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LAMPLIGHTER GROUPS AND VON NEUMANN‘S

CONTINUOUS REGULAR RING

GÁBOR ELEK

(Communicated by Marius Junge)

Abstract. Let Γ be a discrete group. Following Linnell and Schick one can
define a continuous ring c(Γ) associated with Γ. They proved that if the Atiyah
Conjecture holds for a torsion-free group Γ, then c(Γ) is a skew field. Also,
if Γ has torsion and the Strong Atiyah Conjecture holds for Γ, then c(Γ) is a
matrix ring over a skew field. The simplest example when the Strong Atiyah
Conjecture fails is the lamplighter group Γ = Z2 �Z. It is known that C(Z2 �Z)
does not even have a classical ring of quotients. Our main result is that if H
is amenable, then c(Z2 �H) is isomorphic to a continuous ring constructed by

John von Neumann in the 1930s.

1. Introduction

Let us consider Matk×k(C) the algebra of k by k matrices over the complex field.
This ring is a unital ∗-algebra with respect to the conjugate transposes. For each
element A ∈ Matk×k(C) one can define A∗ satisfying the following properties:

• (λA)∗ = λA∗,
• (A+B)∗ = A∗ +B∗,
• (AB)∗ = B∗A∗,
• 0∗ = 0, 1∗ = 1.

Also, each element has a normalized rank rk(A) = Rank(A)/k with the following
properties:

• rk(0) = 0, rk(1) = 1,
• rk(A+B) ≤ rk(A) + rk(B),
• rk(AB) ≤ min{rk(A), rk(B)},
• rk(A∗) = rk(A),
• if e and f are orthogonal idempotents, then rk(e+ f) = rk(e) + rk(f).

The ring Matk×k(C) has an algebraic property; namely, von Neumann called
regularity: Any principal left-(or right) ideal can be generated by an idempotent.
Furthermore, among these generating idempotents there is a unique projection
(that is, Matk×k(C) is a ∗-regular ring). In a von Neumann regular ring any non-
zerodivisor is necessarily invertible. One can also observe that the algebra of ma-
trices is proper, that is,

∑n
i=1 aia

∗
i = 0 implies that all the matrices ai are zero.
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One should note that if R is a ∗-regular ring with a rank function, then the rank
extends to Matk×k(R) [6], where the extended rank has the same property as rk
except that the rank of the identity is k.

One can immediately see that the rank function defines a metric d(A,B) :=
rk(A − B) on any algebra with a rank, and the matrix algebra is complete with
respect to this metric. These complete ∗-regular algebras are called continuous ∗-
algebras (see [5] for an extensive study of continuous rings). Note that for the matrix
algebras the possible values of the rank functions are 0, 1/k, 2/k, . . . , 1. John von
Neumann observed that there are some interesting examples of infinite dimensional
continuous ∗-algebras, where the rank function can take any real values in between
0 and 1. His first example was purely algebraic.

Example 1. Let us consider the following sequence of diagonal embeddings:

C → Mat2×2(C) → Mat4×4(C) → Mat8×8(C) → . . . .

One can observe that all the embeddings are preserving the rank and the ∗-operation.
Hence the direct limit lim−→Mat2k×2k(C) is a ∗-regular ring with a proper rank func-
tion. The addition, multiplication, the ∗-operation and the rank function can be
extended to the metric completion M of the direct limit ring. The resulting algebra
M is a simple, proper, continuous ∗-algebra, where the rank function can take all
the values on the unit interval.

Example 2. Consider a finite, tracial von Neumann algebra N with trace func-
tion trN . Then N is a ∗-algebra equipped with a rank function. If P is a
projection, then rkN (P ) = trN (P ). For a general element A ∈ N , rkN (A) =

1 − limt→∞
∫ t

0
trN (Eλ)dλ, where

∫∞
0

Eλ dλ is the spectral decomposition of A∗A.
In general, N is not regular, but it has the Ore property with respect to its zero
divisors. The Ore localization of N with respect to its non-zerodivisors is called
the algebra of affiliated operators and denoted by U(N ). These algebras are also
proper continuous ∗-algebras [1]. The rank of an element A ∈ U(N ) is given by
the trace of the projection generating the principal ideal U(N )A. It is important
to note that U(N ) is the rank completion of N (Lemma 2.2, [12]).

