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ABSTRACT. We relate homological properties of a binomial edge ideal J¢g to
invariants that measure the connectivity of a simple graph G. Specifically, we

show if R/Jg is a Cohen-Macaulay ring, then graph toughness of G is exactly

%. We also give an inequality between the depth of R/Jg and the vertex-

connectivity of G. In addition, we study the Hilbert-Samuel multiplicity and
the Hilbert-Kunz multiplicity of R/ Jq.

1. INTRODUCTION

The interplay between the combinatorics of a graph and the algebra of various
ideals arising from it has been a vibrant area of research in the last two decades. The
most studied ideal in this context is the edge ideal. The interplay of Castelnuovo-
Mumford regularity, projective dimension, and Cohen-Macaulayness of an edge
ideal with the combinatorics of the underlying graph has been studied extensively.
Two important examples of this research are Froberg’s [Fro90] characterization
of edge ideals with linear minimal free resolutions and Herzog and Hibi’s [HHO5]
characterization of Cohen-Macaulay bipartite edge ideals.

The binomial edge ideal Jg of a simple graph G was introduced independently
by Herzog, Hibi, Hreinsdéttir, Kahle, and Rauh [HHH™ 10|, and by Ohtani [Oht11].
This ideal arises naturally in the study of conditional independence ideals that
are suitable to model robustness in the context of algebraic statistics [HHH™10).
Various aspects of the homological algebra of the binomial edge ideals have been
related with the combinatorial structure of the underlying graph. For instance,
the regularity of Jg is bounded below by the length of the largest induced path
of G and above by the number of vertices of G [MMI13]. In addition, Cohen-
Macaulayness has been characterized for binomial edge ideals of chordal graphs in
terms of the maximal cliques of the underlying graph [EHHII]. Furthermore, it has
been proved that Jg is a complete intersection if and only if G is a disjoint union
of paths [EHH11lRin13].

In this article we study the relationship of a binomial edge ideal and the con-
nectivity of the graph. Specifically, we investigate interactions between toughness
and vertex connectivity of a graph with dimension and depth of R/Js. Graph
toughness, 7(G), of a graph was first introduced by Chvéatal [Chv73| and serves as
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a measure of connectivity for a graph (see Section [2.1]). This invariant can be seen
as the minimum ratio of the cardinality of a set of vertices that make G discon-
nected by removing them and the number of connected components in the induced
graph. The relation between toughness and Hamiltonicity has been a topic of much
research interest [BBS06]. The vertex connectivity gives the minimum number of
vertices necessary to delete from G to obtain a disconnected graph. These mea-
sures of connectivity relate in the following way: high toughness implies high vertex
connectivity (see Remark [Z7]).

Our first main theorem gives a necessary condition on the toughness of G for
Cohen-Macaulay rings given by binomial edge ideals.

Theorem A (sece Theorem BIT)). Let G be a connected graph on [n] and Jg the
corresponding binomial edge ideal in R = Kl[x1,...,Zn,Y1,-.-,Yn). If R/JTc is
Cohen-Macaulay, then either T(G) = % or G is the complete graph.

The proof of Theorem [Alhas two main ingredients. The first is a relation between
the toughness of G and the dimension of R/Jg (see Theorem B3). This relation
was motivated from the fact that the dimension of R/ 7 is given by the difference
of the number of vertices removed and the number of connected components in the
induced graph, while the toughness is given by its ratio. The second ingredient is
the fact that if the quotient ring of Jg is So, then G cannot be 2-vertex-connected
(see Proposition [BI0). Pushing this idea, we obtain our second main theorem,
which establishes a stronger relation between the depth of R/ J¢ in terms of vertex
connectivity of G.

Theorem B (see Theorems B I9and B20). Let G be a connected graph on [n] and
Ja the corresponding binomial edge ideal in R = K[x1,...,Zn,Y1,.-.,Yn]. Suppose
that G is not the complete graph and that ¢ is the vertex connectivity of G. Then,

depth(R/Jc) <n—{+2 and pd(R/Jg) >n+{— 2.

Theorems[A]land Blestablish that if R/ Jg is Cohen-Macaulay, then the toughness
1

is 5 and the vertex-connectivity 1. Therefore, we give new combinatorial criteria
to identify graphs such that R/J¢ is not Cohen-Macaulay.

