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SMALL HEIGHT IN FIELDS GENERATED
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(Communicated by Ken Ono)

Abstract. We prove that some fields generated by j-invariants of CM elliptic
curves (of infinite dimension over Q) satisfy the Property (B). The singular
moduli are chosen so as to have supersingular reduction simultaneously above
a fixed prime q, which provides strong q-adic estimates leading to an explicit
lower bound for the height.

1. Introduction

Algebraic numbers with small height. This article is dedicated to algebraic
extensions of the field of rational numbers that satisfy the so-called Property (B).
This problem finds its origin in a famous question raised by Lehmer (see [17], §13,
p. 476), now considered as a conjecture. Let h be the (logarithmic, absolute) Weil
height on Q̄∗.

Conjecture 1.1 (Lehmer). There is c > 0 such that for all x ∈ Q̄∗ not a root of
unity:

h(x) ≥ c

[Q(x) : Q]
.

The Lehmer conjecture is still unsolved, although it is known to hold in many
particular cases. The best general result in this direction is due to Dobrowolski,
who proved the expected lower bound for the height up to a logarithmic factor in
the degree (see [8]).

In some special cases, it is even possible to find a lower bound which is indepen-
dent of the degree. This happens for instance if we consider a sequence of algebraic
numbers with Galois orbit not equidistributed. An interesting example is that of
totally real number fields ([24]).

Theorem 1.2 (Schinzel). Let K be a totally real number field. For all x ∈ K∗ not
a root of unity:

h(x) ≥ 1

2
log

(1 +
√
5

2

)
.

Another example of this phenomenon was later given by Amoroso and Dvornicich
(see [2]), who settled the case of Qab, the abelian closure of Q.

Theorem 1.3 (Amoroso, Dvornicich). Let x ∈ Qab be not zero or a root of unity.
Then:

h(x) ≥ log(5)

12
.
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This theorem was soon generalized to the abelian closureKab of any number field
K by Amoroso and Zannier (see [3]), who shed a new light on the Lehmer conjecture
by suggesting a relative Lehmer conjecture, with the degree of an algebraic number
replaced by its degree over Qab.

The Bogomolov Property. Inspired by these results, Bombieri and Zannier in-
troduced the following properties (see [4]).

Definition 1.4. Let A be a subset of Q̄∗.
(i) We say that A has the Bogomolov Property (B) if there exists c(A) > 0 such

that, for all x ∈ A not zero or a root of unity: h(x) ≥ c(A).
(ii) We say that A has the Northcott Property (N) if for any H > 0, the set of

elements in A with height at most H is finite.

The “Northcott theorem” asserts that any number field has the Property (N),
and it is straightforward to see that Property (N) is stronger than Property (B).
Thus, as far as these properties are concerned, the relevant fields are infinite exten-
sions of Q.

In the same article, Bombieri and Zannier provided new examples of fields sat-
isfying the Property (B). If K is a number field and L/K is an infinite extension,
we say that L/K has bounded local degree at a finite place v of K if there exists
D > 0 such that for all places w|v of L, we have:

[Lw : Kv] ≤ D.

They proved the following result, which can be seen as a non-archimedean analogue
of Schinzel’s theorem (with the convention that an extension L/Q has bounded
degree at ∞ if it is totally real).

Theorem 1.5 (Bombieri, Zannier). Suppose that L/Q has bounded local degree at
some rational prime. Then L satisfies the Property (B).

Checcoli later found a sufficient condition for this theorem to apply, formulated in
Galois theoretic terms. Namely, she proved that the extension L/K has uniformly
bounded local degree at every finite place of K if and only if its Galois group has
finite exponent (see [5]).

Another example was recently given by Habegger, who considered the field gen-
erated by the torsion group Etors of an elliptic curve E defined over Q ([11]).

Theorem 1.6 (Habegger). The field Q(Etors) satisfies the Property (B).

If E has CM, class field theory of quadratic imaginary fields shows that this
result follows from the theorem of Amoroso and Zannier on Kab, where K is the
CM field. But if E is not of CM type, Habegger shows that his result goes beyond
the abelian case or the bounded local degree case. The restriction on the field of
definition of E comes from the theorem of Elkies on supersingular primes ([9]).

Amoroso, David and Zannier have recently tried to unify some of these results
in a Galois theoretic point of view. Among other results, they prove the following
([1]).

Theorem 1.7 (Amoroso, David, Zannier). Let K be a number field and L/K an
infinite Galois extension. If the quotient of Gal(L/K) over its center has finite
exponent, the field L has the Property (B).
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They also prove that the height is bounded uniformly in the degree of K and
the exponent. We also refer to [6] for another generalization of the bounded local
degree case.

Remark. A link has been pointed out by Rosenbloom and Tsfasman between the
Property (B) and sphere packing. They contructed families of “asymptotically
good” lattices (with rank going to infinity and density exponent explicitly bounded)
by using Schinzel’s estimate for the height on totally real number fields. Apart from
the lower bound for the height on a subfield K of Q̄, an important ingredient is the
existence of a subfield of K which is an infinite unramified extension over a number
field of small discriminant (see [22]).