Linnell and Schick observed [9] that if X is a subset of a proper ∗-regular algebra
R, then there exists a smallest ∗-regular subalgebra containing X, the ∗-regular
closure. Now let Γ be a countable group and CΓ be its complex group algebra.
Then one can consider the natural embedding of the group algebra to its group
von Neumann algebra CΓ → NΓ. Let U(Γ) denote the Ore localization of N (Γ)
and the embedding CΓ → U(Γ). Since U(Γ) is a proper ∗-regular ring, one can
consider the smallest ∗-algebra A(Γ) in U(Γ) containing C(Γ). Let c(Γ) be the
completion of the algebra A above. It is a continuous ∗-algebra [5]. Of course,
if the rank function has only finitely many values in A, then c(Γ) equals A(Γ).
Note that if CΓ is embedded into a continuous ∗-algebra T , then one can still
define cT (Γ) as the smallest continuous ring containing CΓ. In [3] we proved that
if Γ is amenable, c(Γ) = cT (Γ) for any embedding CΓ → T associated to sofic
representations of Γ, hence c(Γ) can be viewed as a canonical object. Linnell and
Schick calculated the algebra c(Γ) for several groups, where the rank function has
only finitely many values on A. They proved the following results:

• If Γ is torsion-free and the Atiyah Conjecture holds for Γ, then c(Γ) is a
skew-field. This is the case when Γ is amenable and CΓ is a domain. Then
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c(Γ) is the Ore localization of CΓ. If Γ is the free group of k generators,
then c(Γ) is the Cohen-Amitsur free skew field of k generators. The Atiyah
Conjecture for a torsion-free group means that the rank of an element in
Matk×k(CΓ) ⊂ Matk×k(U(N (Γ))) is an integer.

• If the orders of the finite subgroups of Γ are bounded and the Strong Atiyah
Conjecture holds for Γ, then c(Γ) is a finite dimensional matrix ring over
some skew-field. In this case the Strong Atiyah Conjecture means that the
ranks of an element in Matk×k(CΓ) ⊂ Matk×k(U(N (Γ))) is in the abelian
group 1

lcm(Γ)
Z, where lcm(Γ) indicates the least common multiple of the

orders of the finite subgroups of Γ.

The lamplighter group Γ = Z2 �Z has finite subgroups of arbitrarily large orders.
Also, although Γ is amenable, CΓ does not satisfy the Ore condition with respect
to its non-zerodivisors [8]. In other words, it has no classical ring of quotients. The
goal of this paper is to calculate c(Z2 �Z) and even c(Z2 �H), where H is a countably
infinite amenable group.

Theorem 1. If H is a countably infinite amenable group, then c(Z2 � H) is the
simple continuous ring M of von Neumann.

2. Crossed product algebras

In this section we recall the notion of crossed product algebras and the group-
measure space construction of Murray and von Neumann. Let A be a unital,
commutative ∗-algebra and φ : Γ → Aut(A) be a representation of the countable
group Γ by ∗-automorphisms. The associated crossed product algebra A � Γ is
defined the following way. The elements of A� Γ are the finite formal sums∑

γ∈Γ

aγ · γ,

where aγ ∈ A. The multiplicative structure is given by

δ · aγ = φ(δ)(aγ) · δ.

The ∗-structure is defined by γ∗ = γ−1 and (γ · a)∗ = a∗ · γ−1. Note that

(δ · aγ)∗ = (φ(δ)aγ · δ)∗ = δ∗ · φ(δ)a∗γ = φ(δ−1)φ(δ)a∗γ · δ−1 = a∗γ · δ∗.

Now let (X,μ) be a probability measure space and τ : Γ � X be a measure
preserving action of a countable group Γ on X. Then we have a ∗-representation τ̂
of Γ in Aut(L∞(X,μ)), where L∞(X,μ) is the commutative ∗-algebra of bounded
measurable functions on X (modulo zero measure perturbations)

τ̂ (γ)(f)(x) = f(τ (γ−1)(x)).

Let H = l2(Γ, L2(X,μ)) be the Hilbert space of L2(X,μ)-valued functions on Γ.
That is, each element of H can be written in the form of∑

γ∈Γ

bγ · γ,
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where
∑

γ∈Γ ‖bγ‖2 < ∞. Then we have a representation L of L∞(X,μ) � Γ on

l2(Γ, L2)(X,μ)) by

L(
∑
γ∈Γ

aγ · γ)(
∑
δ∈Γ

bδ · δ) =
∑
δ∈Γ

⎛
⎝∑

γ∈Γ

aγ(τ̂(γ)(βδ)) · γδ

⎞
⎠ .