In the final section of this paper, we study invariants of Jo. We take advantage of
the fact that binomial edge ideals can be viewed as a generalization of the ideals of
maximal minors of 2 X n generic matrices. Specifically, those ideals are the binomial
edge ideals of complete graphs on n vertices. The ideals of maximal minors are
very well studied objects with many nice properties [BV88]; for instance, they are
Cohen-Macaulay and there are formulas for several invariants associated to them.

We use the properties of determinantal ideals to give a formula for the Hilbert-
Kunz and Hilbert-Samuel multiplicities for binomial edge ideals in terms of the
combinatorics of the graph (see Theorem ). As a consequence of these results,
the Hilbert-Kunz multiplicity of R/Jg is a rational number. Furthermore, the
values of the multiplicities depend only on the structure of the graph and not on
the characteristic of the coefficient field. For instance, all the binomial edge ideals

associated to a Hamiltonian graph with n vertices have the same multiplicities.

2. BACKGROUND

In this section we establish terminology and recall basic results from graph the-
ory. In addition, we recall the definition and first properties of binomial edge ideals.
We make use of these preliminaries throughout the manuscript.
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1. Graph terminology. In this subsection we review basic definitions and re-
sults from graph theory. We refer to [Bol9§| for an introduction to this theory. In
this manuscript we only consider simple undirected graphs whose vertices belong

o [n] :=={1,...,n}. Given a graph G and a subset of vertices S, ¢(S) denotes the
number of connected components of G\ S.

Definition 2.1. We say that G is £-vertex-connected if ¢ < n and for every subset
S of vertices such that |S| < ¢, the induced graph G\ S is connected. The wvertez-
connectivity of G, denoted by k(G), is defined as the maximum integer ¢ such that
G is {-vertex-connected.

We now present definitions and properties related to graph toughness. We refer
to [BBS06] for a survey on this topic.

Definition 2.2 ([Chv73]). We say that a connected graph is t-tough if for every
subset S # @ such that ¢(S) > 2, we have ¢ - ¢(S) < |S|. We define the toughness
of G, 7(G), as the maximum value of ¢ for which G is t-tough.

Remark 2.3. If a graph, G, is not complete, then

(@) =min{ 2 s e(5) 2 2.

Example 2.4. The following is a list of the toughness of certain classes of graphs:
(1) If K, is the complete graph, then 7(K,) = co and x(G) =n — 1.
(2) If Ky, is the complete bipartite graph with 2 < m < n, then 7(Kp, n) = =
and £(G) =m.
(3) If P, is the n-path, with 3 < n, then 7(P,) = % and x(G) =
(4) If C,, is the n-cycle, with 4 < n, then 7(C),) = 1 and k(G) =
(5) If G is a Hamiltonian graph, then 7(G) > 1 and k(G) > 2.

Remark 2.5. Suppose that G is not the complete graph. If G is t-tough, with ¢ > 0,

then c‘(—%l) > t for every subset S C [n] such that ¢(S) > 2. Then, |S| > ¢ - ¢(s)

for every set such that ¢(S) > 2. Then, 2t > |S] is a necessary condition to have
¢(S) > 2. This means that if k& < 2¢ vertices are removed, then ¢(S) =1, so G\ S
remains connected. Hence, G is a [2t]-vertex-connected graph.

2.2. Binomial edge ideals. Throughout this paper R denotes Klz1,...,Z,,
Y1,y .-, Yn), @ polynomial ring in 2n variables over a field K.

Definition 2.6. Let G be a graph on [n]. We define the binomial edge ideal
corresponding to G by

Je = (zy; —z5y; + {i,j} € G and i # j).

Example 2.7. Let G be the complete graph on [n]. The binomial edge ideal
corresponding to G is

Ja = (wiy; —xjy; 11 # j) = I(X),

where X = (xl o xn> .
Yy - Un
Definition 2.8. Let G be a graph on [n], and S C [n]. Let G1, ..., G¢g) denote the

connected components of G \ S. Let éz denote the complete graph on the vertices
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of G;. We set
PS(G) = <U{I’ia yz}a jéla R jéc(S)) R.

i€S
It is well-known that Pg(G) is a prime ideal for every S C [n]. Furthermore,
these prime ideals play a very important role in studying Jg.

Theorem 2.9 ([HHH"10, Theorem 3.2]). Let G be a graph on [n| and Jg its
binomial edge ideal in R. Then,

Ja = ﬂ Ps(G).

SC[n]

Proposition 2.10 ([HHH"10, Corollary 3.9]). If G is a connected graph on [n],
then Py (G) is a minimal prime of Jq.

