : Y → Y whose range has dimension
n. The Gelfand n-width of a subset H in a linear space Y is defined by

dn(H,Y ) = inf
Zn

sup{‖x‖ : x ∈ H ∩ Zn},

where the infimum is taken over all subspaces Zn ⊂ Y of codimension ≤ n. The
width dn characterizes the best approximative possibilities by approximations by
n-dimensional subspaces, and the width δn characterizes the best approximative
possibilities of any n-dimensional linear method. The width dn plays a key role in
questions about interpolation and reconstruction of functions.

In our paper the notation Sn will stay for either Kolmogorov n-width dn or linear
n-width δn; the notation sn will be used for either dn or Gelfand n-width dn; Sn

will be used for either dn, dn, or δn.
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If γ ∈ R, we write Sn(H,Y ) � nγ , n ∈ N, to mean that one has the upper
estimate Sn(H,Y ) ≥ Cnγ where C is independent of n. We say that one has the
lower estimate if Sn(H,Y ) 
 cnγ for n > 0 where c > 0 is independent of n. In the
case where we have both estimates we write Sn(H,Y ) � cnγ and call it the exact
estimate. More generally, for two functions f(t), g(t) notation f(t) � g(t) means the
existence of two unessential positive constants c, C for which cg(t) ≤ f(t) ≤ Cg(t)
for all admissible t.

Let (M, g) be a smooth, connected, compact Riemannian manifold without
boundary with Riemannian measure dx. Let Lq(M) = Lq(M), 1 ≤ q ≤ ∞, be
the regular Lebesgue space constructed with the Riemannian density. Let L be
an elliptic smooth second-order differential operator L which is self-adjoint and
positive definite in L2(M). For such an operator all the powers Lr, r > 0, are
well defined on C∞(M) ⊂ L2(M) and continuously map C∞(M) into itself. Using
duality every operator Lr, r > 0, can be extended to distributions on M. The
Sobolev space W r

p = W r
p (M), 1 ≤ p ≤ ∞, r > 0, is defined as the space of all

f ∈ Lp(M), 1 ≤ p ≤ ∞, for which the following graph norm is finite:

(1.1) ‖f‖W r
p (M) = ‖f‖p + ‖Lr/2f‖p.

Our objective is to obtain asymptotic estimates of Sn (H,Lq(M)), where H is
the unit ball Br

p(M) in the Sobolev space W r
p = W r

p (M), 1 ≤ p ≤ ∞, r > 0, Thus,

Br
p = Br

p(M) =
{
f ∈ W r

p (M) : ‖f‖W r
p (M) ≤ 1

}
.

It is important to remember that in all our considerations the inequality

(1.2)
r

s
>

(
1

p
− 1

q

)
+

with s = dim M will be assumed. Thus, by the Sobolev embedding theorem the
set Br

p(M) is a subset of Lq(M). Moreover, since M is compact, the Rellich-
Kondrashov theorem implies that the embedding of Br

p(M) into Lq(M) will be
compact.

Our main result is the following theorem which is proved in section 4.

Theorem 1.1. For any compact Riemannian manifold M of dimension s, any
elliptic second-order smooth operator L, any 1 ≤ p, q ≤ ∞, if Sn is either of dn or
δn and Sn is either of dn, δn or dn, then the following holds for any r that satisfies
(1.2):

(1) if 1 ≤ q ≤ p ≤ ∞, then

(1.3) Sn
(
Br

p(M), Lq(M)
)

 n− r

s ,

(2) if 1 ≤ p ≤ q ≤ 2, then

(1.4) Sn(B
r
p(M), Lq(M)) 
 n− r

s+
1
p−

1
q ,

and

(1.5) dn
(
Br

p(M), Lq(M)
)

 n− r

s ,

(3) if 2 ≤ p ≤ q ≤ ∞, then

(1.6) dn
(
Br

p(M), Lq(M)
)

 n− r

s ,

(1.7) dn(Br
p(M), Lq(M)) 
 n− r

s+
1
p−

1
q ,
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(1.8) δn(B
r
p(M), Lq(M)) 
 n− r

s+
1
p−

1
q ,

(4) if 1 ≤ p ≤ 2 ≤ q ≤ ∞, then

(1.9) dn(B
r
p(M), Lq(M)) 
 n− r

s+
1
p−

1
2 ,

(1.10) dn(Br
p(M), Lq(M)) 
 n− r

s+
1
2−

1
q ,

(1.11) δn(B
r
p(M), Lq(M)) 
 max

(
n− r

s+
1
2−

1
q , n− r

s+
1
q−

1
2

)
.