Note that L(
∑

γ∈Γ aγ · γ) is always a bounded operator. A trace is given on

L∞(X,μ))� Γ by

Tr(S) =

∫
X

a1(x)dμ(x).

The weak operator closure of L(L∞
c (X,μ)) � Γ) in B

(
l2(Γ, L2(X,μ))

)
is the

von Neumann algebra N (τ ) associated to the action. Here L∞
c (X,μ) denotes the

subspace of functions in L∞(X,μ) having only countable many values.
Note that one can extend Tr to TrN (τ) on the von Neumann algebra to make it

a tracial von Neumann algebra.
We will denote by c(τ ) the smallest continuous algebra in U(N (τ )) contain-

ing L∞
c (X,μ) � Γ. One should note that the weak closure of L∞

c (X,μ) � Γ in
B
(
l2(Γ, L2(X,μ))

)
is the same as the weak closure of L∞(X,μ) � Γ. Hence our

definition for the von Neumann algebra of an action coincides with the classical
definition. On the other hand, c(L∞

c (X,μ)� Γ) is smaller than c(L∞(X,μ)� Γ).

3. The Bernoulli algebra

LetH be a countable group. Consider the Bernoulli shift spaceBH :=
∏

h∈H{0, 1}
with the usual product measure νH . The probability measure preserving action
τH : H � (BH , νH) is defined by

τH(δ)(x)(h) = x(δ−1h),

where x ∈ BH , δ, h ∈ H. Let AH be the commutative ∗-algebra of functions that
depend only on finitely many coordinates of the shift space. It is well known that
the Rademacher functions {RS}S⊂H, |S|<∞ form a basis in AH , where

RS(x) =
∏
δ∈S

exp(iπx(δ)).

The Rademacher functions with respect to the pointwise multiplication form an
abelian group isomorphic to ⊕h∈HZ2 the Pontrjagin dual of the compact group
BH satisfying

• RSRS′ = RS�S′ ,
•
∫
BH

RS dν = 0, if |S| > 0,
• R∅ = 1.

The group H acts on AH by

τ̂H(δ)(f)(x) = f
(
τH(δ−1)(x)

)
.

Hence,

τ̂H(δ)RS = RδS .
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Therefore, the elements of AH �H can be uniquely written as in the form of the
finite sums ∑

δ

∑
S

cδ,SRS · δ,

where δ ·RS = RδS · δ.
Now let us turn our attention to the group algebra C(Z2 � H). For δ ∈ H, let

tδ be the generator in
∑

h∈H Z2 belonging to the δ-component. Any element of
C(Z2 �H) can be written in a unique way as a finite sum∑

δ

∑
S

cδ,StS · δ,

where tS =
∏

s∈S ts, δ · tS = tδS , tStS′ = tS�S′ . Also note that

Tr(
∑
δ

∑
S

cδ,StS · δ) = c1,∅.

Hence we have the following proposition.

Proposition 3.1. There exists a trace preserving ∗-isomorphism

κ : C(Z2 �H) → AH �H

such that
κ(
∑
δ

∑
S

cδ,StS · δ) =
∑
δ

∑
S

cδ,SRS · δ.

Recall that if A ⊂ N1, B ⊂ N1 are weakly dense *-subalgebras in finite tra-
cial von Neumann algebras N1 and N2 and κ : A → B is a trace preserving
∗-homomorphism, then κ extends to a trace preserving isomorphism between the
von Neumann algebras themselves (see e.g. [7, Corollary 7.1.9]). Therefore, κ :
C(Z2 �H) → AH �H extends to a trace (and hence rank) preserving isomorphism
between the von Neumann algebras N (Z2 �H) and N (τH).

Proposition 3.2. For any countable group H,

c(Z2 �H) ∼= c(τH).

Proof. The rank preserving isomorphism κ : N (Z2 � H) → N (τH) extends to a
rank preserving isomorphism between the rank completions, that is, the algebras
of affiliated operators. It is enough to prove that the rank closure of AH � H is
L∞
c (BH , νH)�H. �

Lemma 3.1. Let f ∈ L∞
c (BH , νH). Then rkN (τH)(f) = νH(supp(f)).

