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CENTERS OF WEIGHT-HOMOGENEOUS POLYNOMIAL
VECTOR FIELDS ON THE PLANE

JAUME GINÉ, JAUME LLIBRE, AND CLAUDIA VALLS

(Communicated by Yingfei Yi)

Abstract. We characterize all centers of planar weight-homogeneous polyno-
mial vector fields. Moreover we classify all centers of planar weight-
homogeneous polynomial vector fields of degrees 6 and 7.

1. Introduction and statement of the main results

One of the main problems in the qualitative theory of real planar polynomial
differential systems is the center-focus problem. This problem consists of distin-
guishing when a singular point is either a focus or a center. The notion of center
and focus goes back to Poincaré [18]. A singular point p of system (1) is a center if
there is a neighborhood of p fulfilled by periodic orbits with the unique exception
of p. The period annulus of a center is the region fulfilled by all the periodic orbits
surrounding the center. We say that a center located at the origin is global if its
period annulus is R2 \ {(0, 0)}.

The center problem for planar polynomial vector fields has been intensively stud-
ied. The center problem for linear type singular points, i.e., singular points with
imaginary pure eigenvalues, is the most studied. It started with the study of the
quadratic polynomial differential systems with linear type singular points. The
works of Dulac [5], Bautin [4], and Żoładek [21] are the principal ones for the qua-
dratic case; see Schlomiuk [20] for an update of these works. But the center-focus
problem for polynomial differential systems of degree larger than two remains open.
However, for polynomial differential systems of degree larger than two, there are
richer partial results on the center problem; see for instance [8, 19, 22, 23].

The inability to go beyond the study of centers for general polynomial differ-
ential systems has motivated the study of particular cases as they are the quasi-
homogeneous or weight-homogeneous polynomial differential systems.
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Hence we consider the polynomial differential systems of the form

(1) ẋ = P (x, y), ẏ = Q(x, y),

where P,Q ∈ R[x, y] are coprime and the origin is a singularity of system (1).
As usual, R[x, y] denotes the ring of polynomials in the variables x and y with
coefficients in R, and the dot denotes derivative with respect to an independent
variable t.

We say that system (1) is weight-homogeneous if there exist s = (s1, s2) ∈ N2

and d ∈ N such that for arbitrary λ ∈ R+ = {λ ∈ R : λ > 0} we have

P (λs1x, λs2y) = λs1−1+dP (x, y), Q(λs1x, λs2y) = λs1−1+dQ(x, y).

We call s = (s1, s2) the weight exponent of system (1) and d the weight degree
with respect to the weight exponent s. In the particular case that s = (1, 1),
systems (1) are exactly the homogeneous polynomial differential systems of degree
d. For a weight-homogeneous polynomial differential system (1), a weight vector
w = (s̃1, s̃2, d̃) is minimal for system (1) if any other weight vector (s1, s2, d) of
system (1) satisfies s̃1 ≤ s1, s̃2 ≤ s2 and d̃ ≤ d. Clearly, each weight-homogeneous
polynomial differential system has a unique minimal weight vector.

Taking the weighted polar coordinates x = rs1 cos θ, y = rs2 sin θ system (1)
becomes

(2) ṙ = rmF (θ)
s1 cos2 θ + s2 sin2 θ

, θ̇ = rm−1G(θ)
s1 cos2 θ + s2 sin2 θ

,

with

F (θ) = P (cos θ, sin θ) cos θ + Q(cos θ, sin θ) sin θ,

G(θ) = s1 Q(cos θ, sin θ) cos θ − s2 P (cos θ, sin θ) sin θ.

We note that s1 cos2 θ + s2 sin2 θ > 0 for all θ ∈ R because s1, s2 > 0. The next
well-known result characterizes when the weight-homogeneous polynomial differen-
tial system (1) has a center at the origin of coordinates in terms of trigonometric
polynomials F (θ) and G(θ); see [10] and [13].

Lemma 1. A quasi-homogeneous system (1) has a center (at the origin of coor-
dinates) if and only if G(θ) has no real roots and

∫ 2π
0

F (θ)
G(θ) dθ = 0.

The first main result of this paper is to improve this characterization giving
the explicit characterization of all centers of the weight-homogeneous polynomial
differential systems.

Following [9] we first introduce a change of variables that transforms system (1)
into a system of separable variables. For a proof see [9].

Lemma 2. The change of variables

(3) x = u1/s2 , y = (uv)1/s1 , with inverse u = xs2 , v = ys1/xs2 ,

and the rescaling of time given by u−(d−1)/(s1s2)v−(s1−1−m)/s1 with m ∈ N ∪ {0}
transform a quasi-homogeneous system (1) of weight (s1, s2, d) into a polynomial
differential system of the form

(4) u̇ = uf(v), v̇ = g(v),

where we can choose m so that f and g are coprime.
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One immediate consequence of Lemma 2 is that if system (4) has H(u, v) as a
first integral, then the quasi-homogeneous system (1) of weight (s1, s2, d) has a first
integral of the form H(xs2 , ys1/xs2). On the other hand, if H̃(x, y) is a first integral
of the quasi-homogeneous system (1) of weight (s1, s2, d), then H̃(u1/s2 , (uv)1/s1)
is a first integral of system (4).