As it was shown in [8] all the estimates of this theorem are exact ifM is a compact
homogeneous manifold. Let’s recall that every compact homogeneous manifold is
of the form G/H where G is a compact Lie group and H is its closed subgroup. For
compact homogeneous manifolds we obtained in [8] exact asymptotic estimates for
dn and δn for all 1 ≤ p, q ≤ ∞, and some restrictions on r.

To compare our lower estimates with known upper estimates, let us recall an
inequality which was proved in our previous papers [7], [8].

Theorem 1.2. For any compact Riemannian manifold, any L, any 1 ≤ p, q ≤ ∞,
and any r which satisfies (1.2) if Sn is either of dn or δn, then the following holds:

(1.12) Sn(B
r
p(M), Lq(M)) � n

− r
s+(

1
p−

1
q )+ .

By comparing these two theorems we obtain the following exact estimates.

Theorem 1.3. For any compact Riemannian manifold M of dimension s, any
elliptic second-order smooth operator L, any 1 ≤ p, q ≤ ∞, if Sn is either of dn or
δn, then the following holds for any r which satisfies (1.2):

(1) if 1 ≤ q ≤ p ≤ ∞, then

Sn

(
Br

p(M), Lq(M)
)
� n− r

s ,

(2) if 1 ≤ p ≤ q ≤ 2, then

Sn

(
Br

p(M), Lq(M)
)
� n− r

s+
1
p−

1
q ,

(3) if 2 ≤ p ≤ q ≤ ∞, then

δn
(
Br

p(M), Lq(M)
)
� n− r

s+
1
p−

1
q .

Our results could be carried over to Besov spaces on manifolds using general
results about interpolation of compact operators [19].

Our results generalize some of the known estimates for the particular case in
which M is a compact symmetric space of rank one which were obtained in papers
[4] and [2]. They, in turn, generalized and extended results from [1], [10], [14], [16],
[12], [13], [14].

2. Kernels on compact Riemannian manifolds

We consider (M, g) to be a smooth, connected, compact Riemannian manifold
without boundary with Riemannian measure dx. Let L be the Laplace-Beltrami
operator of the metric g which is well defined on C∞(M). We will use the same
notation L for the closure of L from C∞(M) in L2(M). This closure is a self-adjoint
non-negative operator on the space L2(M). The spectrum of this operator, say
0 = λ0 < λ1 ≤ λ2 ≤ . . . , is discrete and approaches infinity. Let u0, u1, u2, . . . be a
corresponding complete system of real-valued orthonormal eigenfunctions, and let
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Et(L), t > 0, be the span of all eigenfunctions of L, whose corresponding eigenvalues
are not greater than t. Since the operator L is of order two, the dimension Nt of the
space Et(L) is given asymptotically by Weyl’s formula, [11], which says, in sharp
form that for some c > 0,

(2.1) Nt(L) =
vol(M)σs

(2π)s
ts/2 +O(t(s−1)/2), σs =

2πs/2

sΓ(s/2)
, s = dim M,

where s = dim M. Because Nλl
= l + 1, we conclude that, for some constants

c1, c2 > 0,

(2.2) c1l
2/s ≤ λl ≤ c2l

2/s

for all l. Since Lmul = λm
l ul, and Lm is an elliptic differential operator of degree

2m, Sobolev’s lemma, combined with the last fact, implies that for any integer
k ≥ 0, there exist Ck, νk > 0, such that

(2.3) ‖ul‖Ck(M) ≤ Ck(l + 1)νk .

For a t > 0 let’s consider the function

(2.4) Kt(x, y) =
∑
λl≤t

ul(x)ul(y)

which is known as the spectral function associated to L. In [11] one can find the
following estimate:

(2.5) Kt(x, x) =
σs

(2π)s
ts/2 +O(ts−1).

Since

Kt(x, x) =
∑

0<λl≤t

(ul(x))
2
= ‖Kt(x, ·)‖22

estimates (2.1) and (2.5) imply that there exists 0 < C1 < C2 such that

(2.6) C1t
s/2 ≤

∑
0<λl≤t

(ul(x))
2 ≤ C2t

s/2.

We also note that

dim Et(L) � ts/2, s = dim M.

Definition 2.1. For each positive integer J , we let

(2.7) SJ(R
+) =

⎧⎨⎩F ∈ CJ ([0,∞)) : ‖F‖SJ
:=

∑
i+j≤J

∥∥∥∥λi ∂j

∂λj
F

∥∥∥∥
∞

< ∞

⎫⎬⎭ .