Proof. By definition,

rkN (τH)(f) = 1− lim
λ→0

trN (τH)Eλ,

where Eλ is the spectral projection of f∗f corresponding to λ and

trN (τH)Eλ = νH({x | |f2(x)| ≤ λ}).
Hence, rkN (τH)(f) = 1− νH({x | f2(x) = 0}) = νH(supp(f)). �

Let {mn}∞n=1 ⊂ AH ,mn
rk→ m ∈ L∞

c (BH , νH). Then mn · γ rk→ m · γ. Therefore
our proposition follows from the lemma below.

Lemma 3.2. AH is dense in L∞
c (BH , νH) with respect to the rank metric.
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Proof. By Lemma 3.1, L∞
fin(BH , νH) is dense in L∞

c (BH , νH), where L∞
fin(BH , νH)

is the ∗-algebra of functions taking only finitely many values. Recall that V ⊂ BH

is a basic set if 1V ∈ AH . It is well known that any measurable set in BH can be
approximated by basic sets, that is, for any U ⊂ BH , there exists a sequence of
basic sets {Vn}∞n=1 such that

(1) lim
n→∞

νH(Vn�U) = 0.

By (1) and Lemma 3.1

lim
n→∞

rkN (τn)(1Vn
− 1U ) = 0.

Let f =
∑l

m=1 cm1Um
, where Um are disjoint measurable sets. Let

lim
n→∞

νH(V m
n �Um) = 0,

where {V m
n }∞n=1 are basic sets. Then

lim
n→∞

rkN (τn)(

l∑
m=1

cm1V m
n

− f) = 0.

Therefore, AH is dense in L∞
fin(BH , νH). �

4. The odometer algebra

The odometer algebra is constructed via the odometer action using the algebraic
crossed product construction. Let us consider the compact group of 2-adic integers
Ẑ(2). Recall that Ẑ(2) is the completion of the integers with respect to the dyadic
metric

d(2)(n,m) = 2−k,

where k is the power of two in the prime factor decomposition of |m − n|. The

group Ẑ(2) can be identified with the compact group of one way infinite sequences
with respect to the binary addition.

The Haar measure μhaar on Ẑ(2) is defined by μhaar(U
l
n) = 1/2n, where 0 ≤ l ≤

2n − 1 and U l
n is the clopen subset of elements in Ẑ(2) having residue l modulo 2n.

Let T be the addition map x → x+1 in Ẑ(2). The map T defines an action ρ : Z �

(Ẑ(2), μhaar) The dynamical system (T, Ẑ(2), μhaar) is called the odometer action.

As in Section 3, we consider the ∗-subalgebra of function AM in L∞(Ẑ(2), μhaar)

that depends only on finitely many coordinates of Ẑ(2). We consider a basis for
AM . For n ≥ 0 and 0 ≤ l ≤ 2n − 1 let

F l
n(x) = exp

(
2πix(mod 2n)

2n
l

)
.

Notice that F 2l
n+1 = F l

n. Then the functions {F l
n}n,l|(l,n)=1 form the Prüfer 2-group

Z(2) = Z1 ⊂ Z2 ⊂ Z4 ⊂ Z8 ⊂ . . .

with respect to the pointwise multiplication. The discrete group Z(2) is the Pontr-

jagin dual of the compact abelian group Ẑ(2). The element F 1
n is the generator of

the cyclic subgroup Z2n . Note that∫
Ẑ(2)

F l
n dμhaar = 0
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except if l = 0, n = 0, when F l
n ≡ 1. Observe that if k ∈ Z, then

(2) ρ(k)F l
n = F l+k(mod 2n)

n

since F l
n(x− k) = F

l+k(mod 2n)
n (x). Hence we have the following lemma.

Lemma 4.1. The elements of AM � Z can be uniquely written as finite sums in
the form ∑

k

∑
n≥0

∑
l|(l,n)=1

cn,l,kF
l
n · k,

where k · F l
n = F

l+k(mod 2n)
n and F 0

0 = 1.

5. Periodic operators

Definition 5.1. A function Z× Z → C is a periodic operator if there exists some
n ≥ 1 such that

• A(x, y) = 0, if |x− y| > 2n,
• A(x, y) = A(x+ 2n, y + 2n).