We say that a polynomial g(v) =
∏k

i=1(v − αi) is square-free with αi �= αj for
i, j = 1, . . . , k and i �= j.

The following theorem is our main result. As usual Q− denotes the set of negative
rational numbers. Let αi be the roots of the polynomial g(v). Then we define
γi = f(αi)/ġ(αi).

Theorem 3. Consider the quasi-homogeneous system (1) of weight (s1, s2, d)
which can be transformed by the change of variables in Lemma 2 into system (4).
If the quasi-homogeneous system (1) has a C∞ first integral, then the polynomial
g(v) is square-free and γi ∈ Q− for i = 1, . . . , k. Reciprocally, if g(v) is square-
free, deg f < deg g and γi ∈ Q− for i = 1, . . . , k, then the quasi-homogeneous
system (1) has a C∞ first integral.

Theorem 3 is proved in section 3.
Now we recall the following theorem proved in [16], which characterizes when

the differential system (1) with an isolated singular point at the origin has a center
at this point.

Theorem 4. Assume that a system has an isolated singular point at the origin.
Then it is a center if and only if there exists a first integral of class C∞ with an
isolated minimum at the origin.

We will also use the following result (see [10] for a proof).

Lemma 5. Consider a weight homogeneous polynomial differential system. If it
has a singular point which is a center, then this singular point is at the origin of
coordinates.

Using Theorems 3 and 4 together with Lemma 5 we have the following result.

Theorem 6. Consider the quasi-homogeneous system (1) of weight (s1, s2, d)
which can be transformed by the change of variables in Lemma 2 into system (4).
If system (1) has a center, then g(v) is square-free and γi ∈ Q− for i = 1, 2, . . . , k.

It is clear that we only have to prove Theorem 3. To do it, we first recall the
following result given in [10].

Lemma 7. If the polynomial g(v) is square-free, deg f < deg g and P (x, y) does
not have x as a divisor, then 1 + γ1 + γ2 + · · · + γk = 0.

We recall that if we are looking for centers at the origin of system (1) we always
have that P does not have x as a divisor, and so Lemma 7 always holds in our case.

To prove Theorem 3 we will first prove the following theorem concerning the
existence of C∞ first integrals for system (4).

Theorem 8. System (4) has a C∞ first integral if and only if the polynomial g(v)
is square-free and γi ∈ Q− for i = 1, 2, . . . , k.

The proofs of Theorems 6 and 8 are given in section 3.
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Weight-homogeneous polynomial differential systems have also been studied in-
tensively from the point of view of integrability by many authors; see for instance
[1, 9, 11, 12]. There are some works related with the study of weight-homogeneous
polynomial differential systems and their relation with the center-focus problem.
In [3] the authors characterized all cubic weight-homogeneous polynomial differen-
tial systems which have a center, and in [14] the authors characterized all weight-
homogeneous polynomial differential systems of degrees 2, 3 and 4 which have
a center. In [17] the authors studied the center-focus problem for the weight-
homogeneous polynomial differential systems with degree 5.

The second main result of this paper is to classify all centers of all weight-
homogeneous polynomial differential systems of degrees 6 and 7.

Theorem 9. Every planar real weight-homogeneous polynomial differential sys-
tem of degree 6 which is not homogeneous can be written as one of the following
20 systems:

1) ẋ = a0,6y
6 + a1,4xy

4 + a2,2x
2y2 + a3,0x

3

ẏ = b0,5y
5 + b1,3xy

3 + b2,1x
2y

Minimum weight vector of the system: (2, 1, 5)
2) ẋ = a0,6y

6 + a2,3x
2y3 + a4,0x

4

ẏ = b1,4xy
4 + b3,1x

3y
Minimum weight vector of the system: (3, 2, 10)

3) ẋ = a0,6y
6 + a5,0x

5

ẏ = b4,1x
4y

Minimum weight vector of the system: (6, 5, 25)
4) ẋ = a0,6y

6

ẏ = b5,0x
5

Minimum weight vector of the system: (7, 6, 30)
5) ẋ = a0,6y

6 + a1,3xy
3 + a2,0x

2

ẏ = b0,4y
4 + b1,1xy

Minimum weight vector of the system: (3, 1, 4)
6) ẋ = a0,6y

6

ẏ = b4,0x
4

Minimum weight vector of the system: (7, 5, 24)
7) ẋ = a0,6y

6

ẏ = b3,0x
3

Minimum weight vector of the system: (7, 4, 18)
8) ẋ = a0,6y

6

ẏ = b2,0x
2

Minimum weight vector of the system: (7, 3, 12)
9) ẋ = a0,6y

6

ẏ = b1,0x
Minimum weight vector of the system: (7, 2, 6)

10) ẋ = a1,5xy
5 + a2,3x

2y3 + a3,1x
3y

ẏ = b0,6y
6 + b1,4xy

4 + b2,2x
2y2 + b3,0x

3

Minimum weight vector of the system: (2, 1, 6)
11) ẋ = a1,5xy

5 + a3,2x
3y2

ẏ = b0,6y
6 + b2,3x

2y3 + b4,0x
4
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Minimum weight vector of the system: (3, 2, 11)
12) ẋ = a1,5xy