The Bogomolov Property in fields generated by j-invariants. A way to
look for other examples of fields with the Property (B) is to consider the following
case. Let (Kn)n∈N be a sequence of (pairwise distinct) quadratic fields, and for all
n ∈ N, let Ln be an abelian extension of Kn. We denote by L the compositum of
all the Ln’s, for n ∈ N.

Question 1.8. Does the field L satisfy the Property (B)?

For each n, the Galois group of Ln over Q is an extension of an abelian group by
Z/2Z, hence it is “almost” abelian (if not abelian). Furthermore, we know by the
work of Bombieri and Zannier ([4]) that the compositum of the Kn’s, for n ∈ N,
satisfies the Property (N), hence the Property (B).

Everything becomes much more explicit when we consider a sequence of imag-
inary quadratic fields and their Hilbert class fields. Let p be a prime and let
Kp := Q(

√−p). The Hilbert class field Lp (i.e. unramified abelian closure) of Kp

is generated over Kp by the j-invariant jp of an elliptic curve with endomorphism
ring the ring of integers of Kp. For any subset Q of the set P of prime numbers,
we let KQ (resp. LQ) be the compositum of the Kp’s (resp. Lp’s), for p ∈ Q.
We prove the following theorem, which gives a lower bound for the height on some
infinite dimensional subfields of the field LP .

Theorem 1.9. Let q ≥ 3 be a prime. There exists a set Pq ⊂ P of Dirichlet
density 1

4 such that LPq
satisfies the Property (B).

We will see while constructing the Pq’s that they are rather distinct from one
another. More precisely, for q �= q′, the set Pq ∩ Pq′ has Dirichlet density 1

8 .
The main ingredient in the proof of this theorem is a q-adic estimate (q a prime)

that expresses an important property of the class field theory of an imaginary
quadratic field K. We will start by recalling a classical criterion for the j-invariant
of an elliptic curve which is supersingular at a prime above q, and we will review
some well-known facts about complex multiplication related to the Hilbert class
field H of K. The most useful result for us will concern the splitting of principal
prime ideals of K in H.

In the CM case, it is also rather easy to describe the primes of supersingular
reduction, and we will use this description to construct the set Pq. We will study
the Galois properties of the fields involved and see how they compare to others
known to satisfy the Property (B).

We will then recall the basic properties of the Weil height, and prove an explicit
version of our theorem. In the last section, we will discuss further examples of
families of Hilbert class fields for which the same techniques apply.
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2. Supersingular primes and complex multiplication

In this section, we recall some classical facts about supersingular primes for
elliptic curves with complex multiplication (CM). We first give a p-adic property
for the j-invariant of an elliptic curve that is supersingular at a prime ideal p in a
field of definition. This estimate will be sufficient to treat a significant particular
case in the proof of our theorem. We explain the role of singular j-invariants in the
class field theory of imaginary quadratic fields, and the distribution of supersingular
primes for CM elliptic curves.

2.1. Supersingularity. Let E be an elliptic curve defined over a number field L.
The curve E is given by a Weierstrass equation :

y2 = x3 + ax+ b,

with a, b ∈ L and discriminant Δ := −16(4a3+27b2) �= 0. We let p be a prime ideal

of OL, and we suppose that E has good reduction at p, i.e., the reduction Ẽ of E
mod p is smooth. Let p be the characteristic of the residue field k := OL/p, and

Ẽ[p] the p-torsion subgroup of Ẽ(k̄).

Definition 2.1. We say that E has supersingular reduction at p if Ẽ[p] = 0.

If the reduction is not supersingular, the p-torsion subgroup has order p and the
reduction is said to be ordinary. Supersingularity can be translated p-adically on
the j-invariant of E.

Lemma 2.2. If E has supersingular reduction at p and j(E) ∈ OL:

j(E)p
2 ≡ j(E) (mod p).

Proof. If p is a supersingular prime for E, the isogeny [p] is purely inseparable of

degree p2 on Ẽ. For q a power of p, let Ẽ(q) be the elliptic curve obtained by raising
all the coefficients to the power q in a Weierstrass equation of Ẽ. By [28] II.2.12,

we have a factorization: [p] = φ̂ ◦ φ, where φ is the p-power Frobenius:

Ẽ −→ Ẽ(p)

and φ̂ is its dual isogeny, the so-called Verschiebung:

Ẽ(p) −→ Ẽ.

The isogeny φ̂ is purely inseparable of degree p. Again, there is a factorization:

φ̂ = ψ ◦ φ′, where φ′:

Ẽ(p) −→ Ẽ(p2)

is the p-power Frobenius and ψ:

Ẽ(p2) −→ Ẽ

is an isogeny of degree 1 (by a straightforward comparison of degrees). This means
that ψ is an isomorphism. From the definition of the j-invariant and the fact that
OL/p has characteristic p, we deduce the following equalities in the residue field
OL/p:

j(Ẽ) = j
(
Ẽ(p2)

)
= j(Ẽ)p

2

.

