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ABSTRACT. Let I be a discrete group. Following Linnell and Schick one can
define a continuous ring ¢(I") associated with I. They proved that if the Atiyah
Conjecture holds for a torsion-free group I', then ¢(T") is a skew field. Also,
if " has torsion and the Strong Atiyah Conjecture holds for I', then ¢(I") is a
matrix ring over a skew field. The simplest example when the Strong Atiyah
Conjecture fails is the lamplighter group I' = Z2Z. It is known that C(Z21Z)
does not even have a classical ring of quotients. Our main result is that if H
is amenable, then ¢(Z2 ! H) is isomorphic to a continuous ring constructed by
John von Neumann in the 1930s.

1. INTRODUCTION

Let us consider Matyx,(C) the algebra of k by k matrices over the complex field.
This ring is a unital %-algebra with respect to the conjugate transposes. For each
element A € Matyy(C) one can define A* satisfying the following properties:

o (NA)* = \A*,

e (A+ B)" = A* + B*,
e (AB)* = B*A*,

e« 0" =0, 1" =1.

Also, each element has a normalized rank rk(A) = Rank(A)/k with the following
properties:

rk(0) = 0,7k(1) =

rk(A+ B) < rk(A) + rk(B),

rk(AB) < min{rk(A),rk(B)},
rk(A*) =rk(A),
if e and f are orthogonal idempotents, then rk(e + f) = rk(e) + rk(f).

The ring Matyx(C) has an algebraic property; namely, von Neumann called
regularity: Any principal left-(or right) ideal can be generated by an idempotent.
Furthermore, among these generating idempotents there is a unique projection
(that is, Matgxx(C) is a x-regular ring). In a von Neumann regular ring any non-
zerodivisor is necessarily invertible. One can also observe that the algebra of ma-
trices is proper, that is, Y7 | a;af = 0 implies that all the matrices a; are zero.
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One should note that if R is a *-regular ring with a rank function, then the rank
extends to Matgxx(R) [6], where the extended rank has the same property as rk
except that the rank of the identity is k.

One can immediately see that the rank function defines a metric d(A4, B) :=
rk(A — B) on any algebra with a rank, and the matrix algebra is complete with
respect to this metric. These complete *-regular algebras are called continuous *-
algebras (see [5] for an extensive study of continuous rings). Note that for the matrix
algebras the possible values of the rank functions are 0,1/k,2/k,...,1. John von
Neumann observed that there are some interesting examples of infinite dimensional
continuous *-algebras, where the rank function can take any real values in between
0 and 1. His first example was purely algebraic.

Example 1. Let us consider the following sequence of diagonal embeddings:
C— Mat2x2((C) — Mat4x4((C) — Matgxg(c> — ..

One can observe that all the embeddings are preserving the rank and the x-operation.
Hence the direct limit lim Matox 9% (C) is a x-regular ring with a proper rank func-
tion. The addition, multiplication, the x-operation and the rank function can be
extended to the metric completion M of the direct limit ring. The resulting algebra
M is a simple, proper, continuous *-algebra, where the rank function can take all
the values on the unit interval.

Example 2. Consider a finite, tracial von Neumann algebra A with trace func-
tion trps. Then N is a *-algebra equipped with a rank function. If P is a
projection, then rkp(P) = tra(P). For a general element A € N, rky(A) =
1 —limy_o0 fot trar(Ex)dA, where [° Eyd) is the spectral decomposition of A*A.
In general, N is not regular, but it has the Ore property with respect to its zero
divisors. The Ore localization of A/ with respect to its non-zerodivisors is called
the algebra of affiliated operators and denoted by U(N'). These algebras are also
proper continuous *-algebras [I]. The rank of an element A € U(N) is given by
the trace of the projection generating the principal ideal U(N)A. Tt is important
to note that U(N/) is the rank completion of N (Lemma 2.2, [12]).

