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Abstract. The supersingular polynomial S�(x) ∈ F�[x] has many well-
studied lifts to Q[x]. Among these is one introduced by Kaneko and Zagier,
which, when interpreted as a specialized Jacobi polynomial, is seen to coincide
with a lift discovered by Brillhart and Morton a few years later. The algebraic

properties of this family of lifts of S�(x) are not well-understood. We focus
on a conjecture of Mahlburg and Ono regarding the maximality of their Ga-
lois groups (when shorn of their trivial linear factors) and also establish their
irreducibility in some previously unknown cases.

1. Introduction

1.1. Background and notation. Consider a positive integer � ≥ 5 coprime to 6.
Let n, e be the quotient and remainder, respectively, of �/12, i.e. � = 12n+ e with
e ∈ {1, 5, 7, 11} and n ≥ 0. We also write k = � − 1 = 12n + r where r = e − 1
belongs to {0, 4, 6, 10}. We note that k is even and not congruent to 2 mod 3. There
is a unique pair (λ, μ) ∈ {±1} × {±1} such that e − 6 = 2λ + 3μ. Similarly, there
is a unique pair (δ, ε) ∈ {0, 1} × {0, 1} such that r = 4δ + 6ε. They are related by
(λ, μ) = (2δ−1, 2ε−1). We use this notation throughout without further comment.

If � is a prime number, we can define the supersingular polynomial S� ∈ F�[j]
in a single variable, j, by

S�(j) =
∏
j′

(j − j′)

where j′ runs over all the j-invariants of supersingular elliptic curves in F�. We
recall some well-known facts about S�(j): it lies in F�[j], has degree n+ δ+ ε, and
is divisible by jδ(j−1728)ε. There is therefore a well-defined polynomial s� ∈ F�[j]
of degree n satisfying

S�(j) = jδ(j − 1728)εs�(j).

In their beautiful and influential paper [9], Kaneko and Zagier describe a number
of natural lifts of s� from F� to Q coming from the theory of elliptic modular forms.
These include lifts due to Hasse-Deuring, Deligne, and Atkin as well as one due to

Kaneko and Zagier, denoted F̃k(j). In [9] the authors focus on the connection to
modular forms, hence the emphasis on k = 12n+ r as the index of the polynomial,
as opposed to � = k + 1, or the degree of the polynomial, namely n = (k − r)/12.
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We recall that the space Mk of weight k holomorphic modular forms on PSL2(Z)
has dimension n+ 1.

1.2. The Kaneko-Zagier polynomial. To define the Kaneko-Zagier polynomial,
let j(z),Δ(z), Em(z) denote the classical j-function, discriminant form, and nor-
malized weight m Eisentein series, respectively. Every element f(z) of Mk has an
expression of the form

f(z) = Δ(z)nE4(z)
δE6(z)

εf̃((j(z)),

for a unique polynomial f̃(j) of degree at most n, the coefficient of jn in f̃(j) being
equal to the constant coefficient in the Fourier expansion of f . In [9], the authors

give four different choices of f(z) for which f̃(j) is a lift of s�(j). The easiest to
describe is f = E�−1, the normalized weight �− 1 Eisenstein series. Another choice
due to Kaneko-Zagier, which will be our focus here, is for a certain modular form
Fk which we now describe. Let θk be the differential operator on Mk defined by

θkf(z) = q
d

dq
f(z)− k

12
E2(z)f(z),

where, as usual, q = e2πiz and E2 = Δ′/Δ. There is a unique normalized form
Fk(z) ∈ Mk satisfying

θk+2θkFk(z)−
k(k + 2)

144
E4(z)Fk(z) = 0.

As we will see shortly, the corresponding Kaneko-Zagier polynomial F̃k(j) lies in

Q[j] and has degree n. It is shown in [9] that, when � is prime, F̃�−1(j) and Ẽ�−1(j)
have �-integral coefficients and satisfy

Ẽ�−1(j) ≡ F̃�−1(j) ≡ s�(j) mod �.

As we will see in §2, the second congruence was independently derived by Brillhart
and Morton [1].