For a fixed t > 0 if J is sufficiently large, one can use (2.1), (2.2) and (2.3) to
show that the right side of

(2.8) KF
t (x, y) :=

∑
l

F (t2λl)ul(x)ul(y)

converges uniformly to a continuous function on M×M, and in fact that for some
Ct > 0,

(2.9) ‖KF
t ‖∞ ≤ Ct‖F‖SJ

.
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Using the spectral theorem, one can define the bounded operator F (t2L) on L2(M).
In fact, for f ∈ L2(M),

(2.10) [F (t2L)f ](x) =

∫
KF

t (x, y)f(y)dy.

We call KF
t the kernel of F (t2L). F (t2L) maps C∞(M) to itself continuously, and

may thus be extended to be a map on distributions. In particular we may apply
F (t2L) to any f ∈ Lp(M) ⊆ L1(M) (where 1 ≤ p ≤ ∞), and by Fubini’s theorem
F (t2L)f is still given by (2.10).

For x, y ∈ M, let d(x, y) denote the geodesic distance from x to y. We will
frequently need the following fact.

Lemma 2.2. If N > s, x ∈ M, and t > 0, then

(2.11)

∫
M

1

[1 + (d(x, y)/t)]
N dy ≤ Cts, s = dimM,

with C independent of x or t.

Proof. Note that there exist c1, c2 > 0, such that for all x ∈ M and all sufficiently
small r ≤ δ one has

c1r
n ≤ |B(x, r)| ≤ c2r

n,

and if r > δ,

c3δ
n ≤ |B(x, r)| ≤ |M| ≤ c4r

n.

Fix x, t and let Aj = B(x, 2jt) \B(x, 2j−1t), so that, |Aj | ≤ c42
njtn. Now break

the integral into integrals over B(x, t), A1, . . . and note that
∑∞

j=0 2
(n−N)j < ∞.

�

The following statements can be found in [5]-[8].

Lemma 2.3. Assume F ∈ SJ(R
+) for a sufficiently large J ∈ N. For t > 0, let

KF
t (x, y) be the kernel of F (t2L). Suppose that 0 < t ≤ 1. Then for some C > 0,

(2.12) |KF
t (x, y)| ≤ Ct−s[

1 + d(x,y)
t

]s+1 , s = dimM,

for all t and all x, y ∈ M.

Lemma 2.4. Assume F ∈ SJ (R
+) for a sufficiently large J ∈ N. Consider 1 ≤

α ≤ ∞, with conjugate index α′. There exists a constant C > 0 such that for all
0 < t ≤ 1,

(2.13)

(∫
M

|KF
t (x, y)|αdy

)1/α

≤ Ct−s/α′
for all x,

and

(2.14)

(∫
M

|KF
t (x, y)|αdx

)1/α

≤ Ct−s/α′
for all y.
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Proof. We need only prove (2.13), since KF
t (y, x) = KF

t (x, y).
If α < ∞, (2.13) follows from Lemma 2.3, which tells us that∫

M

|KF
t (x, y)|αdy ≤ C

∫
M

t−sα

[1 + (d(x, y)/t)]α(s+1)
dy ≤ Cts(1−α)

with C independent of x or t, by (2.11).
If α = ∞, the left side of (2.13) is, as usual, to be interpreted as the L∞ norm of

ht,x(y) = KF
t (x, y). But in this case the conclusion is immediate from Lemma 2.3.

This completes the proof. �
Lemma 2.5. If C1, C2 are the same as in (2.6) and if

(2.15) b/a > (C2/C1)
2/s , s = dim M,

then

(2.16)
∑

a/t2<λl≤b/t2

|ul(x)|2 ≥
(
C1b

s/2 − C2a
s/2

)
t−s > 0, s = dim M.

Proof. By the inequalities (2.6) we have∑
a/t2<λl≤b/t2

|ul(x)|2 =
∑

0<λl≤b/t2

|ul(x)|2−
∑

0<λl≤a/t2

|ul(x)|2≥
(
C1b

s/2−C2a
s/2

)
t−s.

The lemma is proven. �
Lemma 2.6. For any 0 < a < b and sufficiently large J ∈ N there exists an even

function F in SJ(R) such that F̂ is supported in a (−Λ,Λ) for some Λ > 0 and the
inequality

0 < c1 ≤ |F (λ)| ≤ c2

holds for all a ≤ λ ≤ b for some c1, c2 > 0.