Since j(E) is an algebraic integer, its reduction mod p is well defined as an element

of OL/p. Furthermore, it is equal to j(Ẽ) by a straightforward computation in an
integral model, and the lemma follows immediately. �
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2.2. Complex multiplication. The ring End(E) of endomorphisms of E is the
ring of isogenies from E to E (defined over L̄). Since L has characteristic 0, it is a
free Z-module of rank 1 or 2. The “quantity” of primes at which E has supersingular
reduction is closely related to End(E).

Definition 2.3. We say that E has complex multiplication (CM) if End(E) �= Z.
In this case, End(E) is an order in a quadratic imaginary field.

We suppose from now on that E has CM. We let:

K := End(E)⊗Z Q

be the imaginary quadratic field of complex multiplication. We also suppose that
End(E) is the ring of integers OK of K. The set of primes of OK at which E has
supersingular reduction is well understood and can be explained rather easily.

Proposition 2.4 (Deuring). Let p be a prime of OL and let p be the characteristic
of OL/p. The prime p is supersingular if and only if p is inert in OK .

Proof. See [29], II, Exercise 2.30 or [15], p. 182. �

Remark. In the general case, the distribution of supersingular primes is still myste-
rious. On the one hand, Serre proved that supersingular primes have density zero
(after possibly extending the ground field, so as to include the CM field; see [25]).
On the other hand, if E is defined over Q, Elkies showed that there are infinitely
many supersingular primes ([9]). Lang and Trotter ([16]) conjectured that there is
c(E) > 0 such that :

|{p ≤ x, p is supersingular}| ∼x→∞ c(E)

√
x

log(x)
.

This conjecture can be extended to general number fields and also covers the CM
case, provided that the ground field be extended so as to contain the field of CM.

2.3. Singular moduli. Singular moduli are j-invariants of elliptic curves with CM,
which can be seen as special points on the classical modular curve. They play a
central part in the class field theory of imaginary quadratic fields.

Our congruence property on singular moduli needs an integrality result on the j-
invariant of a CM elliptic curve. Since there is only a finite number of (isomorphism
classes) of CM elliptic curves with given endomorphism ring (due to the finiteness
of its ideal class group), this j-invariant is an algebraic number. But more can be
said.

Theorem 2.5 (Weber, Fueter). If E has CM, then j(E) is an algebraic integer.

Proof. There are several proofs of this result. See for instance [29], II, Theorem
6.1. �

The modular invariant of a CM elliptic curve plays an important role for the
field of CM. For the remainder of this section, we change our point of view and
let K be an imaginary quadratic field with ring of integers OK . This ring is a free
Z-module of rank 2, hence a lattice in C.

We let EK := C/OK . This is a complex elliptic curve with CM by OK , so its
j-invariant is algebraic. In fact, the curve EK is defined over Q̄ ([29], II, Proposition
2.1). The j-invariant of EK helps to describe the unramified abelian closure of K.
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Theorem 2.6 (Weber, Fueter). The field generated by j(EK) over K is the max-
imal unramified abelian extension of K. The degree of this extension is the class
number of K, and its Galois group is the class group of K.

Proof. See [29], II, Theorem 4.1. �
Remark. In fact, the field K

(
j(EK)

)
is the minimal field of definition for EK . The

ramified part of the maximal abelian extension of K is given by the torsion points
of EK , via the so-called “Weber functions”.

A direct consequence of this theorem concerns the decomposition of rational
primes producing supersingularity in the Hilbert class field K

(
j(EK)

)
.

Corollary 2.7. Let p be a rational prime which is inert in OK . Then pOK splits
completely in K

(
j(EK)

)
.

Proof. By class field theory, the prime ideals of OK that split completely in the
Hilbert class field of K are exactly those that are principal ([29], II, Theorem 3.2
and Example 3.3). �

3. Selection of j-invariants and Galois properties

Thanks to Dirichlet’s theorem on arithmetic progressions, we show how to find
a large number of primes that are simultaneously supersingular for a large number
of CM elliptic curves. We then give some Galois properties of the fields LPq

and
compare them to those studied in [1] and [11].

3.1. Simultaneous supersingularity. Our criterion for supersingularity in the
CM case can be made explicit by using some basic arithmetic properties of quadratic
fields. By Dirichlet’s theorem on arithmetic progressions, we can find primes that
are simultaneously supersingular for CM elliptic curves associated to a positive
density of primes.

For any prime number p ≥ 3, we let Kp := Q(
√−p) and Ep := C/OKp

. This
is an elliptic curve with CM and endomorphism ring OKp

. The field Lp generated
over Kp by j(Ep) is a field of definition for Ep.

Lemma 3.1. Let q ≥ 3 be a rational prime and Pq be the set of (rational) primes
p ≡ 1 (mod 4) such that Ep has supersingular reduction at all primes of OLp

above

q. The set Pq has Dirichlet density 1
4 .