5 + a5,0x
5

ẏ = b0,6y
6 + b4,1x

4y
Minimum weight vector of the system: (5, 4, 21)

13) ẋ = a1,5xy
5

ẏ = b0,6y
6 + b5,0x

5

Minimum weight vector of the system: (6, 5, 26)
14) ẋ = a1,5xy

5 + a2,2x
2y2

ẏ = b0,6y
6 + b1,3xy

3 + b2,0x
2

Minimum weight vector of the system: (3, 1, 6)
15) ẋ = a1,5xy

5 + a4,0x
4

ẏ = b0,6y
6 + b3,1x

3y
Minimum weight vector of the system: (5, 3, 16)

16) ẋ = a1,5xy
5 + a3,0x

3

ẏ = b0,6y
6 + b2,1x

2y
Minimum weight vector of the system: (5, 2, 11)

17) ẋ = a1,5xy
5 + a2,0x

2

ẏ = b0,6y
6 + b1,1xy

Minimum weight vector of the system: (5, 1, 6)
18) ẋ = a1,5xy

5

ẏ = b0,6y
6 + b1,0x

Minimum weight vector of the system: (6, 1, 6)
19) ẋ = a2,4x

2y4

ẏ = b1,5xy
5 + b5,0x

5

Minimum weight vector of the system: (5, 4, 22)
20) ẋ = a0,6y

6 + a1,0x
ẏ = b0,1y
Minimum weight vector of the system: (6, 1, 1)

Theorem 10. Every planar real weight-homogeneous polynomial differential sys-
tem of degree 7 which is not homogeneous can be written as one of the following
23 systems:

21) ẋ = a0,7y
7 + a1,5xy

5 + a2,3x
2y3 + a3,1x

3y
ẏ = b0,6y

6 + b1,4xy
4 + b2,2x

2y2 + b3,0x
3

Minimum weight vector of the system: (2, 1, 6)
22) ẋ = a0,7y

7 + a3,3x
3y3

ẏ = b2,4x
2y4 + b5,0x

5

Minimum weight vector of the system: (4, 3, 18)
23) ẋ = a0,7y

7 + a6,0x
6

ẏ = b5,1x
5y

Minimum weight vector of the system: (7, 6, 36)
24) ẋ = a0,7y

7

ẏ = b6,0x
6

Minimum weight vector of the system: (8, 7, 42)
25) ẋ = a0,7y

7 + a5,0x
5

ẏ = b4,1x
4y
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Minimum weight vector of the system: (7, 5, 29)
26) ẋ = a0,7y

7 + a1,3xy
3

ẏ = b0,4y
4 + b1,0x

Minimum weight vector of the system: (4, 1, 4)
27) ẋ = a0,7y

7 + a4,0x
4

ẏ = b3,1x
3y

Minimum weight vector of the system: (7, 4, 22)
28) ẋ = a0,7y

7

ẏ = b4,0x
4

Minimum weight vector of the system: (8, 5, 28)
29) ẋ = a0,7y

7 + a3,0x
3

ẏ = b2,1x
2y

Minimum weight vector of the system: (7, 3, 15)
30) ẋ = a0,7y

7 + a2,0x
2

ẏ = b1,1xy
Minimum weight vector of the system: (7, 2, 8)

31) ẋ = a0,7y
7

ẏ = b2,0x
2

Minimum weight vector of the system: (8, 3, 14)
32) ẋ = a1,6xy

6 + a2,4x
2y4 + a3,2x

3y2 + a4,0x
4

ẏ = b0,7y
7 + b1,5xy

5 + b2,3x
2y3 + b3,1x

3y
Minimum weight vector of the system: (2, 1, 7)

33) ẋ = a1,6xy
6 + a3,3x

3y3 + a5,0x
5

ẏ = b0,7y
7 + b2,4x

2y4 + b4,1x
4y

Minimum weight vector of the system: (3, 2, 13)
34) ẋ = a1,6xy

6 + a6,0x
6

ẏ = b0,7y
7 + b5,1x

5y
Minimum weight vector of the system: (6, 5, 31)

35) ẋ = a1,6xy
6

ẏ = b0,7y
7 + b6,0x

6

Minimum weight vector of the system: (7, 6, 37)
36) ẋ = a1,6xy

6 + a2,3x
2y3 + a3,0x

3

ẏ = b0,7y
7 + b1,4xy

4 + b2,1x
2y

Minimum weight vector of the system: (3, 1, 7)
37) ẋ = a1,6xy

6

ẏ = b0,7y
7 + b5,0x

5

Minimum weight vector of the system: (7, 5, 31)
38) ẋ = a1,6xy

6

ẏ = b0,7y
7 + b4,0x

4

Minimum weight vector of the system: (7, 4, 25)
39) ẋ = a1,6xy

6

ẏ = b0,7y
7 + b3,0x

3

Minimum weight vector of the system: (7, 3, 19)
40) ẋ = a1,6xy

6 + a2,0x
2

ẏ = b0,7y
7 + b1,1xy

Minimum weight vector of the system: (6, 1, 7)
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41) ẋ = a1,6xy
6

ẏ = b0,7y
7 + b2,0x

2

Minimum weight vector of the system: (7, 2, 13)
42) ẋ = a1,6xy

6

ẏ = b0,7y
7 + b1,0x

Minimum weight vector of the system: (7, 1, 7)
43) ẋ = a0,7y

7 + a1,0x
ẏ = b0,1y
Minimum weight vector of the system: (7, 1, 1)

Theorems 9 and 10 are proved in section 4.
The third and fourth main results present a complete characterization of planar

real weight-homogeneous polynomial differential systems with degrees 6 and 7 which
are not homogeneous polynomial differential systems having a center at the origin.
They are proved in section 5.