Proof. For a sufficiently large J consider an even function G ∈ SJ (R) which is
identical to the one on (a, b). Since Fourier transform maps continuously SJ(R)

into itself one can find an even smooth function F̂ ∈ SJ(R) which is supported in
a (−Λ, Λ) for some Λ > 0 and which is sufficiently close to the Fourier transform

Ĝ ∈ SJ (R) in the topology of SJ(R). Clearly, the function F will have all the
desired properties. It proves the lemma. �
Theorem 2.7. For a sufficiently large J ∈ N there exists an even function F in

the space SJ(R) such that F̂ has support in a (−Λ,Λ) and for which

(2.17)

(∫
M

∣∣KF
t (x, y)

∣∣α dy

)1/α

� t−s/α′
, 1/α+ 1/α′ = 1, 0 < t ≤ 1,

for all 1 ≤ α ≤ ∞.

Proof. Due to Lemma 2.4 we have to prove only the lower estimate. Assume that
0 < a < b and satisfy (2.15). Let F be a function whose existence is proved in the
previous lemma for this (a, b). For α = 2 one has∫

M

|KF
t (x, y)|2dy =

∑
l

|F (t2λl)|2|ul(x)|2 ≥
∑

l:a/t2≤λl≤b/t2

|F (t2λl)|2|ul(x)|2

≥ c21
∑

l:a/t2≤λl≤b/t2

|ul(x)|2 ≥ c21

(
C1b

s/2 − C2a
s/2

)
t−s > 0.
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Using the inequality

(2.18) ‖KF
t (x, ·)‖22 ≤ ‖KF

t (x, ·)‖1‖KF
t (x, ·)‖∞,

and Lemma 2.4 for α = 1 we obtain for α = 1

‖KF
t (x, ·)‖1 ≥ ‖KF

t (x, ·)‖22
‖KF

t (x, ·)‖∞
≥ C3 > 0,

and similarly for α = ∞.
Note that if q < 2 < r, and 0 < θ < 1 is such that θ/q + (1− θ)/r = 1/2, then

by the Hölder inequality

(2.19) ‖KF
t (x, ·)‖2 ≤ ‖KF

t (x, ·)‖θq‖KF
t (x, ·)‖1−θ

r .

Assume now that 2 < α ≤ ∞. Then for q = 1, r = α, we have α′ < 2(1 − θ)
and using lower and upper estimates for p = 2 and p = 1 respectively we obtain

‖KF
t (x, ·)‖α ≥ ‖KF

t (x, ·)‖1/(1−θ)
2

‖KF
t (x, ·)‖θ/(1−θ)

1

≥ C4t
−s/α′

for some C4 > 0.
The case 0 ≤ α < 2 is handled in a similar way by setting in (2.19) q = α, r = ∞.

The lemma is proved. �

The next theorem plays an important role in this paper (see also [5], [6]).

Theorem 2.8. Suppose that for a sufficiently large J ∈ N a function ψ(ξ) = F (ξ2)

belongs to SJ(R), is even, and satisfies supp ψ̂ ⊆ (−1, 1). For t > 0, let KF
t (x, y)

be the kernel of ψ(t
√
L) = F (t2L). Then for some C0 > 0, if d(x, y) > C0t, then

KF
t (x, y) = 0.

Proof. First, let us formulate the finite speed of propagation property for the wave
equation (we closely follow Theorem 4.5 (iii) in Ch. IV of [18]).

Suppose that LRs is a second-order differential operator on an open set Rs in
Rs, that L1 is elliptic, and in fact that, for some c > 0, its principal symbol
σ2(LRs)(x, ξ) ≥ c2|ξ|2, for all (x, ξ) ∈ Rs ×Rs. Suppose that U ⊆ Rs is open, and
that U ⊆ Rs. Then if supp h, g ⊆ Q ⊆ U , where Q is compact, then any solution
u of (

∂2

∂t2
+ LRs

)
φ = 0,(2.20)

φ(0, x) = h(x),(2.21)

φt(0, x) = g(x),(2.22)

on U satisfies suppφ(t, ·) ⊆ {x : dist (x,Q) ≤ |t|/c}.
It is an easy consequence of this that a similar result holds on manifolds (see

explanations in [6] and [8]). Let L be a smooth elliptic second-order non-negative
operator on a manifold M and consider the problem

(2.23)

(
∂2

∂t2
+ L

)
φ = 0,

(2.24) φ(0, x) = h(x),

(2.25) φt(0, x) = 0,
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on M. It is easy to verify that if ul form an orthonormal basis of eigenfunctions of
L, with corresponding eigenvalues λl and

h(x) =
∑
l

alul(x), al =

∫
M

h(y)ul(y)dy,

then the solution to (2.23)-(2.25) is

(2.26) φ(x, t) =
∑
l

[
al cos

(
t
√
L
)
ul

]
(x) =

[
cos

(
t
√
L
)
h
]
(x),

or

φ(x, t) =
∑
l

al cos
(
t
√
λl

)
ul(x).