Linnell and Schick observed [9] that if X is a subset of a proper *-regular algebra
R, then there exists a smallest x-regular subalgebra containing X, the x-regular
closure. Now let I' be a countable group and CI' be its complex group algebra.
Then one can consider the natural embedding of the group algebra to its group
von Neumann algebra CI' — NT. Let U(T') denote the Ore localization of N (T")
and the embedding CI" — U(T"). Since U(I") is a proper #-regular ring, one can
consider the smallest x-algebra A(T') in U(T") containing C(I'). Let ¢(I') be the
completion of the algebra A4 above. It is a continuous x-algebra [5]. Of course,
if the rank function has only finitely many values in A, then ¢(T") equals A(T).
Note that if CI' is embedded into a continuous x-algebra T, then one can still
define ¢ (T") as the smallest continuous ring containing CI'. In [3] we proved that
if T' is amenable, ¢(I') = ¢p(T") for any embedding CI' — T associated to sofic
representations of I', hence ¢(I") can be viewed as a canonical object. Linnell and
Schick calculated the algebra ¢(I") for several groups, where the rank function has
only finitely many values on .A. They proved the following results:

e If T is torsion-free and the Atiyah Conjecture holds for I'; then ¢(I") is a
skew-field. This is the case when I' is amenable and CI is a domain. Then
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¢(T") is the Ore localization of CI'. If T' is the free group of k generators,
then ¢(I") is the Cohen-Amitsur free skew field of k generators. The Atiyah
Conjecture for a torsion-free group means that the rank of an element in
Matgxx (CT') C Matyxx (U(N(T))) is an integer.

e If the orders of the finite subgroups of I' are bounded and the Strong Atiyah
Conjecture holds for T', then ¢(I") is a finite dimensional matrix ring over
some skew-field. In this case the Strong Atiyah Conjecture means that the
ranks of an element in Maty . (CT') C Matyx,(U(N(T))) is in the abelian
group mZ, where lem(T') indicates the least common multiple of the

orders of the finite subgroups of T'.

The lamplighter group I' = Z3Z has finite subgroups of arbitrarily large orders.
Also, although I' is amenable, CI" does not satisfy the Ore condition with respect
to its non-zerodivisors [§]. In other words, it has no classical ring of quotients. The
goal of this paper is to calculate ¢(Z21Z) and even ¢(Z2! H), where H is a countably
infinite amenable group.

Theorem 1. If H is a countably infinite amenable group, then c¢(Zo ! H) is the
simple continuous ring M of von Neumann.

2. CROSSED PRODUCT ALGEBRAS

In this section we recall the notion of crossed product algebras and the group-
measure space construction of Murray and von Neumann. Let .4 be a unital,
commutative x-algebra and ¢ : I' — Aut(A) be a representation of the countable
group I' by *-automorphisms. The associated crossed product algebra A x I' is
defined the following way. The elements of A x I' are the finite formal sums

E Ay -7,
vyer

where a, € A. The multiplicative structure is given by

5-ay = 6(8)(ay) - 5.

The *-structure is defined by v* =~~! and (v-a)* = a* - y~!. Note that
(6-ay)" = (¢(d)ay - 8)* =06" - ¢(0)a = ¢(5_1)¢(6)a: R al - 6"

Now let (X, pu) be a probability measure space and 7 : I' ~ X be a measure
preserving action of a countable group I on X. Then we have a *-representation 7
of T in Aut(L>®(X, ), where L (X, 1) is the commutative x-algebra of bounded
measurable functions on X (modulo zero measure perturbations)

(@) = F(r(y7)(2)).

Let H = [?(T", L?>(X, 1)) be the Hilbert space of L?(X, p)-valued functions on T'.
That is, each element of H can be written in the form of

Zb’y"ya

yel
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where > |65]> < oo. Then we have a representation L of L>(X,u) x I' on
(I, L?)(X, ) by

LO a7 bs-0) =Y [ D ay(F(1)(Bs) -0

yer ser sel \ el

Note that L(Z'yel" a - y) is always a bounded operator. A trace is given on
L*(X, p)) x I by

Tr(S):/Xal(x)du(x).

The weak operator closure of L(LZ°(X,p)) x I') in B (1*(I', L*(X, 1)) is the
von Neumann algebra N (7) associated to the action. Here L°(X, u) denotes the
subspace of functions in L>° (X, u) having only countable many values.