Proof. Let p ≥ 3 and Δp be the discriminant of Kp. We have ([14], Ch. 13, §1):
Δp = p if p ≡ 1 (mod 4),

and
Δp = 4p if p ≡ 3 (mod 4).

By Proposition 2.4, the curve Ep is supersingular above q if q is inert in OKp
.

Furthermore, this condition holds if and only if q � Δp and Δp is not a square mod
q. Since q ≥ 3, this is equivalent to the condition that p not be a square mod q.
There are q−1

2 classes mod q that are not quadratic residues.
By the strong version of Dirichlet’s theorem (see [14], Ch. 16, §1), the set of

primes in each class has Dirichlet density 1
q−1 , so the set of primes p such that Ep is

supersingular above q has Dirichlet density 1
2 . The same holds for the set of primes

that are congruent to 1 (mod 4), and since q and 4 are coprime, the lemma follows
immediately from the chinese remainder theorem. �
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Remarks. The chinese remainder theorem also shows that if q and q′ are two distinct
primes, the set Pq ∩ Pq′ has Dirichlet density 1

8 . Up to the congruence (mod 4),
these sets are thus “independent” in a probabilistic point of view. It is also worth
mentioning for the sequel that q /∈ Pq, since the class 0 (mod q) is excluded in the
construction of Pq.

3.2. Galois properties of fields generated by singular moduli. In this sub-
section, we fix q a prime number. We are going to investigate the group:

Gq := Gal(LPq
/Q),

and show that it is far from being abelian. Since the extension KPq
/Q is the

compositum of pairwise linearly disjoint quadratic fields, we have:

Gal(KPq
/Q) =

∏
p∈Pq

Z/2Z.

The following proposition shows that the structure of Gq is more complicated.

Proposition 3.2. The group Gq/Z(Gq) has infinite exponent.

Proof. The Galois extensions Lp/Q, for p ∈ Pq, are pairwise linearly disjoint be-
cause each Lp is only ramified at p. Thus, the Galois group of LPq

/Q is the product
of the Galois groups of the Lp/Q, for p ∈ Pq.

By Theorem 1.2 of [21] and a quick computation, we see that the exponent of the
ideal class group of Q(

√−p) goes to infinity outside of a set of primes of density
zero. Let d ≥ 1, and let p ∈ Pq such that the Galois group Hp of Lp/Kp has
exponent ≥ d.

If C is a subgroup of Hp corresponding to an extension M/Kp, the extension
M/Q has Galois group C � Z/2Z. If the product is direct, the Kronecker-Weber
theorem shows that the field M belongs to a cyclotomic extension. But the exten-
sion M/Q is ramified only at p, with ramification index 2, so it has degree 2 and C
is trivial.

Applying this to a cyclic group C ⊂ Hp of order ≥ d and to all its subgroups,
we see that C ∩ Z(Gq) = {1}, and Gq/Z(Gq) has exponent ≥ d. This holds for all
d ≥ 1, and the proposition follows. �

This proposition shows that the condition of Theorem 1.7 does not hold in our
case. We can also compare the field LPq

to the fields studied by Habegger in [11].
These fields are very ramified and built out of one elliptic curve, whereas LPq

is
the compositum of scarcely ramified fields built out of many different elliptic curves
with CM.

Proposition 3.3. If E is an elliptic curve defined over a number field K:

LPq
�⊂ K(Etors).

Proof. We proceed by contradiction. We can suppose that K is Galois over Q, and
that End(E) = Z by the previous proposition. Let p ≥ 5 ∈ Pq large enough, such
that p does not ramify in K, the elliptic curve E has good reduction at all primes
dividing p, and such that Serre’s “open image” theorem applies ([26]):

Gal(K(E[p])/K) = GL2(Fp).
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The field Lp is tamely ramified at p and unramified at other primes so Lp ⊂ K(E[p]).
Again, we can choose p so that

Gal(Lp/Q) = Hp � Z/2Z

is a non-trivial product. This Galois group can be embedded as a normal subgroup
of GL2(Fp) which is not contained in its center. By simplicity of PSL2(Fp), we get:

|Hp| ≥ p(p2 − 1).

This contradicts the classical upper bound given by Dirichlet’s analytic class number
formula (see for instance [18], 1):

|Hp| ≤
6

π

√
p log(p).

�

Remark. By Weil’s pairing, the field K(Etors) contains Qab, hence KPq
which is

abelian over Q.

4. Heights and fields generated by j-invariants

Let q ≥ 3 a prime. We are going to give an explicit lower bound for the height
on the field LPq

outside of the roots of unity. We will first treat a significant special
case by using the q-adic estimate on j-invariants for a simultaneously supersingu-
lar prime q|q. We will finally treat the general case by using the decomposition
properties of primes in the Hilbert class fields.