To prove the theorem it suffices to note that for some c

(2.27)
[
ψ(t

√
L)h

]
(x) = c

∫ 1

−1

ψ̂(s)
[
cos

(
st
√
L
)
h
]
(x)ds

for any h ∈ C∞(M). This formula follows from the eigenfunction expansion of h

and the Fourier inversion formula. Indeed, since ψ̂ is even and supp ψ̂ ⊂ (−1, 1) we
have∫ 1

−1

ψ̂(s)
[
cos(st

√
L)h

]
(x)ds =

∫ 1

−1

ψ̂(s)
[
cos(st

√
L)h+ i sin(st

√
L)h

]
(x)ds

=

∫ ∞

−∞
ψ̂(s)

∫
M

∑
l

eist
√
λlul(x)ul(y)h(y)dyds

=

∫
M

∑
l

(∫ ∞

−∞
ψ̂(s)eist

√
λlds

)
ul(x)ul(y)h(y)dy

=

∫
M

∑
l

ψ(t
√
λl)ul(x)ul(y)h(y)dy =

[
ψ(t

√
L)h

]
(x).

We also note [
ψ(t

√
L)h

]
(x) =

∫
M

∑
l

ψ(t
√
λl)ul(x)ul(y)h(y)dy

(2.28) =

∫
M

∑
l

F
(
t2λl

)
ul(x)ul(y)h(y)dy =

∫
M

KF
t (x, y)h(y)dy = F

(
t2L

)
h(x),

where ∑
l

F
(
t2λl

)
ul(x)ul(y) = KF

t (x, y).

Let us summarize. Since according to (2.26) the function φ(x, t) = cos
(
t
√
L
)
h(x)

is the solution to (2.23)-(2.25) the finite speed of propagation principle implies that

if h has support in a set Q ⊂ M, then for every t > 0 the function cos
(
t
√
L
)
h(x)

has support in the set {x : dist (x,Q) ≤ C|t|} where C is independent on Q.
Consider a function h ∈ C∞(M) which is supported in a ball Bε(y) whose

center is a y ∈ M and radius is a small ε > 0. By (2.27) and (2.28) the function
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ψ
(
t
√
L
)
h(x) = F

(
t2L

)
h(x) and the kernel KF

t (x, y) (as a function in x) both

have support in the same set

{x : dist (x,Bε(y)) ≤ C|t|}.
Since dist(x, y) = dist (x,Bε(y)) + ε we obtain that for any ε > 0 the support of
KF

t (x, y) is in the set

{x : dist (x, y) ≤ C|t|+ ε}.
The theorem is proven. �

3. Discretization and reduction to finite-dimensional spaces

Lemma 3.1. Let M be a compact Riemannian manifold. For each positive inte-
ger N with 2N−1/s < diam M, there exists a collection of disjoint balls AN ={
B
(
xN
i , N−1/s

)}
, such that the balls with the same centers and three times the

radii cover M, and such that PN := #AN � N .

Proof. We need only let AN be a maximal disjoint collection of balls of radius
N−1/s. Then surely the balls with the same centers and three times the radii cover
M. Thus by disjointness

μ(M) ≥
PN∑
i=1

μ
(
B
(
xN
i , N−1/s

))



PN∑
i=1

1/N = PN/N,

while by the covering property,

PN/(3sN) 

PN∑
i=1

μ
(
B
(
xN
i , 3N−1/s

))
≥ μ(M)

so that PN � N as claimed. �

Now we formulate and sketch the proof of the following Lemma 3.2. See [8] for
more details.

In what follows we consider collections of balls AN as in Lemma 3.1.

Lemma 3.2. Let M be a compact Riemannian manifold. Then there are smooth
functions ϕN

i (2N−1/s < diam M, 1 ≤ i ≤ PN ), as follows:

(1) suppϕN
i ⊆ BN

i := B(xN
i , N−1/s);

(2) for 1 ≤ p ≤ ∞, ‖ϕN
i ‖p � N−1/p, with constants independent of i or N .