Note that one can extend Tr to Tras(;) on the von Neumann algebra to make it
a tracial von Neumann algebra.

We will denote by ¢(7) the smallest continuous algebra in U(N (7)) contain-
ing L°(X,u) x I'. One should note that the weak closure of L°(X,u) x I' in
B (I*(I', L*(X, p))) is the same as the weak closure of L>°(X, p) x I'. Hence our
definition for the von Neumann algebra of an action coincides with the classical
definition. On the other hand, ¢(L°(X, ) x T') is smaller than ¢(L>° (X, u) x T).

3. THE BERNOULLI ALGEBRA

Let H be a countable group. Consider the Bernoulli shift space By :=]],,c 10,1}
with the usual product measure vgy. The probability measure preserving action
T : H ~ (Bg,vy) is defined by

1 (0)(2)(h) = (87" h),

where x € By, ,h € H. Let Ay be the commutative x-algebra of functions that
depend only on finitely many coordinates of the shift space. It is well known that
the Rademacher functions {Rs}scn,|s|<oo form a basis in Ay, where

Rs(x) = H exp(imz(0)).
oes

The Rademacher functions with respect to the pointwise multiplication form an
abelian group isomorphic to ®pcyZ2 the Pontrjagin dual of the compact group
By satisfying

e RsRg = Rsng,
e [, Rsdv=0,if[S] >0,
L4 R@ =1

The group H acts on Ag by

Hence,
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Therefore, the elements of Ay x H can be uniquely written as in the form of the

finite sums
Z Z cs,5Rs - 0,
5 S

where § - Rg = Rsg - 0.

Now let us turn our attention to the group algebra C(Zs ! H). For § € H, let
ts be the generator in ), _, Z> belonging to the J-component. Any element of
C(Z2 H) can be written in a unique way as a finite sum

DD costs o
5 S
ts, 0 -tg = tsg, tstsr = tsas . Also note that

TT(Z ZC&,StS -0) = c1g-
5 S

Hence we have the following proposition.

where tg =[] cg

Proposition 3.1. There ezists a trace preserving x-isomorphism

H:C(ZQZH)—)AHNH

K(ZZ cs,sts - 6) = Z an,sRs - 0.
5 S 5 S

Recall that if A € Ni, B C N7 are weakly dense *-subalgebras in finite tra-
cial von Neumann algebras N7 and As and k : A — B is a trace preserving
sx-homomorphism, then x extends to a trace preserving isomorphism between the
von Neumann algebras themselves (see e.g. [7, Corollary 7.1.9]). Therefore, & :
C(Z2H) — Ag x H extends to a trace (and hence rank) preserving isomorphism
between the von Neumann algebras A (Zs ! H) and N (7).

such that

Proposition 3.2. For any countable group H,
C(Zg i H) = C(TH).

Proof. The rank preserving isomorphism x : N(Zs ! H) — N(7y) extends to a
rank preserving isomorphism between the rank completions, that is, the algebras
of affiliated operators. It is enough to prove that the rank closure of Ag x H is
LSO(BH,I/H)X]H. O

Lemma 3.1. Let f € L¥(Bu,vy). Then rky (7, (f) = vu(supp(f)).
Proof. By definition,
rkN(TH)(f) =1- }1\% trN(TH)E)W
where E) is the spectral projection of f*f corresponding to A and
trn () Ex = v ({a | |f2(2)] < AD).

Hence, tky(-;) (f) =1 —va({z | f*(z) = 0}) = va (supp(f)). O

Let {m,}>>, C Ay, my, g m € L¥(Bu,vy). Then my, - g m - . Therefore
our proposition follows from the lemma below.