4.1. Preliminaries on heights. Let K be a number field. A place v of K is (the
equivalence class of) an absolute value : K → R+. Its restriction w to Q is either
the standard archimedean absolute value (we say that v is infinite and write v|∞)
or a p-adic absolute value, for p a prime number (we say that v is finite and write
v|p). Let Kv be the completion of K with respect to v and dv := [Kv : Qw] the
local degree of v. We have the following “degree formula”, which relates the local
and global degrees of K : ∑

v|w
dv = [K : Q].

The infinite places of K correspond to field embeddings : K ↪→ C modulo complex
conjugation. The finite places of K are in bijection with the non-zero prime ideals
of K. If v is a finite place of K, we can thus define its ramification index ev and
its residual degree fv, and we have the equality: dv = evfv.

Let x be a non-zero algebraic number. It satisfies the well-known “product
formula”: ∑

v∈M(K)

dvlog|x|v = 0.

We define the (absolute, logarithmic) Weil height of x by

h(x) =
1

[K : Q]

∑
v∈M(K)

dvlog max{1, |x|v},

where K is any number field containing x, and M(K) is the set of places of K. For
x, y ∈ Q̄∗ (x+ y �= 0), we have the following inequalities:

h(xy) ≤ h(x) + h(y) and h(x+ y) ≤ h(x) + h(y) + log(2).
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4.2. A particular case. We start by proving a lower bound for a large subring of
the algebraic integers of the field LPq

. This is done by using the q-adic estimate on
singular moduli at a supersingular prime q|q. This also paves the way for the general
case, for which we will follow the same approach with some extra information on
the decomposition of primes in Hilbert class fields.

Proposition 4.1. Let x ∈ Z[jp, p ∈ Pq] of infinite order. Then:

h(x) ≥ log(q/2)

q2 + 1
.

Proof. Let Q be a finite subset of Pq such that x ∈ LQ. Since x is not a root of
unity, we have:

y := xq2 − x �= 0.

We can therefore apply the product formula to y. By construction, the prime q
does not ramify in LQ. Now, Lemma 2.2 and Theorem 2.5 show that if v|q is a
finite place of LQ, for each p ∈ Q:

|jq2p − jp|v ≤ q−1,

and the properties of binomial coefficients imply: |y|v ≤ q−1.
The product formula reads:

0 =
∑

v∈M(LQ)

dv
[LQ : Q]

log
∣∣y∣∣

v

≤
∑
v�q

dv
[LQ : Q]

logmax{1, |y|v} −
∑
v|q

dv
[LQ : Q]

log(q).

Using the basic inequalities recalled earlier in this section yields:

0 ≤ h(y)− log(q)

≤ (q2 + 1)h(x) + log(2)− log(q),

and the proposition follows. �

4.3. Local analysis. We concentrate here on local estimates above q. We let
Q ⊂ Pq be a finite set of primes and take v|q a place of LQ. The first lemma
focuses on algebraic integers and contains the key argument.

Lemma 4.2. For all x ∈ OLQ : ∣∣xq2 − x
∣∣
v
≤ q−1.

Proof. Let us start with y ∈ OLp
, where p ∈ Q. The prime number q is inert in

Kp, and the prime ideal pOKp
splits completely in Lp by Corollary 2.7. We deduce

that the residue field of Lp at v is Fq2 , and because q is unramified:
∣∣yq2 − y

∣∣
v

≤ q−1.(1)

The extension LQ/Q is the compositum of the Galois extensions Lp/Q, for p ∈ Q,
which are linearly disjoint (with coprime discriminants). This implies that:

OLQ = ⊗p∈QOLp
,
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where the tensor product is over Z (see for instance [27], Lemma 1.3). If x ∈ OLQ ,
we take a decomposition in the tensor product. By (1), the properties of the
binomial coefficients and the ultrametric inequality, we get:∣∣xq2 − x

∣∣
v
≤ q−1.

�
The next stage is classical. It prepares a reduction to algebraic integers and is

based on the “strong approximation theorem”.

Lemma 4.3. For any x ∈ L∗
Q, there is β ∈ OLQ such that βx ∈ OLQ and:

|β|v = max{1, |x|v}−1.

Proof. See [2], Lemma 1. �
We can now give a final estimate for the v-adic norm.

Corollary 4.4. For all x ∈ LQ:∣∣xq2 − x
∣∣
v
≤ q−1 max{1, |x|v}q

2+1.

Proof. We can suppose that x �= 0. Let β be as in the former lemma. We apply
Lemma 4.2 to β and βx:∣∣βq2 − β

∣∣
v
≤ q−1 and

∣∣(βx)q2 − βx
∣∣
v
≤ q−1.

By the ultrametric inequality, we get:∣∣xq2 − x
∣∣
v

=
∣∣β−q2

∣∣
v

∣∣(βx)q2 − βq2x
∣∣
v

=
∣∣β−q2

∣∣
v

∣∣(βx)q2 − βx+ (β − βq2)x
∣∣
v

≤
∣∣β−q2

∣∣
v
max

{∣∣(βx)q2 − βx
∣∣
v
,
∣∣β − βq2

∣∣
v

∣∣x∣∣
v

}
≤ q−1 max{1, |x|v}q

2+1,

which is the expected inequality. �
4.4. Proof of the theorem. Let x ∈ L∗

Q of infinite order. Because x is neither
zero nor a root of unity:

y := xq2 − x �= 0.