Remark 2.11. From Theorem 2.9 we obtain
dim R/Jg = max{n — ¢(S) + |S]| : S C [n]}
because dim R/Ps(G) = n — ¢(S) + |S| [HHH'10, Corollary 3.3]. If G is connected

and S C [n] is such that ¢(S) = 1, then Py (G) C Ps(G). Therefore, Ps(G) cannot
be a minimal prime. Hence,

J(S) = ﬂ Ps(G) sz(G)

c(S)>2

and
dim R/Jg = max{n + ¢(S) — |S] : ¢(S) > 2 or S = @}.

3. GRAPH CONNECTIVITY AND HOMOLOGICAL PROPERTIES
OF BINOMIAL EDGE IDEALS

In this section we show Theorems [Al and [B] which are the main results of this
paper.

3.1. Graph toughness and binomial edge ideals. In this subsection we estab-
lish relations between graph toughness and different aspects related to the dimen-
sion and depth of a binomial edge ideal. These relations are necessary ingredients
to prove Theorem [Al We start by observing restrictions for 1-tough graphs.

Proposition 3.1. Let G be a connected graph on [n] and Jg the corresponding
binomial edge ideal in R. Then, the following are equivalent:
(1) G is 1-tough;
(2) dim(R/Js) = n+ 1 and Px(G) is the only minimal prime of dimension
n+ 1.

Proof. A graph is 1-tough if and only if ¢(S) < |S| for every S such that ¢(S) > 2.
This happens if and only if dim Ps(G) = n+c¢(s) — |S| < n for ¢(S) > 2. Then, the
result follows from Remark 2111 O

As an immediate consequence of Proposition [3.J] we obtain characterization
binomial edge ideals that are equidimensional and come from 1-tough graphs.
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Remark 3.2. Let G be a connected graph on [n] and Jg the corresponding binomial

edge ideal in R. Suppose that G is 1-tough. Then, the following are equivalent:
(1) R/Jq is a Cohen-Macaulay ring;

(2) R/Jq is an equidimensional ring;

(3) R/Js is a domain;

(4) G is the complete graph.

We now present a theorem that gives bounds on the dimension of R/Js and
the toughness of G. As a consequence, the equidimensionality of R/ Jg puts strong
restrictions on the toughness of G. This plays a key role in the proof of Theorem

[Al

Theorem 3.3. Let G be a connected graph on [n] and Jo the corresponding bino-
mial edge ideal in R. Suppose that 7(G) < 1. Then,
1-7(G)
7(G)

Proof. Since 7(G) < 1, G is not a complete graph. Then,

7(G) = min {% ce(9) > 2}

<dim(R/Jg) <n+(n-1) - (1-7(G)).

by Remark

On one hand, we have 7(G) < ‘(Sl for every S C [n] such that ¢(S) > 2. Then,
7(G) - ¢(S) < S|, and so ¢(S) — S| < (1 —7(G)) - c(S) We note that ¢(S) <n—1
for S C [n]. Then,

(3.1.1) c(S)=81<(n—-1)-(1-7(Q))
for every S such that ¢(S) > 2. Therefore,
max{n +c(S) —1|S|:¢(S) >2} <n+(n—-1)- (1 -7(G))

by B1I).
Since 7(G) < 1, we have 7(G) < 1— L5 from Remark 3] because ¢(S) < n—1.
Then,

n+l<n+n-1)-(1-7(G)).

Hence,
dim(R/Jg) = max{n+c(S) = |S|:¢(S)>20or S=2} <n+(n-1)-(1-7(G))
by Remark 2171 -

On the other hand, there exists S C [n] such that ¢(S) > 2 and 7(G) = 5L by

c(S
Remark 23 Then, ¢(S) = G)|S| and so || (lr(Tc(;G)) = ¢(5)—19|. Since |S(’\ )> 1,
we have 1T(T()G) < ¢(S) — |S|. Therefore,
1-7(G)
7(G)
by Theorem (see also Remark [ZTT]). O

<n —|—c() |S|<d1m(R/jg)

As a consequence of the previous theorem, we have that the dimension of R/ J¢
imposes restrictions on the toughness of G.
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Corollary 3.4. Let G be a connected graph on [n] and Jg the corresponding bino-
mial edge ideal in R. Then,
! <
-
dlm(R/jc) —-n+1"—
In addition, if G is not 1-tough, then

< dim(R/Jq) — 1.
- n—1

(G).