Proof. For a sufficiently large J ∈ N let h0(ξ) = F0(ξ
2) be an even element of

SJ(R) with supp ĥ0 ⊆ (−1, 1). For a positive integer Q yet to be chosen, let
F (λ) = λQF0(λ), and set

(3.1) h(ξ) = F (ξ2) = ξ2QF0(ξ
2),

so that ĥ = c∂2Qĥ0 still has support contained in (−1, 1). Thus, by Theorem 2.8,

there is a C0 > 0 such that for t > 0, the kernel KF
t (x, y) of h(t

√
L) = F (t2L) has

the property that KF
t (x, y) = 0 whenever d(x, y) > C0t. Thus if t = N−1/s/2C0,

(3.2) ϕN
i (x) :=

1

N
KF

t (xN
i , x)

satisfies (1). By Theorem 2.7, ‖ϕN
i ‖p � N−1(N−1/s)−s/p′

= N−1/p, so (2) holds.
The lemma is proven. �
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Let ϕN
i be the same as above. We consider their span

(3.3) HN
p =

{
PN∑
i=1

aiϕ
N
i : a = (a1, . . . , aPN

) ∈ RPN

}
as a finite-dimensional Banach space HN

p with the norm

(3.4)

∥∥∥∥∥
PN∑
i=1

aiϕ
N
i

∥∥∥∥∥
HN

p

=

∥∥∥∥∥
PN∑
i=1

aiϕ
N
i

∥∥∥∥∥
Lp(M)

� CN−1/p‖a‖p,

where C is independent on N . Clearly, for any r > 0 the operator Lr/2 maps HN
p

onto the span

MN
p =

{
PN∑
i=1

aiL
r/2ϕN

i : a = (a1, . . . , aPN
) ∈ RPN

}
,

which we will consider with the norm∥∥∥∥∥
PN∑
i=1

aiL
r/2ϕN

i

∥∥∥∥∥
Lp(M)

,

and will denote as MN
p ⊂ Lp(M). Our next goal is to estimate the norm of Lr/2

as an operator from the Banach space HN
p onto Banach space MN

p .

Lemma 3.3. If ϕN
i are the same as in Lemma 3.2, then for 1 ≤ p ≤ ∞, and r > 0,

(3.5)

∥∥∥∥∥
PN∑
i=1

aiL
r/2ϕN

i

∥∥∥∥∥
Lp(M)

≤ CN
r
s−

1
p ‖a‖p,

with C independent of a = (a1, . . . , aPN
) ∈ RPN , p or N .

Proof. By the Riesz-Thorin interpolation theorem, we need only to verify the es-
timates for p = 1 and p = ∞. For t = N−1/s/2C0 and ϕN

i defined in (3.2) we
have

(3.6) Lr/2ϕN
i = N−1t−r

∑
l

(t2λl)
r/2F (t2λl)ul(x

N
i )ul(x) = CN

r
s−1KG

t (xN
i , x),

where G(λ) = λr/2F (λ) and F is defined in (3.1). Clearly, for a fixed r > 0 function
G belongs to a certain SJ0

(R+) for some J0 ∈ N if Q in (3.1) is sufficiently large.
Note that C in (3.6) is independent of N, i or t. Thus, by (3.6) and Lemma 2.4, for
p = 1 we have ‖Lr/2ϕN

i ‖1 ≤ CN
r
s−1, with C independent of i, N . It proves (3.5)

for p = 1. As for p = ∞, we again set t = N−1/s/2C0. By Lemma 2.3 and (3.2),
we have that for any x,

(3.7)

∣∣∣∣∣
PN∑
i=1

aiL
r/2ϕN

i (x)

∣∣∣∣∣ ≤ CN
r
s−1‖a‖∞

PN∑
i=1

t−s

(1 + d(xN
i , x)/t)s+1

.

Since t−s = (2C0)
s
N � μ

(
BN

i

)
N2, we obtain

(3.8)

∣∣∣∣∣
PN∑
i=1

aiL
r/2ϕN

i (x)

∣∣∣∣∣ ≤ CN
r
s+1‖a‖∞

PN∑
i=1

μ(BN
i )

(1 + d(xN
i , x)/t)s+1

.
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The triangle inequality shows that for all x ∈ M, all t > 0, all i and N , and
all y ∈ BN

i , one has (1 + d(y, x)/t) ≤ C(1 + d(xN
i , x)/t) with C independent of

x, y, t, i, N . Combining this with (2.11) we finally obtain

(3.9)

∣∣∣∣∣
PN∑
i=1

aiL
r/2ϕN

i (x)

∣∣∣∣∣ ≤ CN
r
s+1‖a‖∞

∫
M

dy

(1 + d(y, x)/t)s+1
≤ CN

r
s ‖a‖∞.