Theorem 11. Real planar weight-homogeneous polynomial differential systems
of degree 6 which are not homogeneous have no center at the origin.

Theorem 12. The unique planar real weight-homogeneous polynomial differential
systems of degree 7 which are not homogeneous having a center are

System 21 with

a3,1 + a2,3ri + a1,5r
2
i + a0,7r

3
i

a3,1 − 2b2,2 + 2a2,3ri − 4b1,4ri + 3a1,5r2
i − 6b0,6r2

i + 4a0,7r3
i

∈ Q+,

where the ri’s are the four complex simple roots of the polynomial 2b3,0 −
a3,1v + 2b2,2v − a2,3v

2 + 2b1,4v2 − a1,5v
3 + 2b0,6v3 − a0,7v

4, and with an
isolated minimum at the origin.

System 22 with (3a3,3 − 4b2,4)2 + 48a0,7b5,0 < 0 and 3a3,3 + 4b2,4 = 0.

System 26 with a2
1,3 − 8a1,3b0,4 + 16b20,4 + 16a0,7b1,0 < 0.

We recall that Theorems 11 and 12 solve the center-focus problem for weight-
homogeneous polynomial differential systems with degrees 6 and 7 that are not
homogeneous. The case of homogeneous polynomials remains open in the sense
that the specific families of centers are not known. However their characterization
is well-known; see for instance Proposition 3 in [15].

2. Preliminary results

Suppose that the polynomial differential system (1) has its linear part of nilpotent
form; that is, its Jacobian matrix is a nilpotent matrix. If the origin is a center it
is called a nilpotent center. In this case using suitable coordinates, system (1) can
be written as

(5) ẋ = y + P2(x, y), ẏ = Q2(x, y),

where P2 and Q2 are polynomials of degree at least 2. The next theorem proved in
[2] solves the monodromy problem for nilpotent singular points.
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Theorem 13. Consider system (5) and assume that the origin is an isolated
singularity. Define the functions

f(x) = Q2(x, F (x)) = a xα + O(xα+1),

φ(x) = div(y + P2(x, y), Q2(x, y))|y=F (x) = b xβ + O(xβ+1),

where a �= 0, α ≥ 2, b �= 0 and β ≥ 1, or φ(x) ≡ 0 and the function y = F (x) is the
solution of y+P2(x, y) = 0 passing through the origin. The origin of system (5) is
a focus or a center if and only if a is negative, α is an odd number (α = 2n− 1),
and one of the following three conditions holds: β > n−1, β = n−1 and b2 +4an,
or φ(x) ≡ 0.

3. Proofs of Theorems 6 and 8

We first prove Theorem 8 and later the main Theorem 6.

Proof of Theorem 8. We separate the proof into two cases: the case deg f < deg g
and deg f ≥ deg g.

Case 1 (deg f < deg g). Assume that system (4) has a C∞ first integral in the
variables (u, v). We suppose that the C∞ function H(u, v) is not flat at the origin;
otherwise we translate to the origin a point where the first integral H(u, v) is defined
and it is not flat. Then in a convenient neighborhood of the origin the function
H(u, v) can be written as a power series in u in the form

(6) H(u, v) =
∑
l≥0

hl(v)ul.

We note that by taking the l-th derivative of the C∞ function H(u, v) with respect
to the variable u at u = 0 we obtain the function hl(v); consequently this function
is C∞. Then it must satisfy

uf(v)∂H
∂u

+ g(v)∂H
∂v

= 0,

that is,

0 =
∑
l≥0

lf(v)hl(v)ul +
∑
l≥0

g(v)h′
l(v)ul =

∑
l≥0

(lf(v)hl(v) + g(v)h′
l(v))ul.

Hence
h′

0(v) = 0, that is, h0(v) = constant,
and for l ≥ 1,

(7) lf(v)hl(v) + g(v)h′
l(v) = 0, that is, h′

l(v)
hl(v)

= −l
f(v)
g(v)

.

We assume now that g(v) is not square-free. Using an affine transformation of the
form v → v + α with α ∈ C if it is necessary, we can assume that v is a multiple
factor of g(v) with multiplicity μ > 1. Therefore we have that g(v) = vμr(v) with
r(0) �= 0. After this affine transformation we know that f(0) �= 0 because f and
g are coprime. Now we develop the right-hand side of (7) in simple fractions of v,
that is,

−l
f(v)
g(v)

= cμ
vμ

+ cμ−1

vμ−1 + · · · + c1
v

+ α1(v)
r(v)

+ α0(v),
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where α0(v) and α1(v) are polynomials with degα1(v) < deg r(v) and ci ∈ C,
for i = 1, 2, . . . , μ. Equating both expressions, we get that cμ = −l f(0)/r(0) �= 0.
Moreover as deg f < deg g we know that α0(v) ≡ 0. Therefore equation (7) becomes

h′
l(v)

hl(v)
= cμ

vμ
+ cμ−1

vμ−1 + · · · + c1
v

+ α1(v)
r(v)