Observe that the periodic operators form a ∗-algebra, where
• (A+B)(x, y) = A(x, y) +B(x, y),
• AB(x, y) =

∑
z∈Z

A(x, z)B(z, y),
• A∗(x, y) = A(y, x).

Proposition 5.1. The algebra of periodic operators P is ∗-isomorphic to a dense
subalgebra of M.

Proof. We call A ∈ P an element of type-n if

• A(x, y) = A(x+ 2n, y + 2n),
• A(x, y) = 0 if 0 ≤ x ≤ 2n − 1, y > 2n − 1,
• A(x, y) = 0 if 0 ≤ x ≤ 2n − 1, y < 0.

Clearly, the elements of type-n form an algebra Pn isomorphic to Mat2n×2n(C) and
Pn → Pn+1 is the diagonal embedding. Hence, we can identify the algebra of finite
type elements Pf =

⋃∞
n=1 Pn with lim−→Mat2n×2n(C).

For A ∈ P, if n ≥ 1 is large enough, let An ∈ Pn be defined the following way:

• An(x, y) = A(x, y) if 2nl ≤ x, y ≤ 2nl + 2n − 1 for some l ∈ Z.
• Otherwise, A(x, y) = 0.

Lemma 5.1. (i): {An}∞n=1 is a Cauchy-sequence in M.
(ii): (A+B)n = An +Bn.
(iii): rkM(A∗

n − (A∗)n) = 0.
(iv): rkM((ABn)−AnBn) = 0.
(v): limn→∞ An = 0 if and only if A = 0.

Proof. First observe that for any Q ∈ Pn

rkM(Q) ≤ |{0 ≤ x ≤ 2n − 1 | ∃ 0 ≤ y ≤ 2n − 1 such that An(x, y) �= 0}|
2n

.

Suppose that A(x, y) = A(x+ 2k, y + 2k) and k < n < m. Then

|{0 ≤ x ≤ 2n − 1 | An(x, y) �= Am(x, y) for some 0 ≤ y ≤ 2n − 1}| ≤ 2k2m−n.

Hence by the previous observation, {An}∞n=1 is a Cauchy sequence. Note that (iii)
and (iv) can be proved similarly; the proof of (ii) is straightforward. In order to
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prove (v) let us suppose that A(x, y) = 0 whenever |x − y| ≥ 2k. Let n > k and
0 ≤ y ≤ 2k − 1 such that A(x, y) �= 0 for some −2k ≤ x ≤ 2k − 1. Therefore

rkMAn ≥ 2n−k−1
2n . Thus (v) follows. �

Let us define φ : P → M by φ(A) = limn→∞ An. By the previous lemma, φ is
an injective ∗-homomorphism. �
Definition 5.2. A periodic operator A is diagonal if A(x, y) = 0, whenever x �= y.
The diagonal operators form the abelian ∗-algebra D ⊂ P.

Lemma 5.2. We have the isomorphism D ∼= C(Z(2)), where Z(2) is the Prüfer
2-group.

Proof. For n ≥ 1 and 0 ≤ l ≤ 2n − 1 let El
n ∈ D be defined by

El
n(x, x) := exp

(
2πix(mod 2n)

2n
l

)
.

It is easy to see that E2l
n+1 = El

n and the multiplicative group generated by E1
n is

isomorphic to Z2n . Observe that the set {El
n}n,l,(l,n)=1 forms a basis in the space

of n-type diagonal operators. Therefore, D ∼=
⋃∞

n=1 C(Z2n) = C(Z(2)). �
Let J ∈ P be the following element:

• J(x, y) = 1, if y = x+ 1.
• Otherwise, J(x, y) = 0.

Then

(3) J · El
n = El+1(mod 2n)

n .

Also, any periodic operator A can be written in a unique way as a finite sum∑
k∈Z

Dk · Jk,

where Dk is a diagonal operator in the form

Dk =

∞∑
n=0

∑
l|(l,n)=1

cl,n,kE
l
n.

Thus, by (2) and (3), we have the following corollary.

Corollary 5.1. The map ψ : P → AM � Z defined by

ψ(
∑
k

∑
n≥0

∑
l|(l,n)=1

cl,n,kE
l
n · k) =

∑
k

∑
n≥0

∑
l|(l,n)=1

cl,n,kF
l
n · k

is a ∗-isomorphism of algebras.

