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A NOTE ON Lp-BOUNDED POINT EVALUATIONS

FOR POLYNOMIALS
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(Communicated by Pamela B. Gorkin)

Abstract. We construct a compact nowhere dense subset K of the closed
unit disk D̄ in the complex plane C such that R(K) = C(K) and bounded
point evaluations for P t(dA|K), 1 ≤ t < ∞, is the open unit disk D. In fact,
there exists C = C(t) > 0 such that∫

D

|p|tdA ≤ C

∫
K

|p|tdA,

for 1 ≤ t < ∞ and all polynomials p.

1. Introduction

Let μ be a finite positive compactly supported Borel measure in the complex
plane C. For each 1 ≤ t < ∞, let P t(μ) be the closure of the complex analytic
polynomials in Lt(μ). A point λ0 ∈ C is called a bounded point evaluation (bpe) if
there exists a constant C > 0 such that

|p(λ0)| ≤ C‖p‖Lt(μ)

for all polynomials p. If the above inequality holds for all λ in an open disk D(λ0, r),
then λ0 is called an analytic bounded point evaluation (abpe). For a compact subset
K of the complex plane C, C(K) will denote the space of continuous functions on
K and R(K) denotes uniform closure in C(K) of the rational functions with poles
outside K. Let μK denote the area measure dA restricted to the compact subset K.

For a compact subset E ⊂ C, we define the analytic capacity of E by

γ(E) = sup|f ′(∞)|,
where the sup is taken over those functions f analytic in C∞\E for which |f(z)| ≤ 1
for all z ∈ C∞ \ E, and

f ′(∞) = lim
z→∞

z[f(z)− f(∞)].

The analytic capacity of a general E1 ⊂ C is defined to be

γ(E1) = sup{γ(E) : E ⊂ E1, E compact}.
Tolsa, [7] proved the semiadditivity of analytic capacity. That is, there exists an

absolute constant AT > 0 such that

γ(
∞⋃
n=1

En) ≤ AT

∞∑
n=1

γ(En).
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Brennan and Militzer [2] established a connection between uniform rational ap-
proximation R(K) and approximation in the mean by polynomials P t(dμK), 1 ≤
t < ∞. The paper proved the following theorem (see Theorem 4.1 and Corollary
4.3 in [2]).

Theorem 1 (Brennan and Militzer). Let K be a compact subset of C with empty
interior. If R(K) �= C(K), then there exists at least one point λ0 that yields a bpe
for every P t(dμK), 1 ≤ t < ∞. Moreover, if λ0 ∈ K is not a peak point for R(K),
then λ0 yields a bpe for P t(dμK), 1 ≤ t < ∞.

Aleman, Richter, and Sundberg [1] proved the following theorem (see Lemma B
in their paper).

Theorem 2 (Aleman, Richter, and Sundberg). There are absolute constants ε1 > 0
and C1 < ∞ with the following property. Let E ⊂ closD with γ(E) < ε1. Then

|p(0)| ≤ C1

∫
closD\E

|p|dA
π

for all polynomials p.

It is not difficult to prove the following corollary from Theorem 2.

Corollary 1. Let ε1 > 0 be as in Theorem 2. Let K ⊂ C be a compact subset and
λ0 ∈ K. If there exists r > 0 such that

γ(D(λ0, r) \K)

r
< ε1,

then λ0 is a bpe for P t(dμK), 1 ≤ t < ∞.

Proof. Let E = 1
r (D(λ0, r) \ K − λ0); then E is an open subset of D. Using the

elementary properties of analytic capacity (see p. 196 of [3]), we see

γ(E) =
γ(D(λ0, r) \K)

r
< ε1.

Therefore, it follows from Theorem 2 that, for q(w) = p( 1r (w − λ0)),

|q(λ0)| =|p(0)|

≤C1

∫
closD\E

|p(z)|dA(z)

π

≤C1

r2

∫
D(λ0,r)∩K

|p(1
r
(w − λ0))|

dA(w)

π

≤ C1

πr2

∫
|q(w)|dμK(w).

The proof is completed.