,

with cμ �= 0. Now if we integrate this expression we get

hl(v) = C exp
[

cμ
1 − μ

1
vμ−1

]

· exp
[∫ (

cμ−1

vμ−1 + . . . + c1
v

+ α1(v)
r(v)

)
dv

]
,

where C is a constant of integration. The first exponential factor cannot be sim-
plified with any part of the second exponential factor. Thus, the first integral (6)
cannot be a C∞ first integral having a center at the origin. So, g is square-free.
Hence we can write g(v) =

∏k
j=1(v − αj) and so

f(v)
g(v)

= γ1

v − α1
+ · · · + γk

v − αk
.

Then ∫
f(v)
g(v)

dv =
k∑

j=0

∫
γj

v − αj
dv =

k∑
j=0

γj log(v − αj),

and consequently

(8) exp
(∫

f(v)
g(v)

dv

)
=

k∏
j=0

(v − αj)γj .

Note that in order for this expression to be a C∞ function we must have γj ∈ Q+

for all j = 1, . . . , k. So hl(v) is a C∞ function in v if γj ∈ Q+ for all j = 1, . . . , k.
Conversely, assume that g is square-free and that γi ∈ Q− for i = 1, . . . , k. We

will prove that H(u, v) = uϕ(v) where

ϕ(v) = (v − α1)−γ1(v − α2)−γ2 · · · (v − αk)−γk ,

with γi = f(αi)/ġ(αi) is a first integral. Indeed, we have

uf(v)∂H
∂u

+ g(v)∂H
∂v

= u(f(v)ϕ(v) + g(v)ϕ̇(v)) = 0.

To see that this last expression is identically zero is equivalent to seeing that
ϕ̇(v)/ϕ(v) = −f(v)/g(v). Recalling the expression of ϕ(v) we have

− ϕ̇(v)
ϕ(v)

= γ1

v − α1
+ γ2

v − α2
+ · · · + γk

v − αk
.

Taking the common denominator and recalling that g(v) = c(v − α1)(v − α2) · · ·
(v − αk) we obtain

− ϕ̇(v)
ϕ(v)

= 1
g(v)

k∑
i=1

cγi

k∏
j=1,j �=i

(v − αi).
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Now substituting the values of γi = f(αi)/ġ(αi) and taking into account that

ġ(αi) = c
k∏

j=1,j �=i

(αi − αj),

we obtain

(9) − ϕ̇(v)
ϕ(v)

= 1
g(v)

k∑
i=1

cf(αi)
k∏

j=1,j �=i

v − αi

αi − αj
= f(v)

g(v)
.

Since deg f < deg g, the expression in the sum is the Lagrange polynomial which
interpolates the k points (αi, f(αi)) for i = 1, 2, . . . , k. Therefore, this polynomial
is f(v), and we conclude that the expression (9) is identically satisfied. Therefore,
we obtain that

ϕ(v) = C(v − α1)−γ1(v − α2)−γ2 · · · (v − αk)−γk .

Then as H(u, v) = uϕ(v) and γi ∈ Q− for i = 1, . . . , k, we have that H(u, v) is a
C∞-function.

Case 2 (deg f ≥ deg g). Again we have that system (4) admits a first integral of
the form (6). Then we get that equation (7) holds. Since deg f ≥ deg g we consider
the Euclidean divisions of f(v) and g(v), so we have

f(v) = q(v)g(v) + ψ(v),

where ψ(v) cannot be zero taking into account that f and g are coprime and
degψ < deg g. Hence equation (7) becomes

(10) h′(v)
h(v)

= −lq(v) + −lψ(v)
g(v)

.

Integrating (10) we obtain

(11) h(v) = Ce−lq̃(v)e−l
∫

ψ(v)
g(v) dv,

where C is a constant of integration and q̃ ′(v) = q(v), which is a polynomial.
Therefore the first factor is a C∞ function, and for the second factor we apply the
results in Case 1 with ψ replaced by f and get the sufficiency part proved also in
this case. For the necessity part we proceed in the same way. Assume that g is
square-free and that f(v) = q(v)g(v) + r(v). We will show that

(12) H(u, v) = u exp
(
−
∫

q(v) dv
)
(v − α1)−γ1 · · · (v − αk)−γk ,

with γi = r(αi)/g′(αi) < 0 for i = 1, . . . , k, is a C∞ function. Note that the
function defined in (12) is just the function H in (6) with only a term different
from zero when l = 1, thus satisfying (7) with l = 1 and (11) with q̃(v) =

∫
q(v) dv

and with exp
( ∫ r(v)

g(v) dv
)

as in (8) (with r replaced by f). Now we show that it
is indeed a first integral of system (4). We set φ(v) = (v − α1)γ1 · · · (v − αk)γk .
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Note that

0 = uf(v)∂H
∂v

+ g(v)∂H
∂v

= uf(v) exp(−
∫

q(v) dv)φ(v) + ug(v)(−q(v)φ(v) − φ′(v)) exp(−
∫

q(v) dv)

= u exp(−
∫

q(v) dv)(f(v)φ(v) − g(v)q(v)φ(v) − g(v)φ′(v))

= u exp(−
∫

q(v) dv)(r(v)φ(v) − g(v)φ′(v)).