7(G)

Proof. Since dim(R/Jc) > n+1, we have m < % We note that if G is
not 1-tough, then 7(G) < 1. Then, it suffices to show the statements for 7(G) < 1.

The inequalities follow directly from Theorem a

We now get a corollary that plays an important role in Theorem [Al In particular,
the following result shows that if R/J¢ is Cohen-Macaulay, then 3 < 7(G).

Corollary 3.5. Let G be a connected graph on [n] and Jg the corresponding bino-
mial edge ideal in R. If R/Jq is equidimensional, either G is the complete graph
ori<r(@) <1l

Proof. We assume that G is not the complete graph. From Remark B2l a 1-tough
graph is equidimensional if and only if it is complete. Then, 7(G) < 1. If Jg is
equidimensional, then dim(R/Jg) = n + 1 by Theorem [Z9] and Proposition 210
Then, 3 < 7(G) by Corollary B4l O

We now start with preparation results needed to show the other inequality of
Theorem [&} if R/J¢ is Cohen-Macaulay, then 7(G) < 3.

Lemma 3.6. Let G be a connected graph on [n] and Jg the corresponding binomial
edge ideal in R. Suppose that G is {-vertex-connected, £ > 1, G is not the complete
graph, and dim R/Je =n+ 1. Then, dim(R/(Pz(G) + Q)) < n— L+ 1 for every
minimal prime, Q # Py(QG), of Ja.

Proof. We note that Jg is not a prime ideal because G is not the complete graph.
We consider two cases. Suppose that ¢ = 1. Since G is connected, we have
dim R/Pyz(G) = n + 1. Then, for any minimal prime @ # Pg(G), we have
dim R/P5(G) > n.

We now assume that ¢ > 2. Let S C [n] with 0 < |S| < £. Since G is ¢-vertex-
connected, Ps(G) contains Py (G) (see [HHHT10, Corollary 3.9]). Then, Ps(G)
cannot be a minimal prime if |S| < £.

We now assume that @Q = Ps(G) is a minimal prime, and so |S| > ¢. Then,
Py(G) + Q is generated by

{ziy; —xjy; 24,5 € n)\ S} U{zi,y; 11 € S}

Then, dim R/(Py(G)+ Q) =n—|S|+1<n—-{+1. O

We now focus on 2-vertex-connected graphs. We first need to recall the definition
and a few properties of local cohomology. We refer to [BS98] for an introduction
to this cohomological theory.
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Definition 3.7. Let I C R be an ideal generated by polynomials f = f1,..., fe € R
and M an R-module. The Cech complex of M with respect to the sequence fs
C.(i; M), is defined by

0—-M— @]\4}7 — @Mf1f7 — = Mflﬁ.fl — 0,
4 4,J
where Cl(f,M) = ) My, ..
o 1<51 << <L !
a localization map up to sign. The local cohomology of M with support on I is
defined by

.f;, and the morphism in every summand is
di

Hj(M) = H'(C*(f; M)).

Definition 3.8. Let I C R be an ideal. We define the cohomological dimension of
I by
cd(I) = max{i € N: Hj(R) # 0}.

Before we are finally ready to prove Theorem [A]l we need to recall the definition
of Serre’s conditions.

Definition 3.9. Let T be a Noetherian ring. We say that 7" is an Sy ring if
depth(7},) = min{¢, dim T} }
for every prime ideal p. In particular, T is Cohen-Macaulay if and only if it is an
Sdim(T) Ting.
The following result is our final ingredient in the proof of Theorem [Al

Proposition 3.10. Let G be a connected graph on [n] and Jg the corresponding
binomial edge ideal in R. Suppose that G is 2-vertex-connected and that G is not
the complete graph. Then, R/Jq is not an Se ring. In particular, if R/Jq is
Cohen-Macaulay, then G is not a 2-vertex-connected graph.