Corollary 1 is a generalization of Theorem 1. In fact, if λ0 ∈ K is not a peak
point for R(K), then by Melnikov’s Theorem (see [3], p. 205),

∞∑
i=1

γ({λ : ai+1 ≤ |λ− λ0| < ai} \K)

ai
< ∞.
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It follows from the semiadditivity of analytic capacity discussed above that

γ(D(λ0, a
n) \K)

an
≤ AT

∞∑
i=n

γ({λ : ai+1 ≤ |λ− λ0| < ai} \K)

ai
→ 0.

This implies, from Corollary 1, that λ0 is a bpe for P t(dμK).
Corollary 1 seems to suggest that there might exist bpes for P t(dμK) with

R(K) = C(K). Our main theorem in the paper proves this affirmatively.

Main Theorem. There exists a compact subset K of the closed unit disk D̄ such
that R(K) = C(K) and ∫

D

|p|tdA ≤ C

∫
K

|p|tdA,

for 1 ≤ t < ∞, C = C(t) > 0, and all polynomials p. Therefore, D is the set of
bounded point evaluations for P t(dμK).

2. Proof of the Main Theorem

We fix a compact subset K0 of the closed unit square such that R(K0) = C(K0)
and Area(K0) = a, 0 < a < 1. In fact, we can construct a planar Cantor set K0

as follows. Given a sequence {λn} with 0 < λn < 1
2 , let Q0 = [0, 1] × [0, 1]. At

the first step we take four closed squares inside Q0, with side length λ1, with sides
parallel to the coordinate axes, and so that each square contains a vertex of Q0.
At the second step we apply the preceding procedure to each of the four squares
obtained in the first step, but now using the proportion factor λ2. In this way, we
get 16 squares of side length σ2 = λ1λ2. Proceeding inductively, at each step we
obtain 4n squares Qn

j , j = 1, 2, . . . , 4n, with side length σn = λ1λ2 . . . λn. Now let

Ln =
4n⋃
j=1

Qn
j , K0 =

∞⋂
n=1

Ln,

and

λn =
1

2
a

1

2n+1 .

Then

Area(K0) = lim
n→∞

4nσ2
n = a,

and

lim sup
r→0

γ(D(λ0, r) \K0)

r
> 0

for each λ0 ∈ K0. Therefore, it follows from Melnikov’s Theorem that each point in
K0 is a peak point for R(K0) and R(K0) = C(K0). Let K(u) = uK0, 0 ≤ u ≤ 1.

Now we use the Thomson [5] coloring scheme argument to construct a closed
square. Let us start with R0 = [− r

2 ,
r
2 ] × [− r

2 ,
r
2 ]. Divide R0 into 16 equal squares

and let S0 = {R0
j , j = 1, 2, . . . , 12} be the collection of small squares that have at

least one common side with R0. We construct a square R1 with the same center
and parallel to R0. The length of R1 is

r1 = r + 2× 22 × 1

22
r + 2× 1

23
r =

13

4
r.

We divide R1 into 26× 26 = 676 small squares with length 1
8r. Let S1 = {R1

j , j =
1, 2, . . . , 26} be the collection of small squares that have at least one common side
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with R1. We continue to construct Rn+1, rn+1, Sn+1 as follows. The square Rn+1

is constructed with the same center and parallel to Rn. The length of Rn+1 is

rn+1 = rn + 2× (n+ 2)2 × 1

2n+2
r + 2× 1

2n+3
r.

We divide Rn+1 into Nn+1 × Nn+1, Nn+1 = 2n+3rn+1

r small squares with length
1

2n+3 r. Let Sn+1 = {Rn+1
j , j = 1, 2, . . . , Nn+1} be the collection of small squares

that have at least one common side with Rn+1. Let R be the limit of Rn. Then
the length of the square is limn→∞ rn = 8r. For each small square Ri

j , we use a

compact subset Ki
j to replace it, where

Ki
j =

r

2j+3
(K0 − center of K0) + center of Ri

j .

Let

Kr =
⋃
i,j

Ki
j ∪ ∂R.

Clearly, every point in Kr is a peak point for R(Kr).