Again, we apply the product formula to y:

0 =
∑

v∈M(LQ)

dv
[LQ : Q]

log
∣∣y∣∣

v

≤ (q2 + 1)
∑

v∈M(LQ)

dv
[LQ : Q]

logmax{1, |x|v}+ log(2)−
∑
v|q

dv
[LQ : Q]

log(q),

where the log(2) comes from the triangle inequality at all archimedian places. We
thus find:

log(q/2) ≤ (q2 + 1)h(x),

and like in the special case studied earlier, we get the following lower bound:

h(x) ≥ log(q/2)

q2 + 1
.

This finishes the proof of Theorem 1.9. �
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Remarks. Our method does not extend to the field generated by the compositum
of all Kp(jp), for p ∈ P, the set of primes (or a subset of density 1). If q is a prime
of ordinary reduction for Ep, we have a decomposition q := qq′ in Kp. In this
case, class field theory only gives a relation between the two Frobenius elements
σq, σq′ ∈ Gal(Lp/Kp); namely, σqσq′ = 1.

By the Chebotarev density theorem, the set of primes of Kp that split completely
in Lp has density 1

[Lp:Kp]
, and we can’t expect to bound the degree of the residue

fields for all q ∈ P (or a subset of density 1). An interesting phenomenon, which
has been exploited implicitly here, is that the inert primes in Kp have density 1

2 as
rational primes and density 0 in Kp.

The classical strategy used for instance in [2] or [11] - with a q-adic estimate
involving some Frobenius element at q|q - does not work very well either, because
the centraliser of the Frobenius element can have large index in the Galois group
as soon as many Lp’s are involved.

5. Further examples

We indicate here how to generalize our method to other families of Galois number
fields, including real quadratic fields and simplest cubic fields. We finally make some
remarks about properties of cyclotomic fields related to our work.

5.1. Generalization to families of Galois fields. For n ∈ N, letKn be a number
field such that Kn/Q is Galois, and let Ln be its Hilbert class field. A look at the
proof of our theorem shows that the compositum L of the Ln’s satisfies the Property
(B) if:
-the degree [Kn : Q] is bounded independently of n;
-there is a prime p which is simultaneously inert in Kn for all n;
-the discriminants of the Kn’s are pairwise coprime.

In this case, we can get an explicit lower bound for the height. The only difference
with the bound obtained above is the power of p, which can be expressed in terms
of the finite number of values taken by [Kn : Q]. The second condition implies that
p is unramified in the compositum of the Kn’s. By class field theory, the ideal pOKn

splits completely in Ln for all n. The coprimality condition on the discriminants
might be removed by working with local fields in Lemma 4.2.

Because of the third hypothesis, the extensions Ln/Q are pairwise linearly dis-
joint and Gal(L/Q) =

∏
n∈N Gal(Ln/Q). This field is all the more interesting for

us as Gal(Ln/Kn), the ideal class group of Kn, has big order or exponent.
We start with families of real quadratic fields. For p a prime, we let here Kp :=

Q[
√
p] and Lp its Hilbert class field. For a set Q ⊂ P, let LQ be the compositum

of the Lp’s, for p ∈ Q.

Proposition 5.1. For all q ≥ 3 prime, there is a set Pq ⊂ P of Dirichlet density
1
4 such that LPq

has the Property (B).

Proof. Identical to that of Theorem 1.9. �

Remark. We could also consider the compositum of a mixed family of real and qua-
dratic fields of prime discriminant. A specificity of real quadratic fields compared
to imaginary ones is that much less is known on the class group. The Cohen-
Lenstra heuristics predict that the class number is statistically very small ([7]).
This example might thus be less interesting in our setting.
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5.2. Simplest cubic fields. We now look for a family of cubic fields that satis-
fies our criteria. The most simple example to investigate is that of the so-called
“simplest cubic” fields.

Let m ∈ N and let Km be the splitting field of the polynomial:

Pm(X) := X3 −mX2 − (m+ 3)X − 1,

with discriminant:

dm := f2
m = (m2 + 3m+ 9)2.

We can check that if xm > 0 is a root of Pm, the other roots are − 1
1+xm

< 0 and

−1− 1
xm

< 0. Thus, the extension Km/Q is normal with Galois group Z/3Z. Let
Lm be the Hilbert class field of Km.

Definition 5.2. The field Km is a simplest cubic field if its ring of integers is
Z[xm].

The field Km is a simplest cubic field if and only if m �≡ 0 (mod 3) and fm is
square free, or if m ≡ 0, 6 (mod 9) and fm/9 is square free ([31], Proposition 1 and
Corollary). In this case, the number dm is the discriminant of Km.