6. Lück’s Approximation Theorem revisited

The goal of this section is to prove the following proposition.

Proposition 6.1. We have c(ρ) ∼= M where ρ is the odometer action.

Proof. Let us define the linear map t : P → C by

t(A) :=

∑2n−1
i=0 A(i, i)

2n
,

where A ∈ P and A(x+ 2n, y + 2n) for all x, y ∈ Z. �
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Lemma 6.1. TrN (ρ)(ψ(A)) = t(A), where ψ is the ∗-isomorphism of Corollary
5.1.

Proof. Recall that TrN (ρ)(F
l
n) = 0 , except, when l = 0, n = 0, F l

n = 1. If n �= 0

and l �= 0, then t(El
n) is the sum of all k-th roots of unity for a certain k, hence

t(El
n) = 0. Also, t(1) = 1. Thus, the lemma follows. �

It is enough to prove that

(4) rkM(A) = rkN (ρ)(ψ(A)).

Indeed by (4), ψ is a rank-preserving ∗-isomorphism between P and AM�Z. Hence
the isomorphism ψ extends to a metric isomorphism

ψ̂ : P → AM � Z,

where P is the closure of P in M and AM � Z is the closure of AM �Z in U(N (ρ)).
Since P is dense in M, P ∼= M. Also, AM � Z is a ∗-subalgebra of U(N (ρ)), since
the ∗-ring operations are continuous with respect to the rank metric. Therefore
AM � Z is a continuous algebra isomorphic to M. Observe that the rank closure
AM � Z is isomorphic to the rank closure of L∞

c (Ẑ(2), μhaar)�Z by the argument
of Lemma 3.2. Therefore, c(ρ) ∼= M. Thus from now on, our only goal is to prove
(4).

Lemma 6.2. Let A ∈ P and An ∈ Mat2n×2n(C) as in Section 5. Then the matrices
{An}∞n=1 have uniformly bounded norms.

Proof. Let M,N be chosen in such a way that

• |An(x, y)| ≤ M for any x, y ∈ Z, n ≥ 1.
• |An(x, y)| = 0 if |x− y| ≥ N

2 .

Now let v = (v(1), v(2), . . . , v(2n)) ∈ C2n , ‖v‖2 = 1. Then

‖Anv‖2 =
2n∑
x=1

|
∑

y ||x−y|<N/2

An(x, y)v(y)|2 ≤ M2
2n∑
x=1

|
∑

y ||x−y|<N/2

v(y)|2

≤ M2N
2n∑
x=1

∑
y ||x−y|<N/2

|v(y)|2 ≤ M2
2n∑
y=1

N |v(y)|2 = M2N2.

Therefore, for any n ≥ 1, ‖An‖ ≤ MN. �

Lemma 6.3. Let A ∈ P. Then for any k ≥ 1

lim
k→∞

t((A∗
nAn)

k) = t((A∗A)k) = TrN (ρ)(ψ(A
∗A)k).

Proof. Let m ≥ 1, l ≥ 1, q ≥ 1 be integers such that

• A(x, y) = A(x+ 2m, y + 2m) for any x, y ∈ Z.
• A(x, y) = 0, if |x− y| ≥ l.
• |(A∗A)k(x, x)| ≤ q and |(A∗

nAn)
k(x, x)| ≤ q for any x ∈ Z.

By definition,

t((A∗
nAn)

k) =

∑2n

x=1(A
∗
nAn)

k(x, x)

2n

t((A∗A)k) =

∑2n

x=1(A
∗A)k(x, x)

2n
.
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Observe that if 2lk < x, 2n − 2lk, then

(A∗A)k(x, x) = (A∗
nAn)(x, x).

Hence,

|t((A∗A)k)− t((A∗
nAn)

k)| ≤ 4klq

2n
.