Lemma 3.3 is proved. �
The next step is to reduce our main problem to a finite-dimensional situation.
Let us remark that we are using the following notation. Sn will stay for either

Kolmogorov n-width dn or linear n-width δn; the notation sn will be used for either
dn or Gelfand n-width dn; Sn will be used for either dn, dn, or δn.

Below we will need the following relations (see [15, pp. 400–403]):

(3.10) Sn(H1, Y ) ≤ Sn(H,Y ),

if H1 ⊂ H, and

(3.11) dn(H,Y ) = dn(H,Y1), Sn(H,Y ) ≤ Sn(H,Y1), H ⊂ Y1 ⊂ Y,

where Y1 is a subspace of Y . Moreover, the following inequality holds:

(3.12) δn(H,Y ) ≥ max(dn(H,Y ), dn(H,Y )).

In what follows we are using the notation of Lemmas 3.1-3.3.

Lemma 3.4. For 1 ≤ p, q ≤ ∞, if sn = dn or dn, then

(3.13) sn
(
Br

p(M), Lq(M)
)
≥ CN− r

s+
1
p−

1
q sn(b

PN
p , �PN

q ),

for any sufficiently large n,N , with C independent of n,N .

Proof. With the ϕN
i as in Lemma 3.2, we consider the space of functions of the

form

(3.14) ga =

PN∑
i=1

aiϕ
N
i ,

for a = (a1, . . . , aPN
) ∈ RPN . By Lemma 3.2 and the disjointness of the BN

i ,

(3.15) ‖ga‖q � N−1/q‖a‖q,
with constants independent of N or a. By Lemma 3.3 for some c > 0, if we set

ε = εN = cN− r
s+

1
p , and if a ∈ εbPN

p , then ga ∈ Br
p. Thus,

(3.16) GN
p := {ga ∈ HN

p : a ∈ εbPN
p } ⊆ Br

p.

For the Gelfand widths, it is a consequence of the Hahn-Banach theorem, that if
K ⊆ X ⊆ Y , where X is a subspace of the normed space Y , then dn(K,X) =
dn(K,Y ) for all n. Thus, using (3.4) we obtain

dn
(
Br

p(M), Lq(M)
)
≥ dn(GN

p , Lq) = dn(GN
p ,HN

q )

≥ CN−1/qdn(εNbPN
p , �PN

q ) = CN−r/s+1/p−1/qdn(bPN
p , �PN

q )

for some C independent of n,N . This proves the lemma for the Gelfand widths.
For the Kolmogorov widths, for the same reason, we need only show that

(3.17) dn(B
r
p, Lq) ≥ Cdn(GN

p ,HN
q )

with C independent of n,N .
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To this end we define the projection operator ΠN : Lq → HN
q by

ΠNh = ga, where ai =

∫
hϕN

i

‖ϕ‖22
.

By Lemma 3.2 and Hölder’s inequality, we have that each |ai| ≤ C‖hχN
i ‖qN1−1/q′

,
where χN

i is the characteristic function of BN
i . By (3.15) and the disjointness of

the BN
i , we have that

(3.18) ‖ΠNh‖q = ‖ga‖q � N−1/q‖a‖q ≤ cN1−1/q−1/q′‖h‖q = c‖h‖q,
with C independent of n,N .

Accordingly, for any g ∈ HN
q and h ∈ Lq, we have that

‖g −ΠNh‖q = ‖ΠNg −ΠNh‖q ≤ c‖g − h‖q.
Thus, if K is any subset of HN

q , dn(K,Lq) ≥ c−1dn(K,HN
q ). In particular

dn
(
Br

p(M), Lq(M)
)
≥ dn(GN

p , Lq) ≥ c−1dn(GN
p ,HN

q ).