1.3. Algebraic properties. The study of algebraic properties of F̃k(j) was initi-
ated by Mahlburg and Ono in [10], in which they put forward the following conjec-

ture (in analogy with a similar expectation for the lift Ẽ�−1(j) of s�(j)).

Conjecture 1.4 (Mahlburg-Ono). With notation as in the opening paragraph, for

each � ≥ 5 coprime to 6, the Kaneko-Zagier polynomial F̃�−1(j) is irreducible and
has Galois group Sn over Q.

Mahlburg and Ono give several infinite families of integers k for which F̃k is
irreducible, and they also check for most of those particular families that the dis-
criminant is not a square. We extend their results here in several directions. The
main results of this paper can be summarized as follows.

Theorem 1.5. For � ≥ 5 coprime to 6, the discriminant of F̃�−1(x) is not a square
in Q.

Theorem 1.6. Suppose F̃�−1(x) is irreducible over Q. If � can be expressed as
� = p + 6q where p and q are primes and n/2 < q < n − 2, then the Galois group

of F̃�−1(x) is Sn.
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Remark 1.7. As we will explain later, according to standard conjectures in ana-
lytic number theory about the distribution of primes, every large enough integer
� coprime to 6 is expected to have one (and indeed many) expressions as p + 6q
with the q in the specified range. Thus, Theorem 1.6 reduces the Mahlburg-Ono
conjecture to expected properties of prime distributions. Though the latter are far
out of reach at present, Theorem 1.6 does nevertheless provide a highly effective
and speedy numerical criterion for checking the Mahlburg-Ono conjecture for any
given �: namely, starting with the smallest prime exceeding n/2 and going up, we
look for a prime q such that � − 6q is also prime. Any such pair, together with

a verification of the irreducibility of F̃�−1(x), constitutes a “certificate” that this
polynomial has Galois group Sn. This method allows us to verify the “Galois part”
of the Mahlburg-Ono conjecture for � up to a billion.

Theorem 1.8. For � ≤ 109 coprime to 6, if F̃�−1(x) is irreducible, then its Galois
group is Sn.

While our focus is mostly on the Galois group in this paper, we do have the fol-
lowing result on irreducibility of Kaneko-Zagier polynomials, which is a complement
to Theorem 1.1 in Mahlburg-Ono [10].

Theorem 1.9. If � is one of the forms 6 · 4ν + 1, 6 · 4ν − 5, 3 · 4ν + 5, or 3 · 4ν − 1,

then F̃�−1(x) is irreducible over Q.

2. The Kaneko-Zagier polynomial as a specialized Jacobi polynomial

2.1. Relation to the Brillhart-Morton polynomial. Our starting point is an

explicit expression for F̃k(j) as a hypergeometric polynomial given by Kaneko and
Zagier. To describe this explicit form, recall that the 2F1 Gauss hypergeometric
function is defined by

2F1

[
a b

c
;x

]
def
=

∞∑
ν=0

(a)ν(b)ν
(c)ν

xν

ν!
,

where (·)ν is the Pochhammer symbol, given by (a)ν = a(a−1)(a−2) . . . (a−ν+1).
Kaneko and Zagier [9] show (in their Theorem 5.ii applied with the involution σ
that swaps 0 and ∞) that

(1) F̃k(j) = 1728n
(
n+ λ/3

n

)
× 2F1

[
−n n+ e/6

1 + λ/3
;

j

1728

]
,

where we recall the notation is as in the opening paragraph of the introduction.
As was pointed out by Kaneko and Zagier (see the last paragraph of §8 in [9]),

the expression (1) essentially identifies F̃k(x) as a Jacobi polynomial. To make
this explicit, we recall that the Jacobi polynomial with characteristics (α, β) can be
defined as the following hypergeometric polynomial:

(2) P (α,β)
n (x) =

(α+ 1)n
n!