Lemma 3.2. Ay is dense in LS°(By,vy) with respect to the rank metric.
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Proof. By Lemmal3.dl L%, (B, vp) is dense in L (B, vy ), where LY, (Bu, vi)
is the x-algebra of functions taking only finitely many values. Recall that V' C By
is a basic set if 1y, € Ag. It is well known that any measurable set in By can be
approximated by basic sets, that is, for any U C By, there exists a sequence of
basic sets {V,,}52,; such that

(1) lim vy (V,AU) = 0.

n—oo

By (1) and Lemma [31]
lim I"k_/\[(.rn)(lvn - 1U) =0.

n— o0
Let f = Zin:l ¢mlu,,, where Uy, are disjoint measurable sets. Let
lim vy (V,"AU,,) =0,
n— oo

where {V7*}2° | are basic sets. Then

!
lim rkN(Tn)(Z cmlym — f) =0.

n— 00
m=1

Therefore, Ay is dense in L;’ﬁn(BH, V). O

4. THE ODOMETER ALGEBRA

The odometer algebra is constructed via the odometer action using the algebraic
crossed product construction. Let us consider the compact group of 2-adic integers
Z2)- Recall that Z ) is the completion of the integers with respect to the dyadic
metric

d(2) (n7 m) = Qikv
where k is the power of two in the prime factor decomposition of |m — n|. The
group Zz) can be identified with the compact group of one way infinite sequences
with respect to the binary addition.

The Haar measure fi ., on Z(s) is defined by juy,,,.(UL) = 1/2", where 0 < [ <
2" — 1 and U} is the clopen subset of elements in Z(g) having residue [ modulo 2”.
Let T be the addition map z — z+1 in 2(2). The map T defines an action p : Z ~
(Z(z), Phaar) The dynamical system (7, Z(g), Phaar) is called the odometer action.
As in Section [B] we consider the x-subalgebra of funAction Appoin L (2(2)7”haar)
that depends only on finitely many coordinates of Z). We consider a basis for
Apr. Forn>0and 0 <1< 2™ —1 let

27 d 2"
Fl(2) = eap (Ml) .
2TL
Notice that Fzﬂ_l = F!. Then the functions {F7lz}n,l|(l,n):1 form the Priifer 2-group
Z(2)2Z1 CZy CZyCZgC...
with respect to the pointwise multiplication. The discrete group Zy) is the Pontr-

jagin dual of the compact abelian group 2(2). The element F! is the generator of
the cyclic subgroup Zo». Note that

/ Frlz dipaar =0
Z(2)
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except if | = 0,n = 0, when F! = 1. Observe that if k € Z, then
B p(k)FL, = Fmonz”)
since Fl(x — k) = FfLJrk(mOdzn)(a:). Hence we have the following lemma.

Lemma 4.1. The elements of Ay X Z can be uniquely written as finite sums in

the form
ST cnunFl -k,

k n>01|(1,n)=1

I+k(mod 2"
where k- FL = FLHHmed2") qng O = 1.
5. PERIODIC OPERATORS

Definition 5.1. A function Z x Z — C is a periodic operator if there exists some
n > 1 such that
o Alx,y)=0,if |z —y| > 27,
o Alx,y) = A(x+ 2",y +2").
Observe that the periodic operators form a x-algebra, where
o (A+ B)(z,y) = A(z,y) + B(x,y),

o AB(z,y) =3, c5 Az, 2)B(z,y),
o A*(z,y) = Ay, x).

Proposition 5.1. The algebra of periodic operators P is x-isomorphic to a dense
subalgebra of M.

Proof. We call A € P an element of type-n if
o Az, y) = Az +2",y +27),
e Alz,y)=0if0 <z <2" -1,y > 2" — 1,
e Alz,y)=0if0<az<2" -1,y <0.
Clearly, the elements of type-n form an algebra P,, isomorphic to Matgn x2n (C) and
Pr. — Pny1 is the diagonal embedding. Hence, we can identify the algebra of finite
type elements Py = J,~_, P, with lim Matgn 20 (C).
For A € P, if n > 1 is large enough, let A,, € P, be defined the following way:
o Ap(z,y) =A(z,y) if 2" < z,y <27+ 2" — 1 for some | € Z.
e Otherwise, A(z,y) = 0.
Lemma 5.1. (1): {4n}22, is a Cauchy-sequence in M.
(ii): (A+ B), = A, + B,.
(iii): rkaq(AE — (A*),) = 0.
(iv): rkym((ABy) — ApBy) = 0.
(v): limp 00 Ay =0 if and only if A=0.
Proof. First observe that for any @ € P,
<gz<2"—-11]130<y<2"—1such that A
rkM(Q)SHO_x_ | 0_y_2n such that n(ac,y);«éO}\