This establishes (3.17), and completes the proof. �

4. Proof of the main result

In this section we will prove Theorem 1.1.
We will need several facts about widths. First, say p ≥ p1, q ≤ q1, and Sn =

dn, d
n or δn. One then has the following two evident facts:

(4.1) Sn
(
Br

p(M), Lq(M)
)
≤ CSn

(
Br

p1
(M), Lq1(M)

)
with C independent of n, while

(4.2) Sn(bQp , �
Q
q ) ≥ CSn(bQp1

, �Qq1)

with C independent of n,Q.
By Lemma 3.1, we may choose ν > 0 such that Pνn ≥ 2n for all sufficiently large

n. In this proof we will always take N = νn. We consider the various ranges of p, q
separately:

(1) 1 ≤ q ≤ p ≤ ∞.
In this case, we note that if Sn = dn, d

n or δn, then by (4.1),

(4.3) Sn
(
Br

p(M), Lq(M)
)
≥ CSn (Br

∞(M), L1(M)) .

On the other hand, if sn = dn or dn, then by (3.1) on page 410 of [15],

sn(b
PN
∞ , �PN

1 ) = PN − n ≥ n. By this, (4.3) and Lemma 3.4, we find that

sn
(
Br

p(M), Lq(M)
)

 n− r

s−1n = n− r
s

first for sn = dn or dn and then for δn, by (3.12). This completes the proof
in this case.

(2) 1 ≤ p ≤ q ≤ 2.
In this case, for the Gelfand widths we just observe, by (4.1), that

(4.4) dn
(
Br

p(M), Lq(M)
)
≥ Cdn

(
Br

p(M), Lp(M)
)

 n− r

s

by case 1. For the Kolmogorov widths we observe, by Lemma 3.4 and (4.2),
that

dn
(
Br

p(M), Lq(M)
)

 n− r

s+
1
p−

1
q dn(b

PN
p , �PN

q )

(4.5) 
 n− r
s+

1
p−

1
q dn(b

PN
1 , �PN

2 ) 
 n− r
s+

1
p−

1
q ,
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since, by (3.3) on page 411 of [15], dn(b
PN
1 , �PN

2 ) =
√
1− n/PN ≥ 1/

√
2.

Finally, for the linear widths, we have by (3.12), that

δn
(
Br

p(M), Lq(M)
)

 n− r

s+
1
p−

1
q .

This completes the proof in this case.
(3) 2 ≤ p ≤ q ≤ ∞.

In this case, for the Kolmogorov widths we just observe, by (3.10), that

(4.6) dn
(
Br

p(M), Lq(M)
)
≥ Cdn

(
Br

p(M), Lp(M)
)

 n− r

s

by case 1. For the Gelfand widths we observe, by Lemma 3.4 and (4.2),
that

dn
(
Br

p(M), Lq(M)
)

 n− r

s+
1
p−

1
q dn(bPN

p , �PN
q )

(4.7) 
 n− r
s+

1
p−

1
q dn(bPN

2 , �PN
∞ ) 
 n− r

s+
1
p−

1
q ,

since, by (3.5) on page 412 of [15],

dn(bPN
2 , �PN

∞ ) =
√
1− n/PN ≥ 1/

√
2.

Finally, for the linear widths, we have by (3.12), that

δn
(
Br

p(M), Lq(M)
)

 n− r

s+
1
p−

1
q .

This completes the proof in this case.
(4) 1 ≤ p ≤ 2 ≤ q ≤ ∞.

If 1 ≤ α ≤ α1 ≤ ∞, then by Hölder’s inequality, for every a = (a1, . . . , aPN
)

(4.8) ‖a‖α ≤ P
1
α− 1

α1

N ‖a‖α1
.

This implies that

(4.9) bPN
α1

⊆ P
1

α1
− 1

α

N bPN
α .

From Lemma 3.4, (4.2) and (4.8), we find that

dn
(
Br

p(M), Lq(M)
)

 n− r

s+
1
p−

1
q dn(b

PN
p , �PN

q )

(4.10) 
 n− r
s+

1
p−

1
q dn(b

PN
1 , �PN

q ) 
 n− r
s+

1
p−

1
2 dn(b

PN
1 , �PN

2 ) 
 n− r
s+

1
p−

1
2 .

From Lemma 3.4, (4.2) and (4.9), we find that

dn
(
Br

p(M), Lq(M)
)

 n− r

s+
1
p−

1
q dn(bPN

p , �PN
q )

(4.11) 
 n− r
s+

1
p−

1
q dn(bPN

p , �PN
∞ ) 
 n− r

s+
1
2−

1
q dn(bPN

2 , �PN
∞ ) 
 n− r

s+
1
2−

1
q .

Finally, from (4.10), (4.11) and (3.12),

(4.12) δn
(
Br

p(M), Lq(M)
)

 max

(
n− r

s+
1
p−

1
2 , n− r

s+
1
2−

1
q

)
.

This completes the proof of our main Theorem 1.1.
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