2F1

[
−n 1 + α+ β + n

1 + α
;
1− x

2

]
;

see [13]. With the choice (α, β) = (λ/3, μ/2), we find 1 + α+ β = e/6, and setting
x = 1− j/864 in (2), (1) simplifies to become

(3) F̃k(j) = 1728nP (λ/3,μ/2)
n

(
1− j

864

)
.
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We should point out that the right hand side of (3) is precisely the polynomial
denoted J�(j) in [1]; thus, the Brillhart-Morton polynomial J� actually coincides

with the Kaneko-Zagier polynomial F̃�−1. Brillhart and Morton (see [1, Theorem
3]) give an independent proof that J�(j) is a lift of s�(j).

2.2. Shifted Jacobi polynomials. For convenience we switch from the variable

j to the more conventional x for our polynomials. The expression (2) for P
(α,β)
n (x)

shows that when expanded in powers of (1− x), the coefficients of this polynomial
are explicit and highly factored. It is remarkable that the same is true for its
coefficients in powers of x. Indeed, if we define

J (α,β)
n (x)

def
= P (α,β)

n (2x+ 1),

we have the nice expansion [13]

J (α,β)
n (x) =

n∑
j=0

(
n+ α

n− j

)(
n+ α+ β + j

j

)
xj .

This same shift was useful (for Jacobi polynomials with characteristics (α, β) =
(±1/2, 0)) for studying the algebraic properties of Legendre polynomials in [4].

Definition 2.3. For any integer � ≥ 5 coprime to 6, if we write � = 12n+3μ+2λ+6
where n ≥ 0 and λ, μ ∈ {±1}, we define

K�(x) = K(λ,μ)
n (x)

def
= 3nn!J (λ/3,μ/2)

n (2x)

=

n∑
j=0

(
n

j

)⎡⎣ n∏
k=j+1

(λ+ 3k)

j∏
k=1

(6n+ 3μ+ 2λ+ 6k)

⎤⎦xj .

We can now state the expression of F̃k(x) in terms of the polynomial we have
just introduced.

Lemma 2.4. For any integer � ≥ 5 coprime to 6, if we write � = 12n+3μ+2λ+6
where n ≥ 0, λ, μ ∈ {±1}, we have

F̃�−1(x) =
576n

n!
K�

(
−x

2× 1728

)
.

In particular, K�(x) and the Kaneko-Zagier polynomial F̃�−1(x) share the same
irreducibility and Galois properties.

Proof. The formula follows immediately from (3) and the definitions of P
(αβ)
n (x),

J
(α,β)
n (x) and K�(x). �

In light of Lemma 2.4, the factorization and Galois properties of the Kaneko-

Zagier polynomial F̃�−1(x) exactly mirror those of the polynomial K�(x), and from
now on we will work with K�(x) instead. The rationale for introducing K�(x) is
that it has been scaled to have coefficients in Z, making it a bit easier to compute
its Newton polygons at well-chosen primes. The shape of those Newton polygons
can then be used to prove algebraic facts about K�(x).

The layout of the paper is as follows. First, we give a criterion for an arbitrary

specialization of the Jacobi polynomial P
(α,β)
n (x) to have a non-square discriminant

and then show that this criterion applies to K
(λ,μ)
n (x) for all n, λ, μ. We then move
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on to an investigation of the Newton polygons of the K�(x) at large primes. The
idea is that if we have a decomposition � = 12n + e = p + 6q, where p is a prime
and 1 ≤ q ≤ n, then the p-adic Newton polygon of K�(x) will have a slope 1/q
segment. The Galois group of this polynomial will then have a q-cycle; if q > n/2,
a theorem of Jordan will then imply that the Galois group contains An, hence is
Sn by our result on the discriminant. Finally, we conclude with some new cases of
irreducibility of the K�(x) in the final section.

3. Discriminant formulæ

In this section we prove a general result on the discriminants of Jacobi poly-
nomials and then employ similar techniques as in [5] to show that for all n and

all choices of λ and μ, the discriminant of K
(λ,μ)
n (x) is not a rational square. Fix

α, β ∈ Q and recall that

P (α,β)
n (x) =

n∑
j=0

(
n+ α

n− j

)(
n+ α+ β + j

j

)(
x− 1

2

)j

,

which was our motivation for defining J
(α,β)
n (x)

def
= P

(α,β)
n (2x+1). It is well-known

[13, Thm. 6.71] that the discriminant of the Jacobi polynomial is given by

discP (α,β)
n (x) = 2−n(n−1)

n∏
k=1

kk−2n+2(k + α)k−1(k + β)k−1(k + n+ α+ β)n−k.