Lemma 1. There is an absolute constant C > 0 such that

|p(0)| ≤ C

r2

∫
|p|dμKr

.

Proof. We modify the proofs in Section 4 of [5]. For R ∈ {Kij}, define τw =
1

Area(R)dA|R for w ∈ R. In our case, m = 1 and Φ = χR. The function h in their

Lemma 4.5 can be chosen as

‖h‖ ≤ 1

Area(R)
≤ 22n

ar2
.

The lemma follows from Lemma 4.6 in [5].

Proof of the Main Theorem. Let {zk} be a sampling sequence for the Bergman
space Lt

a(D) with

ρ(zi, zj) =

∣∣∣∣ zi − zj
1− z̄izj

∣∣∣∣ > 2δ > 0,

for i �= j (see Seip [4]). Then there exists a constant C > 0 such that∫
D

|p|tdA ≤ C

∞∑
k=1

|p(zk)|t(1− |zk|2)2,

for all polynomials p. Let

SD(zk, δ) = {z : ρ(z, zk) < δ}.

Then the center of the disk is 1−δ2

1−δ2|zk|2 zk, the radius is 1−|zk|2
1−δ2|zk|2 δ, and

SD(zi, δ) ∩ SD(zj , δ) = ∅,
for i �= j. It is easy to show that

D(zk, rk) = {z : |z − zk| < rk} ⊂ SD(zk, δ),

where rk = δ
1+δ (1− |zk|2). Let

Jk =
1

8
(Krk + zk) ⊂ D(zk, rk);
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then Ji ∩ Jj = ∅ for i �= j. Then

K =

∞⋃
k=1

Jk ∪ ∂D

is a compact subset of the closed unit disk, and by the construction we see that
R(K) = C(K). It follows from Lemma 1 that∫

D

|p|tdA ≤ C
∞∑
k=1

(1− |zk|2)2
r2tk

(∫
Krk

|p|dA
)t

≤ C

∫
K

|p|tdA.

This completes the proof.

3. Remarks

Thomson [6] showed that the sets of bounded point evaluations for P t(μ) may
vary with the exponent t. In our case, it would be interesting to see if K in the
Main Theorem can be constructed so that the sets of bounded point evaluations
will vary with the exponents t.

It is not difficult to construct an example that satisfies the condition of Corollary
1 but not Theorem 1.

Example. Let S be the Swiss cheese constructed as the following. Let Dk be a
sequence of disjoint open disks in the unit disk, k = 1, 2, 3, ..., having radii rk in
such a way that

S = clos(D) \
∞⋃
k=1

Dk

has no interior, 0 ∈ S,
∞∑
k=1

rk < ε2,

and there exists a subsequence

{Dkj
} ⊂ { 1

2j+1
≤ |z| < 1

2j
}, rkj

>
ε2

2j+2
,

for j = 1, 2, 3, . . . and ε2 = ε1
2AT

. Then 0 ∈ S satisfies the conditions in Corollary 1

and is a peak point for R(S). Therefore, 0 ∈ S does not satisfy the conditions of
Theorem 1.

Proof. By the semiadditivity of analytic capacity,

γ(
∞⋃
k=1

Dk) ≤ AT

∞∑
k=1

rk < ε1.

It follows from Corollary 1 that 0 is a bpe for P t(μS). However,
∞∑
i=1

2iγ({λ :
1

2i+1
≤ |λ− 0| < 1

2i
} \ S) = ∞

implies, by Melnikov’s Theorem (see [3], p. 205), that 0 is a peak point for R(S).
For K constructed in our Main Theorem and every λ0 ∈ K, one can prove that

lim sup
r→0

γ(D(λ0, r) \K)

r
> 0.
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Therefore, the compact set K does not satisfy the conditions in Theorem 1 for each
point λ0 ∈ K. Corollary 1 may not apply to K. This leads to the following question.

Problem. For a compact subset K, is there a sufficient condition for λ0 ∈ K that
covers both Corollary 1 and the Main Theorem so that λ0 is a bpe for P t(μ|K), 1 ≤
t < ∞?
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