Thus our lemma follows. �

Now, we follow the idea of Lück [10]. Let μ be the spectral measure of ψ(A) ∈
N (ρ). That is

TrN (ρ)f(A
∗A) =

∫ K

0

f(x) dμ(x),

for all f ∈ C[0,K], where K > 0 is chosen in such a way that Specψ(A∗A) ⊂ [0,K]
and ‖A∗

nAn‖ ≤ K for all n ≥ 1. Also, let μn be the spectral measure of A∗
nAn, that

is,

t(f(A∗
nAn)) =

∫ K

0

f(x) dμn(x),

or all f ∈ C[0,K]. As in [10], we can see that the measures {μn}∞n=1 converge
weakly to μ. Indeed by Lemma 6.3,

lim
n→∞

t(P (A∗
nAn)) = TrN (ρ)P (A∗A)

for any real polynomial P . Therefore,

lim
n→∞

t(f(A∗
nAn)) = TrN (ρ)f(A

∗A)

for all f ∈ C[0,K].
Since rkM(An) = rkM(A∗

nAn) and rkN (ρ)(ψ(A)) = rkN (ρ)(ψ(A
∗A)), in order to

prove (4) it is enough to see that

lim
n→∞

rkM(A∗
nAn) = rkN (ρ)(ψ(A

∗A)).

Observe that rkM(A∗
nAn) = 1− μn(0) and

rkN (ρ)(ψ(A
∗A)) = 1− lim

λ→0
TrN (ρ)Eλ = μ(0).

Hence, our proposition follows from the lemma below (an analogue of Lück’s Ap-
proximation Theorem).

Lemma 6.4. limn→∞ μn(0) = μ(0).

Proof. Let Fn(λ) =
∫ λ

0
μn(t) dt and F (λ) =

∫ λ

0
μ(t) dt be the distribution func-

tions of our spectral measures. Since {μn}∞n=1 weakly converges to the measure
μ, it is enough to show that {Fn}∞n=1 converges uniformly. Let n ≤ m and
Dn

m : Mat2n×2n(C) → Mat2m×2m(C) be the diagonal operator. Let ε > 0. By
Lemma 5.1, if n,m are large enough,

Rank(Dn
m(An)−Am) ≤ ε2m.

Hence, by Lemma 3.5 in [2],

‖Fn − Fm‖∞ ≤ ε.

Therefore, {Fn}∞n=1 converges uniformly. �
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7. Orbit equivalence

First let us recall the notion of orbit equivalence. Let τ1 : Γ1 � (X,μ) resp.
τ2 : Γ2 � (Y, ν) be essentially free probability measure preserving actions of the
countably infinite groups Γ1 resp. Γ2. The two actions are called orbit equivalent if
there exists a measure preserving bijection Ψ : (X,μ) → (Y, ν) such that for almost
all x ∈ X and γ ∈ Γ1 there exists γx ∈ Γ2 such that

τ2(γx)(Ψ(x)) = Ψ(τ1(γ)(x)).

Feldman and Moore [4] proved that if τ1 and τ2 are orbit equivalent, then
N (τ1) ∼= N (τ2). The goal of this section is to prove the following proposition.

Proposition 7.1. If τ1 and τ2 are orbit equivalent actions, then c(τ1) ∼= c(τ2).

Our Theorem 1 follows from the proposition. Indeed, by Proposition 3.2 and
Proposition 6.1

M ∼= c(ρ) and c(Z2 �H) ∼= c(τH).

By the famous theorem of Ornstein and Weiss [11], the odometer action and the
Bernoulli shift action of a countably infinite amenable group are orbit equivalent.
Hence M ∼= c(Z2 �H). �

Proof. We build the proof of our proposition on the original proof of Feldman and
Moore. Let γ ∈ Γ1, δ ∈ Γ2. Let

M(δ, γ) = {y ∈ Y | τ2(δ)(y) = Ψ(τ1(γ)Ψ
−1(y))},

N(γ, δ) = {x ∈ X | τ1(γ)(x) = Ψ−1(τ2(δ)Ψ(x))}.
Observe that Ψ(N(δ, γ)) = M(γ, δ). Following Feldman and Moore ([4, Proposition
2.1]) for any γ ∈ Γ1, δ ∈ Γ2

κ(γ) =
∑
h∈Γ2

h · 1M(h,γ)

and

λ(δ) =
∑
g∈Γ1

g · 1N(g,δ)

are well defined. That is,
∑k

n=1 hn · 1M(hn,γ) converges weakly to κ(γ) ∈ N (τ2) as

k → ∞ and
∑k

n=1 gn · 1N(gn,δ) converges weakly to λ(δ) ∈ N (τ1) as k → ∞, where
{γn}∞n=1 resp. {δn}∞n=1 are enumerations of the elements of Γ1 resp. Γ2.

Furthermore, one can extend κ resp. λ to maps

κ′ : L∞((X,μ)� Γ1) → N (τ2)

resp.