(4)

Moreover, the discriminant of a general polynomial of degree n satisfies the trans-
formation laws:

disc(νf(κx+ γ)) =
(
ν2κn

)n−1
disc(f(x)).(5)

For parameters u, v, t, w with u and v non-zero, we define the following polynomial
in Z[x]:

Jn(u, v, t, w;x)
def
= n!unJ (t/u,w/v)

n (vx)

=
n∑

j=0

(
n

j

) n∏
k=j+1

(t+ uk)

j∏
k=1

(tv + uw + (k + n)uv)xj .

Note that for � = 12n + 2λ + 3μ + 6, with λ, μ ∈ {±1}, we have K�(x) =
Jn(3, 2, λ, μ;x).

Proposition 3.1. The discriminant of Jn(u, v, t, w;x) is given by the following
formula:

discJn(u, v, t, w;x) = un(n−1)
n∏

k=1

kk(uk+t)k−1(vk+w)k−1(uv(n+k)+vt+uw)n−k.
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Proof. Since we already have a formula for the discriminant of Pn, we apply (5) a
few times in order to relate the discriminant of Jn to that of Pn, as follows:

discJn(u, v, t, w;x) = discn!unJ (t/u,w/v)
n (vx)

=
(
(n!un)2vn

)n−1
disc J (t/u,w/v)

n (x)

=
(
(n!un)2vn

)n−1
discP (t/u,w/v)

n (2x+ 1)

=
(
(n!un)2vn

)n−1
discP (t/u,w/v)

n (2x)

=
(
(n!un)2vn

)n−1
2n(n−1) discP (t/u,w/v)

n (x).

When we apply (4) to the last equation, several simplifications occur and we have

discJn(u, v, t, w;x)

=
(
(n!un)2vn

)n−1
n∏

k=1

kk−2n+2(k + t/u)k−1(k + w/v)k−1(n+ k + t/u+ w/v)n−k

= un(n−1)
n∏

k=1

kk(uk + t)k−1(vk + w)k−1(uv(n+ k) + vt+ uw)n−k,

as claimed. �

Proposition 3.2. Let u, v, t, w ∈ Z. Suppose u, v ≥ 2, gcd(uv, tv + uw) = 1,
and uv + vt + uw is odd. Then there exists N ∈ Z such that for all n ≥ N ,
discJn(u, v, t, w;x) is not a square in Q×.

Proof. Let us explain the strategy of the proof. From the formula of the preceding
proposition, we separate out two factors of discJn(u, v, t, w;x) = AB as follows:

A = un(n−1)
n∏

k=1

kk[(uk + t)(vk + w)]k−1, B =

n∏
k=1

(uv(n+ k) + vt+ uw)n−k.

If we can show that there exists an integer k0 ∈ [1, n] such that

(1) p = uv(n+ k0) + uw + vt is prime, and
(2) n− k0 is odd, and
(3) p does not divide A,

then it will follow that discJn is not a rational square, since the p-valuation of
discJn(u, v, t, w;x) would then clearly be odd.

To ease the notation, let x = uv(n + 1) + vt + uw, and y = uv(2n) + vt + uw.
One checks easily that to satisfy conditions (1) and (2) above is to find a prime p
in [x, y] in the congruence class uv + vt+ uw mod 2uv.

The main result of [12] can be adapted to show that if k,m are coprime integers
and 0 < δ < 1 is a real number, the interval [x, (1 + δ)x] contains a prime p ≡ m
mod k once x surpasses a bound depending only on k,m and δ. It’s easy to see that
for any fixed δ ∈ R with 0 < δ < 1, there exists N0 such that [x, y] ⊆ [x, (1 + δ)x]
for all n ≥ N0. Indeed, the latter inclusion is equivalent to the inequality δx ≤
(n−1)uv, since the interval [x, y] has length (n−1)uv, so to be completely explicit,
we can take N0 = (1 − δ)−1(2 + t/u + w/v) − t/u − w/v. Restricting to n ≥ N0,
we now want to show that [x, (1 + δ)x] contains a prime in the congruence class
uv + vt+ uw mod 2uv.
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By [12], there exists x0 so that for all x ≥ x0, [x, (1 + δ)x] contains a prime in
every admissible congruence class modulo 2uv. Let

N = max

{
x0 − tv − uw

uv
,
|t| − vt− uw

u
,
|w| − vt− uw

v
,N0

}
.