To see that this last expression is identically zero it is equivalent to see that
ϕ′(v)
ϕ(v)

= r(v)
g(v)

.

Proceeding as we did in Case 1, replacing v by h, we get that this is indeed the
case. This completes the proof of the theorem. �

Proof of Theorem 3. We have already pointed out that in order to prove Theorem
6 it is enough to prove Theorem 3 with the assumption that 1+γ1+γ2+· · ·+γk = 0.
Assume that system (1) has a C∞ first integral H = H(x, y). By well-known results
we have that it is a first integral which is a quasi-homogeneous function of weight
exponents (s1, s2) and weight-degree d where we can take d = s1s2m with m ∈ N.
Let xiyj be a monomial with a nonzero coefficient of H. By quasi-homogeneity we
have s1i+s2j = m, which implies that s1i+s2j = s1s2m̃, that is s2j = s1(s2m̃−i).
As s1 and s2 are coprime, we deduce that j is a multiple of s1, that is, j = s1j̃ with
j̃ ∈ N ∪ {0}. Moreover the change of variables described in Lemma 2 implies that
H(u1/s2 , (uv)1/s1) is a first integral of system (4), and by homogeneity we have

H(u1/s2 , (uv)1/s1) = H(αs1 , αs2v1/s1) = αs1s2m̃H(1, v1/s1) = um̃H(1, v1/s1).

As H(x, y) is a C∞ function and all the monomials xiyj satisfy that j is a multiple
of s1, we have that h(v) = H(1, v1/s1) is also a C∞ function in v. Therefore we
have that um̃h(v) is a C∞ first integral of system (4). In view of Theorem 8 we
have that g(v) is square-free and γi ∈ Q− for i = 1, 2, . . . , k.

Conversely if we assume that g(v) is square-free, γi ∈ Q− for i = 1, 2, . . . , k we
have that system (4) has a C∞ first integral. As γi∈Q− there exists N,n1, n2, . . .,
nk such that γi = −ni/N for i = 1, 2, . . . , k. Note that by the proof of Theorem 8,
we can write the first integral as

H(u, v) = u−1eλg̃(v)(v − α1)−n1/N · · · (v − αk)−nk/N ,

where λ = 0 if deg f < deg g, and λ = 1 if deg f ≥ deg g. So

H̃(u, v) = uNe−Nλg̃(v)(v − α1)n1 · · · (v − αk)nk

is a C∞ function of system (4). Recall that 1 + γ1 + · · ·+ γk = 0, and so N − n1 −
· · · − nk = 0. Undoing the change of variables in Lemma 2 we get

H̃
(
xs2 , ys1

xs2

)
= xs2Ne−Nλg̃(ys1/xs2 )

(
ys1

xs2 − α1

)n1
· · ·

(
ys1

xs2 − αk

)nk

= xs2(N−n1−···−nk)e−Nλg̃(ys1/xs2 )(ys1−α1x
s2)n1 · · · (ys1−αkx

s2)nk .

So in order for H̃ to be a C∞ function we must have λ = 0. This concludes the
proof. �
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4. Proofs of Theorems 9 and 10

We note that from the definition of weight-homogeneous planar polynomial dif-
ferential systems of weight degree d, the exponents of u and v of any monomial
xuyv of P and Q are such that they satisfy, respectively, the relations

s1u + s2v = s1 + d, s1u + s2v = s2 + d.

We can always assume that s1 > s2; otherwise we exchange the coordinates x and
y. Additionally, we only consider the cases in which P and Q are coprime, since
otherwise they can be treated as weight-homogeneous with lower degree.

We also use the following lemma (see [10] for a proof).

Lemma 14. Given a quasi-homogeneous system of weight (s1, s2, d), we can sup-
pose without restriction that s1 and s2 are coprime.

Using this and Proposition 10 in [6] if a system is weight-homogeneous but not
homogeneous of degree n with the weight vector (s1, s2, d) and d > 1, we find that
the system has the minimal vector

w̃ =
(
t + k

s
,
k

s
, 1 + (p− 1)t + (n− 1)k

s

)
,

with t ∈ {1, 2, . . . , p}, where p ∈ {0, 1, . . . , n − 1} and k ∈ {1, . . . , n − p − t + 1}
satisfy

s1 = (t + k)(d− 1)
(p− 1)t + (n− 1)k , s2 = k(d− 1)

(p− 1)t + (n− 1)k ,

and s = gcd(t, k). Using this and again [6] we get that the weight-homogeneous
but not homogeneous polynomial differential systems of degree n with weight vector
(s1, s2, d) can be written in the form

Xptk = Xp
n + Xptk

n−t +
∑
D

Xpsks

n−s ,

where

D = {s ∈ {1, . . . , n− p} \ {t}, kst = ks, ks ∈ {1, . . . , n− s− p + 1}},
and

Xp
n =

(
ap,n−px

pyn−p, bp−1,n−p+1x
pyn−p+1

)
is the homogeneous part of degree n with coefficients not simultaneously vanishing
and

Xptk
n−t =

(
ap+k,n−t−p−kx

p+kyn−t−p−k, bp+k−1,n−t−p−k+1x
p+k−1yn−t−p−k+1

)
.