Proof. We proceed by contradiction and assume that R/Jg is an Sy ring. Since
R/Jc is the quotient of a polynomial ring over a homogeneous ideal, we have R/ J¢
is an equidimensional ring of dimension n + 1. Since G is not the complete graph,
Jc is not a prime ideal. Let Py(G),Q1,...,Q; be the minimal primes of Jg.
In particular, Jo = Pa(G) N Q1 N ...N Q; because the binomial edge ideals are
radical. Let I = Q1 N...N Q. For every prime ideal p such that Pyx(G)+ I C p,
we have @; C p for some i. Then, Pz(G)+ Q; C p, and dim(R/Py(G) + 1) <
dim(R/(Pz(G) + Qi)) <n —1 by Lemma 5.6
From the short exact sequence

0— R/Jas — R/Pz(G)® R/I - R/(Px(G)+ 1) — 0,
we obtain an associated long exact sequence
= HIPY R/ Jo) = Hi T (R Po(G)) @ Hit Y (R/T) = Hi (R/(Po (G)+1)) —0.

Since

dim(R/Py(G) + 1) < dim(R/(Pz(G) + Qi) <n —1,
we deduce that H? (R/(Pz(G)+1)) = HX(R/(Py(G)+1)) = 0 by Grothendieck’s
Vanishing Theorem. Then, H2 (R/Jq) = HX (R/Py(GQ)) ® HXM(R/I). Since
R/Jg is equidimensional, H2ZT(R/I) # 0 by Grothendieck’s Non-vanishing Theo-
rem. Then, H?"(R/Js) decomposes, and so R/J cannot be Sy [HH94, Corollary
3.7]. O
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We now prove a more general version of Theorem [Al which only assumes that
R/j(; is Sg.

Theorem 3.11. Let G be a connected graph on [n] and Jg the corresponding
binomial edge ideal in R. If R/Jq is Sa, then either G is the complete graph or
7(G) = L. In particular, this holds when R/Jc is Cohen-Macaulay.

Proof. We suppose that G is not the complete graph. By Corollary [3.0] % < 7(G).
By Proposition B.I0, G cannot be 2-vertex-connected because dim(R/Jg) =n + 1
and R/Jq is So. There exists a subset S C [n] with one element such that ¢(S) > 2.
Then,

1

T(G) = min{% 1e(S) > 2} < 3
The last claim follows from the fact that a standard graded Cohen-Macaulay K-
algebra is equidimensional and Ss. ]

Remark 3.12. We point out that the converse of the previous theorem is not true.

For instance, if ¢ > 2, the Jk, ,, is not even equidimensional [SZ14, Lemma 3.2],

1

but its toughness is 5.

We give an example that was kindly suggested by the referee.

Example 3.13. The toughness of the following graph is %, and its vertex-connectiv-
ity is 1. However, R/Jg is not Cohen-Macaulay, because its depth is 6 and its
dimension is 7. This computation was verified using Macaulay2 [GS].

3 2

4 5

Example 3.14. Suppose that G is a chordal graph on [n] satisfying:

(1) any two distinct maximal cliques intersect in at most one vertex;
(2) each vertex of G is the intersection of at most two maximal cliques.

Then, R/Jg is Cohen-Macaulay [EHHII, Theorem 1.1]. Hence, 7(G) = % by
Theorem 3111

Corollary 3.15. Let G be a graph [n] and Jg its corresponding binomial edge ideal
in R. Let G1,...,G. denote the connected components of G. If R/Ja is Cohen-
Macaulay, then either G; is the complete graph or 7(G;) = % foreveryi=1,... ,n.

Proof. Let R; = K[zj,y;l{ij1ec- Then, R/Jq = R1/Ja, ®K .. .®k R./Jq,. Hence,
R/Jc is Cohen-Macaulay if and only if each R;/Jg, is Cohen-Macaulay. Then,
the result follows from Theorem [B.111 |

Using the previous corollary we recover a known characterization of complete
intersections for binomial edge ideals.

Corollary 3.16 (JEHHI1I] Corollary 1.2], [Rinl3, Theorem 2.2]). Let G be a graph
on [n] and Jg its corresponding binomial edge ideal in R. Let Gy,...,G. denote
the connected components of G. Then, R/Jq is a complete intersection if and only
if G; is a path for everyi=1,...,c.
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Proof. We note that {z;y; — z;y; : {i,j} € G} is a regular sequence if and only
if {z;y; —x;x; : {i,j} € G;} is a regular sequence for every i = 1,...,c. Then, it
suffices to show the statement assuming that G is connected. In this case, we have
ht(Jg) = n— 1. Then, Jg must be generated by n — 1 minors. This means that G
has n—1 edges. Thus, G must be a tree. We note that G cannot have a vertex with
degree greater than or equal to 3; otherwise, 7(G) < %, which contradicts Theorem
B0l Then, G contains only vertices of degrees 1 and 2. Hence, G is a path. ]

3.2. Vertex-connectivity and binomial edge ideals. We now focus on The-
orem [Bl We recall a property of regular ring positive characteristic that relates
cohomological dimension and depth.