By construction, for n ≥ N the interval [uv(n + 1) + vt + uw, 2n + vt + uw] is
guaranteed to contain a prime p of the form uv(n + k0) + tv + uw with n − k0
odd, so that ordp(B) = n − k0 is odd. On the other hand, the fact that n ≥ N ≥
max((|t| − vt− uw)/u, (|w| − vt− uw)/v) ensures that p > max(nu+ |t|, nv+ |w|),
hence ordp(A) = 0. Thus, we have found a prime p for which

ordp discJn(u, v, t, w;x) = n− k0

is odd, and hence discJn is not a rational square. �

Remark 3.3. In order for an integer of the form uv(n+ k)+ vt+uw to be prime, it
is necessary that gcd(uv, tv+uw) = 1, and it is easy to find examples of irreducible
Jn with square discriminant when gcd(uv, tv + uw) �= 1, e.g. J3(2, 2, 71, 7;x).

We illustrate all of this as it pertains to the K�(x).

Corollary 3.4. For � = 12n + 2λ + 3μ + 6, where λ, μ ∈ {±1} and n ≥ 1, the
discriminant of K�(x) satisfies

discK�(x) = discK(λ,μ)
n (x)

= 3n
2−n

n∏
k=1

kk(3k + λ)k−1(2k + μ)k−1(6k + 6n+ 2λ+ 3μ)n−k,

and it is not a square in Q×.

Proof. Applying Proposition 3.1, we immediately obtain the discriminant formula,
which was also derived (up to change in notation) by Mahlburg and Ono in [10]. The
claim that this discriminant is not a square for large enough n follows immediately
from Proposition 3.2, because the parameters u = 3, v = 2, t = λ, w = μ satisfy its
two conditions, namely gcd(uv, tv + uw) = gcd(6, 2λ+ 3μ) = gcd(6, e− 6) = 1 and
uv+ tv + uw = e is coprime to 6 by assumption and in particular is odd. Since we
want to verify this for all n and not just n large enough, we need an explicit value
for the bound N in the proof of Proposition 3.2. In the notation of that proof, we
choose δ = 0.9 so that we can take N0 = 27. It’s then easy to see that Proposition
3.2 applies with bound N = x0/6 as long as x0 is large enough to guarantee that
for all x > x0, the interval [x, 1.9x] contains a prime in every admissible congruence
class modulo 12. We now explain why we can take x0 = 480.

In [5] it was shown that if x ≥ 1010, then the interval [x, 1.048x) contains a
prime in every congruence class modulo 12; hence the same is true for intervals of
the form [x, 1.9x]. For x ≤ 1010 we apply a similar argument to the one in [5],
though with a slightly different parameter (in the notation of that paper, ε = 0.3).
Using that argument, it follows that the interval [x, 1.9x] contains a prime in every
congruence class modulo 12 once

x >

(
2.072(1 +

√
1.9) · 4

0.9

)2


 479.7.
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For small values of n, it is easily checked in Pari that discKλ,μ
n (x) is not a square

in Q for all four choices of signs λ, μ, completing the proof. �

Corollary 3.5. If K�(x) is irreducible over Q, then its Galois group is not contained
in An.

Remark 3.6. In [10] it was already shown (in the slightly different notation explained
in the introduction) that for many values of � the discriminant of K�(x) is not a
square. Corollary 3.4 establishes this for all values of �.