Suppose that A(z,y) = A(x + 2%,y +2%) and k < n < m. Then
{0 <@ <2" =1 | Au(z,y) # Am(z,y) for some 0 <y < 2" — 1}| < 282m7",

Hence by the previous observation, {A,}52, is a Cauchy sequence. Note that (iii)
and (iv) can be proved similarly; the proof of (ii) is straightforward. In order to



2878 GABOR ELEK

prove (v) let us suppose that A(x,y) = 0 whenever |z —y| > 2*. Let n > k and
0 <y < 2F —1 such that A(z,y) # 0 for some —2¥ < z < 2¥ — 1. Therefore

rkap Ay, > 2n;:*1. Thus (v) follows. O
Let us define ¢ : P - M by ¢(A) = lim,,—, o, A,,. By the previous lemma, ¢ is
an injective x-homomorphism. (]

Definition 5.2. A periodic operator A is diagonal if A(z,y) = 0, whenever z # y.
The diagonal operators form the abelian *-algebra D C P.

Lemma 5.2. We have the isomorphism D = (C(Z(Q)), where Z) is the Priifer
2-group.

Proof. Forn>1and 0 <[ <2"™—1 let EfL € D be defined by
271 d 2"
El(z,z) = exp (MQ .

21’L
It is easy to see that E2! ‘= = E!, and the multiplicative group generated by E! is
isomorphic to Zs». Observe that the set {Efl}n,l,(l,n):l forms a basis in the space
of n-type diagonal operators. Therefore, D = J;~ | C(Z2n) = C(Za)). O
Let J € P be the following element:
o J(z,y)=1,ify=a+1.
e Otherwise, J(z,y) = 0.
Then
(3) JE’fl — Efl+1(mod2”).
Also, any periodic operator A can be written in a unique way as a finite sum
Z Dy, - J*,
keZ
where Dy, is a diagonal operator in the form

De=3 > cniby
n=01|(l,n)=1
Thus, by @) and @), we have the following corollary.
Corollary 5.1. The map v : P — Ay X Z defined by

w(zz Z Clm,kEfz'k ZZ Z CanF -k

k n>01|(1,n)=1 E n>01|(l,n)=1
is a x-isomorphism of algebras.
6. LUCK’S APPROXIMATION THEOREM REVISITED
The goal of this section is to prove the following proposition.
Proposition 6.1. We have ¢(p) = M where p is the odometer action.

Proof. Let us define the linear map ¢t : P — C by
M1 4.
: A
t(A) = 21:0 (171)’
2'IL
where A € P and A(z + 2",y +2") for all 2,y € Z. O
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Lemma 6.1. Try ) ((A)) = t(A), where v is the *-isomorphism of Corollary
b1

Proof. Recall that TrN(p)(Ffl) =0, except, when | = 0,n = 0,F! = 1. If n # 0
and [ # 0, then t(E!) is the sum of all k-th roots of unity for a certain k, hence
t(EL) = 0. Also, t(1) = 1. Thus, the lemma follows. O

It is enough to prove that

(4) rka(A) = rky(p) (V(A)).

Indeed by @), ¢ is a rank-preserving *-isomorphism between P and Ay x Z. Hence
the isomorphism 1 extends to a metric isomorphism

1[) P — Anr % Z,

where P is the closure of P in M and Aj; x Z is the closure of Ay x Z in U(N(p)).
Since P is dense in M, P =2 M. Also, Ay x Z is a *-subalgebra of U(N(p)), since
the *-ring operations are continuous with respect to the rank metric. Therefore
Anrr X 7 is a continuous algebra isomorphic to M. Observe that the rank closure

Apnr X Z is isomorphic to the rank closure of LS° (Z(g), Phaar) X Z by the argument
of Lemma Therefore, ¢(p) 2 M. Thus from now on, our only goal is to prove