Moreover, in order that Xptk be weight-homogeneous but not homogeneous of de-
gree n we must have Xp

n not identically zero and at least one of the other elements
not identically vanishing.

Using all these previous results, we can prove that with degree 6 we have the 20
families of systems given in Theorem 9 and with degree 7 we have the 20 families
of systems given in Theorem 10. In fact in [7] the authors have implemented the
algorithm of [10] for computing the weight-homogeneous polynomial differential
systems of an arbitrary degree. We have checked the systems of Theorems 9 and
10 using such implementation.
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5. Proofs of Theorems 11 and 12

In view of Lemma 5 it is only necessary to look for centers at the origin of
coordinates.

Proof of Theorem 11. By Theorem 9 there are 20 families of weight-homogeneous
polynomials but not homogeneous with the minimal vector w = (s1, s2, 6) with
s1 > s2. We can check that systems 1, 2, 3, 5, 20 have the invariant line y = 0,
whereas systems 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 have the invariant line x = 0. So
their origin cannot be a center. It remains to study systems 6–9. Note that system
6 has the first integral H = b40x

5/5 − a0,6y
7/7, system 7 has the first integral

H = b30x
4/4 − a0,6y

7/7, for system 8 a first integral is H = b20x
3/3 − a0,6y

7/7,
and system 9 has the first integral H = b10x

2/2 − a0,6y
7/7. Therefore any system

6–9 cannot have a center at the origin because the curves H = h near the origin
are not closed. This completes the proof of Theorem 11. �

Proof of Theorem 12. By Theorem 10 there are 23 families of weight-homogeneous
polynomials but not homogeneous with the minimal vector w = (s1, s2, 7) with
s1 > s2. We can check that systems 23, 25, 27, 29, 30, 32, 33, 34, 43 have the invariant
line y = 0, whereas systems 35, 36, 37, 38, 39, 40, 41, 42 have the invariant line x = 0.
So their origin cannot be a center. System 24 has the first integral H = b60x

7/
7−a0,7y

8/8, system 28 has the first integral H = b40x
5/5−a0,7y

8/8, and for system
31 a first integral is H = b20x

3/3 − a0,7y
8/8. So, clearly systems 24, 28 and 31

cannot have a center at the origin.
In short we are left with studying systems 21, 22 and 26.

Lemma 15. System 21 has a center at the origin if and only if

a3,1 + a2,3ri + a1,5r
2
i + a0,7r

3
i

a3,1 − 2b2,2 + 2a2,3ri − 4b1,4ri + 3a1,5r2
i − 6b0,6r2

i + 4a0,7r3
i

∈ Q+,

where the ri’s are the four simple roots of the polynomial 2b3,0 − a3,1v + 2b2,2v −
a2,3v

2 + 2b1,4v2 − a1,5v
3 + 2b0,6v3 − a0,7v

4, and with an isolated minimum at the
origin.

Proof. Following [9] we first do the change of variables u = x and v = y2/x
and the rescaling of time which transforms a quasi-homogeneous system 21 into
a polynomial system of the form (4) which admits a first integral of the form (6),
where the function h(v) satisfies the differential equation (7). We assume now that
V (u, v) = ug(v) is not square-free. Recalling the proof of Theorem 8 we obtain
that a first integral cannot be a C∞ first integral having a center at the origin, and
the same happens for the transformed first integral in the original variables (x, y)
of system 21.

Now we assume that V (u, v) = ug(v) is square-free, i.e., that g(v) is square-free.
Using the change of variables (u, v) we arrive at a first integral of the form

H(x, y) = (y2 − r1x)λ1(y2 − r2x)λ2(y2 − r3x)λ3(y2 − r4x)λ4 ,

where ri are the four complex simple roots of the polynomial g(v) = 2b3,0 −a3,1v+
2b2,2v − a2,3v

2 + 2b1,4v2 − a1,5v
3 + 2b0,6v3 − a0,7v

4 and

λi = a3,1 + a2,3ri + a1,5r
2
i + a0,7r

3
i

a3,1 − 2b2,2 + 2a2,3ri − 4b1,4ri + 3a1,5r2
i − 6b0,6r2

i + 4a0,7r3
i

,
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where the denominator is in fact −g′(ri). Hence the condition for having a C∞

first integral defined at the origin is λi ∈ Q+. Moreover to have a center at the
origin it is also necessary to have an isolated minimum at the origin.

In fact doing the blowup (X,Y ) = (x, y2) and a scaling of time, system 21
becomes a homogeneous system

Ẋ =a3,1X
3 + a2,3X

2Y + a1,5XY 2 + a0,7Y
3,

Ẏ =b3,0X
3 + b2,2X

2Y + b1,4XY 2 + b0,6Y
3.

(13)

Taking now classical polar coordinates the G(θ) takes the form

G(θ) =2b3,0 cos4 t− (a3,1 − 2b2,2) cos3 t sin t− (a2,3 − 2b14) cos2 t sin2 t

− (a1,5 − 2b0,6) cos t sin3 t− a0,7 sin4 t.