λ′ : L∞((Y, ν)� Γ2) → N (τ1)

by

κ′(
∑
γ∈Γ1

aγ · γ) =
∑
γ∈Γ1

(aγ ◦Ψ−1) · κ(γ) =
∑
γ∈Γ1

(aγ ◦Ψ−1) ·
∞∑

n=1

hn · 1M(hn,γ)

and

λ′(
∑
δ∈Γ2

bδ · δ) =
∑
δ∈Γ2

(bδ ◦Ψ) · λ(δ) =
∑
δ∈Γ2

(bδ ◦Ψ) ·
∞∑

n=1

gn · 1N(gn,δ).
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The maps κ′ resp. λ′ are injective trace-preserving ∗-homomorphisms with weakly
dense ranges. Hence they extend to isomorphisms of von Neumann algebras

κ̂ : N (τ1) → N (τ2), λ̂ : N (τ2) → N (τ1),

where κ̂ and λ̂ are, in fact, the inverses of each other.

Lemma 7.1.

(5) lim
k→∞

rkN (τ2)

⎛
⎝∑

γ∈Γ1

(aγ ◦Ψ−1) ·
k∑

n=1

hn · 1M(hn,γ) − κ̂(
∑
γ∈Γ1

aγ · γ)

⎞
⎠ = 0,

(6) lim
k→∞

rkN (τ1)

(∑
δ∈Γ2

(bδ ◦Ψ) ·
k∑

n=1

gn · 1N(gn,δ) − λ̂(
∑
δ∈Γ2

bδ · δ)
)

= 0.

Proof. By definition, the disjoint union
⋃∞

n=1 M(hn, γ) equals Y (modulo a set of

measure zero). We need to show that if {
∑k

n=1 Tn·1M(hn,γ)}∞k=1 weakly converges to

an element S ∈ N (τ2), then {
∑k

n=1 Tn·1M(hn,γ)}∞k=1 converges to S in the rank met-

ric as well, where Tn ∈ L∞
c (Y, ν) � Γ2. Let Pk =

∑k
n=1 1M(hn,γ) ∈ l2(Γ, L2(Y, ν)).

We denote by P̂k the element
∑k

n=1 1M(hn,γ) in L∞
c (Y, ν) � Γ2. By definition, if

L(A)(Pk) = 0, then AP̂k = 0. Now, by weak convergence,

L(S)(Pk) = lim
l→∞

l∑
n=1

Tn · 1M(hn,γ)(Pk).

That is,

L(S −
k∑

n=1

Tn · 1M(hn,γ))(Pk) = 0.

Therefore,

(S −
k∑

n=1

Tn · 1M(hn,γ))P̂k = 0.

Thus,

(S −
k∑

n=1

Tn · 1M(hn,γ)) = (S −
k∑

n=1

Tn · 1M(hn,γ))(1− P̂k).

By Lemma 3.1, rkN (τ2)(1− P̂k) = 1−
∑k

n=1 ν(M(hn, γ)), hence

lim
k→∞

rkN (τ2)(S −
k∑

n=1

Tn · 1M(hn,γ)) = 0.

�
Now let us turn back to the proof of our proposition. By (5), κ̂ maps the algebra

L∞
c (X,μ)� Γ1 into the rank closure of L∞

c (Y, ν)� Γ2. Since κ̂ preserves the rank,
κ̂ maps the rank closure of L∞

c (X,μ) � Γ1 into the rank closure of L∞
c (Y, ν) �

Γ2. Similarly, λ̂ maps the rank closure of L∞
c (Y, ν) � Γ2 into the rank closure of

L∞
c (X,μ) � Γ1. That is, κ̂ provides an isomorphism between the rank closures

of L∞
c (X,μ) � Γ1 and L∞

c (Y, ν) � Γ2. Therefore, the smallest continuous ring
containing L∞

c (X,μ)� Γ1 in U(N (τ1)) is mapped to the smallest continuous ring
containing L∞

c (Y, ν)� Γ2 in U(N (τ2)). �



LAMPLIGHTER GROUPS 2883

References

[1] S. K. Berberian, The maximal ring of quotients of a finite von Neumann algebra, Rocky
Mountain J. Math. 12 (1982), no. 1, 149–164, DOI 10.1216/RMJ-1982-12-1-149. MR649748
(83i:16005)
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