Proposition 3.17 (see remark after [PS73 Proposition 4.1]). If A is a polynomial
ring over a field positive characteristic p, then cd(I) < pd4(A/I).

We also need a result that relates the cohomological dimension of the intersection
of two ideals with the dimension of their sum.

Proposition 3.18 (see [BS98, Proposition 19.2.7]). Let (A,n, K) be a complete
local ring. Let a,b C A be two ideals. Suppose that min{dim A/a,dim A/b} >
dim A/(a+ b). Then,

cd(anb) >dimA —dimA/(a+b) — 1.
Theorem 3.19. Let G be a connected graph on [n| and Jgo the corresponding
binomial edge ideal in R = K[x1,...,Zn, Y1, .., Yn]. Suppose that char(K) =p > 0,

and G is not the complete graph. If G is (-vertex-connected, then pd(R/Jg) >
n+ ¢ — 2. In particular, depth R/ Jo <n — £ + 2.

Proof. Since G is connected, we have Py(@) is a minimal prime for Jgz by Remark
2I0 Let Py(G),Q1,..., Q. denote the minimal primes of Jg. Let I = @Q1N...NQ,.
We note that Jo = Pz(G) N1, because J¢ is a radical ideal. In addition,

dim R/(Py(G) + I) < dim R/P»(G) and R/(Py(G) + I) < dim R/I,

because Py (G) and I do not share any minimal primes.
We also have that dim R/(Pg(G)+I) <n—{¢+1 as an immediate consequence
of Lemma By Proposition B.18],

cd(Jg) > dimR —dimR/(Py(G)+1I)—1>2n—n4+f—-1—-1=n+{—2.

By Proposition BI7 pd(R/Jg) > cd(Je) > n+ £ — 2. The statement regarding
depth follows immediately from the Auslander-Buchsbaum Formula. |

Theorem 3.20. Let G be a connected graph on [n] and Jg the corresponding
binomial edge ideal in R = K[x1,...,Zn, Y1, .-, Yn]. Suppose that char(K) =0, and
G is not the complete graph. If G is C-vertex-connected, then pd(R/Jg) > n+4{—2.
In particular, depth R/ Jo <n — £+ 2.

Proof. We first assume that K = Q. Let A = Z[x1,...,Zn, Y1, .., Yn) and
J = (ziy; — zjy; - {i,j} € G and i # j)A.
Then,
pdr(R/Jc) = Pdag,q(A ®2 Q/J ©2 Q) = pdyg,r, (4/J @2 Fp)
for p > 0 [HH, Theorem 2.3.5]. Then, the result follows from Theorem .19
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The general case follows from the fact that field extensions are faithfully flat
and do not change projective dimension. The claim about depth follows from the
Auslander-Buchsbaum Formula.

|

Remark 3.21. The inequalities in Theorems [3.19 and are sharp. For instance,
if n > 4 and C), is the cycle with n vertices, then pd(R/Jc, ) = n [Z2Z13, Theorem
3.8]. Then,

pd(R/Jc,) =n=n+2-2=n+k(G)—-2.

These bounds are also sharp if R/Jg is Cohen-Macaulay, because x(G) = 1 and
depth(R/Js) = dim(R/Js) = n + 1 (see Proposition B.10).

4. MULTIPLICITIES OF BINOMIAL EDGE IDEALS

In this section we give an algorithmic formula to compute two important invari-
ants associated to the singularity of a ring: the Hilbert-Samuel and Hilbert-Kunz
multiplicities. We start by reviewing preliminaries of these invariants. We take ad-
vantage of the fact that Jg is a homogeneous ideal, and then R/Jg is a standard
N-graded K algebra.

Definition 4.1. Suppose that T is a standard graded K-algebra of dimension d
with maximal homogeneous ideal n. The Hilbert-Samuel multiplicity of R is defined
by
dI\(T/n" d! di T/n"
e(T) = lim ANT/wT) _ o didimg (T/n7)
r—00 rd r—00 rd
If K has prime characteristic p, the Hilbert-Kunz multiplicity of T, introduced
by Monsky [Mon83], is defined by
N(T/ulPT) i dim ¢ (T /unlP])

enx(T) = lim —="G— = —,

where nlPl = (f2° . f e n)T.

e— 00 p

These two multiplicities satisfy an additivity formula. Suppose T is reduced,
and p1,...,ps are the minimal primes of T such that dim 7 = dim 7'/p;. Then,
(4.0.1)

e(T) =e(T/p1) +---+e(T/pi), and eux(T)=enx(T/p1)+ - +eux(T/pi).