Applying Lemma 1 we obtain that G(θ) must have no real roots, which is the same
condition imposed on g(v) above. The second condition of Lemma 1 is equivalent
to having an isolated minimum at the origin. �

Lemma 16. System 22 has a center at the origin if and only if (3a3,3 − 4b2,4)2 +
48a0,7b5,0 < 0 and 3a3,3 + 4b2,4 = 0.

Proof. System 22 has the first integral

H(x, y) =
((

− 3a3,3 + 4b2,4 +
√

(3a3,3 − 4b2,4)2 + 48a0,7b5,0

)
x3 − 6a0,7y

4
)λ1

·
((

3a3,3 − 4b2,4 +
√

(3a3,3 − 4b2,4)2 + 48a0,7b5,0

)
x3 + 6a0,7y

4
)λ2

,

where λ1 = 1+ 3a3,3+4b2,4√
(3a3,3−4b2,4)2+48a0,7b5,0

and λ2 = 1− 3a3,3+4b2,4√
(3a3,3−4b2,4)2+48a0,7b5,0

, when

(3a3,3 − 4b2,4)2 + 48a0,7b5,0 �= 0. Therefore applying Theorem 4 in order to have a
C∞ first integral we obtain the condition

3a3,3 + 4b2,4√
(3a3,3 − 4b2,4)2 + 48a0,7b5,0

∈ Q, with

∣∣∣∣∣
3a3,3 + 4b2,4√

(3a3,3 − 4b2,4)2 + 48a0,7b5,0

∣∣∣∣∣ < 1.

Now we apply Lemma 1, take the weighted polar coordinates x = r4 cos θ, y =
r3 sin θ and compute G(θ). The discriminant of G(θ) in order to have no real roots
is (3a3,3 − 4b2,4)2 + 48a0,7b5,0 < 0. Consequently the above condition implies that
3a3,3 + 4b2,4 = 0. Under this condition the first integral is polynomial of the form

H(x, y) = −4b5,0x6 + 6a3,3x
3y4 + 3a0,7y

8

and has an isolated minimum at the origin.
In fact we can do the blowup (X,Y ) = (x3, y4) and a scaling of time, and system

22 becomes a homogeneous system

(14) Ẋ = 3(a3,3X + a0,7Y ), Ẏ = 4(b5,0X + b2,4Y ).

Taking now classical polar coordinates the G(θ) takes the form

G̃(θ) = − 4b5,0 cos2 t + (3a3,3 − 4b2,4) cos t sin t + 3a0,7 sin2 t.
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Applying Lemma 1 we obtain that the condition that G̃(θ) has no real roots is the
same condition that G(θ) has no real roots, which is given by (3a3,3 − 4b2,4)2 +
48a0,7b5,0 < 0. The second condition of Lemma 1 gives the condition 3a3,3+4b2,4 =
0 in agreement with the condition found before.

For the case (3a3,3 − 4b2,4)2 + 48a0,7b5,0 = 0 as a0,7 �= 0, because otherwise
system 22 has the invariant curve x = 0, we take b5,0 = −(3a3,3 − 4b2,4)2/(48a0,7),
and a first integral is

H(x, y) = e
− (3a3,3+4b2,4)x3

3a3,3x3−4b2,4x3+6a0,7y4 (3a3,3x
3 − 4b2,4x3 + 6a0,7y

4),
which is analytic if and only if 3a3,3 + 4b2,4 = 0. However in this case the G(θ) has
real roots and system 22 does not have a center. This last case shows that we can
have a system with a C∞ first integral and without a center at the origin. �

Lemma 17. System 26 has a center at the origin if and only if a2
1,3 − 8a1,3b0,4 +

16b20,4 + 16a0,7b1,0 < 0.

Proof. We can consider that b1,0 �= 0 because if b1,0 = 0, then system 26 has the
invariant curve y = 0 and it cannot have a center at the origin. Hence system
26 has a nilpotent singular point at the origin, and we interchange x ↔ y to put
system 26 into its classical form and we obtain
(15) ẋ = b1,0y + b0,4x

4, ẏ = a0,7x
7 + a1,3x

3y.

Now we do the rescaling y = Y/b1,0, and system (15) takes the form

(16) ẋ = y + b0,4x
4, ẏ = a0,7 b1,0 x

7 + a1,3x
3y,

replacing Y by y. Now we apply Theorem 13 and obtain that the solution is given
by y = F (x) = −b0,4x

4 and

f(x) = −(a1,3b0,4 − a0,7b1,0)x7 + O(x8),
φ(x) = (a1,3 + 4b0,4)x3 + O(x4).

Therefore we have a = −(a1,3b0,4 − a0,7b1,0) with α = 7, b = (a1,3 + 4b0,4) with
β = 3. Here we have α = 2 · 4 − 1 and β = n− 1 = 4− 1 = 3. Hence the condition
that b2 − 4an is a2

1,3 − 8a1,3b0,4 + 16b20,4 + 16a0,7b1,0 < 0 is the condition needed in
order that system (16) has a focus or a center.

In this case the origin is a center of (16) and also of (15), because the system
above is reversible; i.e. it is invariant by the symmetry (x, y, t) → (−x, y,−t). �

This completes the proof of the theorem. �
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