We can go further about the arithmetic properties of the fm’s. According to
Hardy and Littlewood’s “Conjecture F”, there should be infinitely many m ∈ N
such that fm is prime. One can prove (see [19], Proposition 1) that if N(x) is the
number of 0 ≤ m ≤ x such that Km is a simplest cubic field:

N(x)

x
−→x→+∞

8

9

∏
p≡1 (mod 6)

(
1− 2

p2

)
≈ 0.83.

We will use an infinite sequence of square free and pairwise coprime discriminants.

Lemma 5.3. There exists an infinite set N ⊂ N such that:

∀m �= n ∈ N , fm and fn are square free and coprime.

Proof. We construct the set N = {mk, k ≥ 1} by induction. Since f1 = 13, we
start with m1 = 1. Let k ≥ 2 and suppose that we have found m1, . . . ,mk−1 with
the required properties.

We denote by P ≥ 13 the greatest prime factor of m1 · · ·mk−1. Since fm is
always odd, it is sufficient to find an integer m such that:

∀p ∈ P : p � fm if 3 ≤ p ≤ P, and p2 � fm otherwise.(2)

For x ≥ 1, let A(x) be the set of 1 ≤ m ≤ x with these properties. Let q ≥ 1 be
an integer and suppose that there is m ≥ 1 such that q|fm. For any other n with
q|fn, we immediately check that:

(2m+ 3)2 ≡ (2n+ 3)2 (mod q).

Thus, if q = p is a prime ≥ 3, there are at most two classes mod p that may
contain an m such that p|fm. If q = p2 and p ≥ 5, we rapidly see that there are at
most two classes mod p2 that may contain an m with p2|fm.

Now, let N be the product of all primes 3 ≤ p ≤ P , and suppose that x ≥ N2.
By the chinese remainder theorem, there are at least

∏
3≤p≤P (p−2) classes mod N

such that for each m in one of these classes, gcd(fm, N) = 1. Let A1(x) be the set
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of 1 ≤ m ≤ x such that the first pack of conditions in (2) is realized. Since x ≥ N ,
we have:

|A1(x)| ≥
1

2

∏
3≤p≤P

(
1− 2

p

)
x := cx.

For p ∈ P, let

Ap(x) := {m ∈ A1(x), p
2|fm}.

This set is empty for p ≤ P . If P < p ≤
√

x
N , we can use the chinese remainder

theorem because p2 and N are coprime, and we find that

|Ap(x)| ≤
4

p2
cx.

For a “big” prime p >
√

x
N , we get the weaker estimate:

|Ap(x)| ≤ 2
(
1 +

⌊ x

p2

⌋)
≤ 2(N + 1).

We now give a lower bound for |A(x)|. For x ≥ 3, we see that: fx ≤ (2x)2, so we
can restrict ourselves to primes p ≤ 2x:

|A(x)| ≥ |A1(x)| −
∑

P<p≤2x

|Ap(x)|

≥ cx− cx
∑
P<p

4

p2
−

∑
p≤2x

2(N + 1)

≥ c
(
1−

∑
P<p

4

p2

)
x− 4(N + 1)

log(x)
x,

where the last inequality comes from a classical upper bound on the number of
primes at most x ([23], Theorem 1). We remark that:

4
∑
P<p

1

p2
≤ 4

∑
13<p

1

p2
≤ 4

∑
17≤n

( 1

n− 1
− 1

n

)
≤ 1

4
,

and for x large enough, we finally get |A(x)| ≥ 1. �

An interesting property of simplest cubic fields for our purpose is that they have
a common inert prime.

Lemma 5.4. If Km is a simplest cubic field, the ideal (2)Z[xm] is prime.

Proof. Let P̃m be the reduction of Pm mod 2. We have: P̃m = X3 + X + 1 if m
is even, and P̃m = X3 + X2 + 1 if m is odd. In each case, P̃m has no root so it
is irreducible. By Dedekind’s criterion ([20], I, Proposition 8.3), it follows that 2
remains prime in Km. �

Let LN be the compositum of the Hilbert class fields Lm, for m ∈ N . We are in
a position to prove that this field has the Property (B).

Proposition 5.5. For all x ∈ L∗
N of infinite order:

h(x) ≥ log(2)

18
.
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Proof. The proof is very close to that of Theorem 1.9, and we will not enter in all the
details. Let x of infinite order in a finite compositum LN (x), and v|2 in M(LN (x)).
Let m ∈ N (x) and y ∈ OLm

. Since 2 is inert in Km, it splits completely in Lm so
that the residue field at v is F23 and∣∣y8 − y

∣∣
v
≤ 2−1.

By construction of N , the fields Lm, for m ∈ N (x), have pairwise coprime discrim-
inants. Suppose first that x is an algebraic integer. Exactly like in Lemma 4.2, we
get: ∣∣x8 − x

∣∣
v
≤ 2−1.