We recall a fact that allows us to compute the Hilbert-Samuel multiplicity of
binomial edge ideals.

Remark 4.2. Let A and B be two standard graded finitely generated K-algebras,
and T'= AQk B. Let ha(t),hp(t), and hp(t) denote the Hilbert series of A, B and
T respectively. There exist polynomials f4(t), fg(t), and fr(¢) such that

fa(t) h(t) = f5(t) fr(t)
(1 — t)dim(A)” "BV = () dim(B) (1 — ¢)dim(T)”
Furthermore, f4(1) = e(A), fe(1) = e(B), and fr(1) = e(T). Since hr(t) = ha(t) -
h&(;)a(g;% obtain f¢(t) = fa(t) - fp(t). Then, e(T) = fr(1) = fa(1)fs(1) =

We now recall the analogue of Remark for the Hilbert-Kunz multiplicity.

ha(t) = , and hp(t) =
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Remark 4.3. Let A and B be two standard graded finitely generated K-algebras,
where char(K) = p > 0. Let m4 and mp denote the maximal homogeneous ideals
of A and B respectively. Take m=my4 ®x B+ AQg mp. If T = A®k B, then

_ dimg (T/mlP])
enk(T) = elggo pe(dim(A)+dim(B))

3 A [Pe]
i S A/my

e—00 pe e—00 peY

dimg B/ml2’]
m K / B :eHK(A)~eHK(B).
We now can give the algorithmic formula for the Hilbert-Samuel and the Hilbert-

Kunz multiplicity of R/J¢. In particular, egx (R/Jg) is a rational number, which
is not true in general [Brel3l Theorem 8.3].

Theorem 4.4. Let G be a graph on [n| and Jg the corresponding binomial edge
ideal in R = K[x1,...,%n,Y1,--,Yn]. Let @ = max{c(S) —|S|: S C [n]}, A=
{§ C[n]:c(S)—|S| =a}, and Bsa,...,Bs,, be the connected component of the
graph induced by [n]\ S for S € A. Then,

e(R/Jc)=Y (H |Bs7r|> and exic(R/Ja) = (H ('BS’” + <|B|ﬁs|i 1>;>>’

SeA \r=1 SeA \r=1
where the last equality assumes that K has positive characteristic.

Proof. By definition of A and Theorem 29 {Ps(G) : S € A} is the set of primes
with dim(R/Ps(G)) = dim(R/Jg). Then, A is the set of minimal primes of Jg
with maximal dimension. We note that R/Pg(G) is the tensor product over K
of rings with the form T, = K[X]2xs/I2(X). Since e(T}) = b [BV8S, Proposition
2.15], we deduce that e(R/Ps(GQ)) = )2, |Bs,r| by Remark @2l Then, e(R/Jg) =

ZSEA (Hisﬂ \Bs,r|) by equation (E0.T]).
Since exr (Ty) = 5 + (7+1), by [Eto02l[EY03], we have

eanr/Ps@) = IT (52 + i)

r=1

by RemarkE. Then, exrrc (R/J6) = Sses (T12, (12520 + L) ) by eaquas
tion (ELOJ]). O

Using the previous formulas we compute these multiplicities in a few cases.

Example 4.5. Let Iy, denote a complete bipartite graph with 1 < ¢ < m. For
this graph, the minimal primes of its binomial edge ideal are Pgy(Kem),
(X1, 2o, y1y -5 ye) ifm > 1 and (Tpg1y ooy Totmy Yot1 - - - Yopm) if € > 1 [SZ14]
Lemma 3.2]. Then,

1 ifm>f¢+1orf=1and m > 2,

2m + % otherwise.

enr(R/Jx,,.) = {

Example 4.6. Let G be a connected graph on [n] and Jg the corresponding
binomial edge ideal in R. Suppose that G is a 1-tough graph with n vertices. By
Proposition B, Py (G) is the only minimal prime with the same dimension as Jg-.
Then, e(R/Jq) = n. If char(K) = p > 0, then egx(R/Jg) = 5§ + G- 1o
particular, these values are attained when G is a Hamiltonian graph.
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