@.
Lemma 6.2. Let A € P and A,, € Matanyan(C) as in SectionBl Then the matrices
{4}, have uniformly bounded norms.
Proof. Let M, N be chosen in such a way that
o |[A,(z,y)| < M for any z,y € Z,n > 1.
o [An(z,y)|=0if [z —y| > F.
Now let v = (v(1),v(2),...,v(2")) € C?", ||v||> = 1. Then

AP =31 D> Ay <MY [ Y vl

=1 y|lz—y|<N/2 =1 y|lz—y|<N/2
2" 2"
<SMPNY > )P < M*Y Nu(y)] = M*N.
r=ly|lz—y|<N/2 y=1
Therefore, for any n > 1, ||A,|| < MN. O

Lemma 6.3. Let A € P. Then for any k > 1
Tim 1((A7 A40)%) = H((A*A)%) = Ty (V(A* A)Y)

Proof. Let m > 1,1 > 1,q > 1 be integers such that
o Alx,y) = A(x +2™,y+ 2™) for any x,y € Z.
o Alxz,y)=0,if |z —y| > L
o [(A*A)k(x,2)| < g and |(A5A,)F(z,2)| < g for any z € Z.
By definition,
2" * k
t((AZAn)k) _ Zz:l(Argf’ﬂ) (:17,5[:)
on
A*A)k




2880 GABOR ELEK

Observe that if 21k < x,2™ — 21k, then
(A* A (z,2) = (A% A, (x, 2).
Hence,
(A" A)) — t((45,4,))] < "8,
Thus our lemma follows. O

Now, we follow the idea of Liick [I0]. Let p be the spectral measure of ¥(A) €
N(p). That is
K
T f(A°4) = [ @) duta),

for all f € C[0, K], where K > 0 is chosen in such a way that Speci(A*A) C [0, K]
and ||AXA,| < K for all n > 1. Also, let p,, be the spectral measure of A* A,,, that
is,

K
(A = [ F) dun(a),
0
or all f € C[0,K]. As in [10], we can see that the measures {u,}>2; converge
weakly to p. Indeed by Lemma [6.3]

Jim ¢(P(A}AR)) = Trn() P(A"A)
for any real polynomial P. Therefore,
lim t(f(A54,)) = Te) f(A"A)

for all f € C[0, K].
Since kg (An) = tka (A5 An) and tkar(p) (¥(A)) = tka(,) (Y (A*A)), in order to
prove (@) it is enough to see that

n—oo

Observe that rka (A A,) =1 — p,(0) and
rhy(p) (¥(A7A4)) = 1 = lim Try(,) Ex = p(0).

Hence, our proposition follows from the lemma below (an analogue of Liick’s Ap-
proximation Theorem).

Lemma 6.4. lim, o (,(0) = p(0).

Proof. Let F,(\) = fo/\ Un(t)dt and F(N) = fo/\ wu(t) dt be the distribution func-
tions of our spectral measures. Since {un}o>; weakly converges to the measure
i, it is enough to show that {F,}°2; converges uniformly. Let n < m and
D7 : Matan xon (C) — Matgmyom (C) be the diagonal operator. Let € > 0. By
Lemma [5.1] if n,m are large enough,

Rank(D; (A,) — Ap) < e2™.
Hence, by Lemma 3.5 in [2],
| Fn = Frnlloo < e

Therefore, {F),}22, converges uniformly. O
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7. ORBIT EQUIVALENCE

First let us recall the notion of orbit equivalence. Let 71 : I'y ~ (X, ) resp.
T2 : I's ~ (Y,v) be essentially free probability measure preserving actions of the
countably infinite groups I'y resp. I's. The two actions are called orbit equivalent if
there exists a measure preserving bijection ¥ : (X, 1) — (Y, v) such that for almost
all x € X and v € I'; there exists v, € I's such that

72(72) (¥(2)) = ¥(11(7)(2)).

Feldman and Moore [4] proved that if 7 and 75 are orbit equivalent, then
N (1) 2 N(72). The goal of this section is to prove the following proposition.
Proposition 7.1. If 1y and 72 are orbit equivalent actions, then c(r1) = ¢(72).