We now apply a 2-adic acceleration trick:∣∣x16 − x2
∣∣
v
=

∣∣(x8 − x)2 + 2x(x8 − x)
∣∣
v
≤ 2−2.

If x is no longer an algebraic integer, we use strong approximation and imitate the
proof of Corollary 4.4, which yields:∣∣x16 − x2

∣∣
v
≤ 2−2 max{1, |x|v}18.

We can now apply the product formula to x16 − x2, which is not zero by the
hypothesis on x, with trivial estimates at places not above 2. We find the expected
bound:

h(x) ≥ log(4)− log(2)

18
=

log(2)

18
.

�

Remark. The field LN also has a rather complicated Galois structure. For each
m ∈ N , one can prove that:

[Lm : Km] ≥ fm
e log(fm)3

;

and under the assumption of GRH, the abelian group Gal(Lm/Km) has exponent

� log(m)
log log(m) , where � means that the stated inequality is true up to a positive

constant ([19], Theorem 4 and Proposition 9).

5.3. Inert primes in cyclotomic fields. For an infinite compositum of cyclo-
tomic fields, the first condition is not realized. However, we remark that there is a
good criterion to identify inert primes in this case. For p ∈ P a prime, let Q(ξp) be
the field generated by a primitive p-th root of unity.

Lemma 5.6. A prime q �= p is inert in Q(ξp) if and only if the image of q in
(Z/pZ)∗ is a generator.

Proof. See [30], Theorem 2.13. �

The existence of infinitely many p’s such that q is a generator of (Z/pZ)∗ is the
object of Artin’s conjecture on primitive roots. A special case is the following.

Conjecture 5.7 (Artin). The set Pq of primes p such that q is a generator of

(Z/pZ)∗ has density cA :=
∏

p∈P

(
1− 1

p(p−1)

)
> 0.
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The real number cA ≈ 0.37 is supposed to be independent of q. Artin’s conjecture
holds under the assumption of GRH ([13]). Furthermore, Heath-Brown proved (see
[12], or the earlier version [10]) that for all primes q but at most two, the set Pq is
infinite and

|Pq ∩ [1, x]| � x

log(x)2
.

It is also possible to bound from below the exponent of the class group of Q(ξp)
explicitly in terms of p (see for instance [2], Corollary 2).
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E-mail address: aurelien.galateau@univ-fcomte.fr

http://www.ams.org/mathscinet-getitem?mr=0568299
http://www.ams.org/mathscinet-getitem?mr=0568299
http://www.ams.org/mathscinet-getitem?mr=1503118
http://www.ams.org/mathscinet-getitem?mr=1134735
http://www.ams.org/mathscinet-getitem?mr=1134735
http://www.ams.org/mathscinet-getitem?mr=1862112
http://www.ams.org/mathscinet-getitem?mr=1862112
http://www.ams.org/mathscinet-getitem?mr=1697859
http://www.ams.org/mathscinet-getitem?mr=1697859
http://www.ams.org/mathscinet-getitem?mr=1233979
http://www.ams.org/mathscinet-getitem?mr=1233979
http://www.ams.org/mathscinet-getitem?mr=1062800
http://www.ams.org/mathscinet-getitem?mr=1062800
http://www.ams.org/mathscinet-getitem?mr=0137689
http://www.ams.org/mathscinet-getitem?mr=0137689
http://www.ams.org/mathscinet-getitem?mr=0360515
http://www.ams.org/mathscinet-getitem?mr=0360515
http://www.ams.org/mathscinet-getitem?mr=0387283
http://www.ams.org/mathscinet-getitem?mr=0387283
http://www.ams.org/mathscinet-getitem?mr=0204426
http://www.ams.org/mathscinet-getitem?mr=0204426
http://www.ams.org/mathscinet-getitem?mr=817210
http://www.ams.org/mathscinet-getitem?mr=817210
http://www.ams.org/mathscinet-getitem?mr=1312368
http://www.ams.org/mathscinet-getitem?mr=1312368
http://www.ams.org/mathscinet-getitem?mr=718674
http://www.ams.org/mathscinet-getitem?mr=718674
http://www.ams.org/mathscinet-getitem?mr=866122
http://www.ams.org/mathscinet-getitem?mr=866122

	1. Introduction
	Algebraic numbers with small height
	The Bogomolov Property
	The Bogomolov Property in fields generated by 𝑗-invariants

	2. Supersingular primes and complex multiplication
	2.1. Supersingularity
	2.2. Complex multiplication
	2.3. Singular moduli

	3. Selection of 𝑗-invariants and Galois properties
	3.1. Simultaneous supersingularity
	3.2. Galois properties of fields generated by singular moduli

	4. Heights and fields generated by 𝑗-invariants
	4.1. Preliminaries on heights
	4.2. A particular case
	4.3. Local analysis
	4.4. Proof of the theorem

	5. Further examples
	5.1. Generalization to families of Galois fields
	5.2. Simplest cubic fields
	5.3. Inert primes in cyclotomic fields

	Acknowledgments
	References