Our Theorem [] follows from the proposition. Indeed, by Proposition and
Proposition [G.1]

M=c(p) and c(Zot H) = c(7p).
By the famous theorem of Ornstein and Weiss [L1], the odometer action and the

Bernoulli shift action of a countably infinite amenable group are orbit equivalent.
Hence M 2 ¢(Zy ! H). O

Proof. We build the proof of our proposition on the original proof of Feldman and
Moore. Let v € T'y, 6 € I's. Let

M@,y ={yeY |n(d)(y) =Y (y)}

N(7,0) ={z € X |ni(7)(x) = ¥ (r2(0)¥(x))}.
Observe that U(N(4,7)) = M(v, ). Following Feldman and Moore ([4, Proposition
2.1]) forany y € I'1, 6 € Iy

k(y) = Z R Taren,y)
hel's

and

A(6) = Z 9 1n(g.8)

gely
are well defined. That is, Zi:l R - Las(h,, ) converges weakly to k(y) € N(72) as

k — oo and ZI:L=1 9n - 1n(g, 5 converges weakly to A\(6) € N(r1) as k — oo, where
{1 }52, resp. {6,}52, are enumerations of the elements of I'; resp. T's.
Furthermore, one can extend k resp. A to maps

K2 L((X, 1) @ T1) = N(72)

resp.
N L((Y,v) x Ty) = N (1)
by

K ( Z Ay - 7y) = Z (ayo \I’_l) k() = Z (ay o \11_1) : Z P I ()

RESIY vel RIS

and

N b5-8) =D (bso®) - A0) =D (bs09) Y g In(g,.0)-
n=1

6€ly 6€ly 6€ly
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The maps ' resp. A are injective trace-preserving *-homomorphisms with weakly
dense ranges. Hence they extend to isomorphisms of von Neumann algebras

R N(11) = N(12), A N (1) = N (1),
where & and \ are, in fact, the inverses of each other.

Lemma 7.1.

k
(5) leH;o I‘kN(Tz) Z (ay o0 \1171) . Z hy, - In(hpy) — R( Z ay-v) | =0,

Y€ n=1 yel'y
k ~
(6) Jim vy, (Z(bgo\ll) > n IN(gns) — MO bs -6 ) =0.
dely n=1 del’s

Proof. By definition, the disjoint union | J ., M(h,,7) equals Y (modulo a set of
measure zero). We need to show that if {22:1 T 101 (h, )} oz Weakly converges to
an element S € N (72), then {Zﬁzl Tn-10i(h, ) Yoy converges to S in the rank met-
ric as well, where T,, € L°(Y,v) x I'y. Let P, = Zﬁ:l Lat(h, ) € (D, L2(Y, v)).
We denote by P, the element Zﬁ:l L0 (hy ) i LE(Y,v) x T'a. By definition, if
L(A)(Py) =0, then AP;, = 0. Now, by weak convergence,
1
L(S)(Pg) = lim Ty - 1ns(hn, ) (Pr).-
1

l—o0
n=
That is,
k
L(S =D T Las(h, ) (Pi) = 0
n=1
Therefore,
k
(S_ ZTn 1M( n,'y)) k=0
n=1
Thus,
k k
S Z Tn 1M(hn7v Z n lM(h,L v) (1 - Pk)'
n=1 n=1
By Lemma B rkr(-,)(1 —P)=1- Z 1 V(M (hyp,7y)), hence
k
Jim vy (S — 2_:1 T 1t ) = 0-

O

Now let us turn back to the proof of our proposition. By (&), # maps the algebra
L (X, p) x T’y into the rank closure of L°(Y,v) x I's. Since & preserves the rank,
% maps the rank closure of L (X, u) x I'y into the rank closure of L°(Y,v) x
I'>. Similarly, A\ maps the rank closure of Le°(Y,v) x T'g into the rank closure of
L (X,p) x T'y. That is, & provides an isomorphism between the rank closures
of L¥(X,u) x I'y and L°(Y,v) x I's. Therefore, the smallest continuous ring
containing L (X, u) x 'y in U(N(71)) is mapped to the smallest continuous ring
containing L°(Y,v) x 'y in U(N(72)). O
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