4. Newton polygons at large primes

In [10], Mahlburg and Ono identified several special families of integers k for

which F̃k(x) is an Eisenstein polynomial at some prime p. Another way of saying
that a polynomial f of degree n is Eisenstein at p is that its p-adic Newton polygon
NPp(f) is pure of slope ±1/n. In this section, we (mostly) set aside the question
of irreducibility and, for the purposes of showing the Galois group is large, look for
primes p at which the Newton polygon of K�(x) is not quite pure, but close to it.
It turns out such primes are in plentiful supply, as we now demonstrate.

Proposition 4.1. Suppose the positive integer � is coprime to 6 and write � =
12n+ e with n ≥ 0 and e = 2λ+ 3μ+ 6 ∈ {1, 5, 7, 11} with λ, μ ∈ {±1}. For every
prime p ∈ [�− 6n, �− 6], satisfying p ≡ e mod 6, let q = (�− p)/6. Note that q is
an integer in the interval [1, n]. Then, the p-adic Newton polygon of K�(x) consists
of a slope 0 segment of length n− q and a slope 1/q segment of length q. In other
words, if p = 6n + 6i + e is prime with 0 ≤ i ≤ n − 1, so that i = n − q, then the
p-adic Newton polygon of K�(x) has the following shape:

0 i

← slope 1/(n− i) = 1/q

1

Proof. The proof follows easily from the explicit form of the coefficients, namely
K�(x) =

∑n
j=0 ajx

j with

aj =

(
n

j

) n∏
k=j+1

(3k + λ)

︸ ︷︷ ︸
Aj

j∏
k=1

(6n+ 6k + e− 6)︸ ︷︷ ︸
Bj

,

where we remind the reader that we write e = 6 + 2λ + 3μ. Let p be a prime in
[� − 6n, � − 6] satisfying p ≡ e mod 6. There is a unique i in [0, n − 1] such that
p = 6n+6i+e−6, and we have n− i = (�−p)/6 = q. Since p ≥ 6n+e−6 ≥ 6n−5,
ordp

(
n
j

)
= ordp Aj = 0 for all j. Moreover, 2p > 12n+ e− 6, hence

ordp(aj) = ordp(Bj) =

{
0 if 0 ≤ j ≤ i,

1 if i+ 1 ≤ j ≤ n.
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Hence, the p-adic Newton polygon of K�(x) is as claimed. �

We note that since � − 6n ≈ �/2, primes p to which the previous proposition
applies (namely the prime congruent to e mod 6 in [� − 6n, �]) are in plentiful
supply. Indeed, by Dirichlet’s theorem, their number is asymptotic to �

4 log � . Since

the Newton polygon of a product of polynomials is the Minkowski sum [6, §8.3]
of the Newton polygon of the factors, Proposition 4.1 places restrictions on the
degrees of possible factors of K�(x).

Corollary 4.2. We have:

(1) Let � = 12n + e with e ∈ {1, 5, 7, 11} and let p ≡ e mod 6 be a prime in
[�− 6n, �− 6]; put q = (�− p)/6. If g(x) ∈ Q[x] is a degree d ≥ n/2 divisor
of K�(x), then deg g(x) ≥ q.

(2) If p ≥ 13 is a prime and e is the remainder of p ÷ 12, then K2p−e(x) is
irreducible.

Proof. In light of Dumas’ Lemma (see, for example, [3, Corollary 2.7]), the first
claim is immediate from the proposition. For the second claim, let us write p =
6n + e and set � = 2p − e = 12n + e. Since p = � − 6n, we can either apply part
(1) of the corollary to show that K�(x) is irreducible or use Proposition 4.1 itself to
show directly that K�(x) is Eisenstein at p, hence irreducible. �

Remark 4.3. Part (2) of Corollary 4.2 simply reaffirms some cases of Theorem 1.1 in
Mahlburg-Ono [10], namely those referring to cases 1, 4, 7, and 14 in their theorem.

For the application to the Galois group, we recall the following facts.

Theorem 4.4. Let f(x) ∈ Z[x] be an irreducible polynomial of degree n and p
a prime. Let G be the Galois group over Q of f(x). Suppose the p-adic Newton
polygon of f(x) has a segment of slope r/s written in reduced form; i.e. r, s are
co-prime integers. Then

(1) s divides |G|,
(2) If s is a prime in the range n/2 < s < n − 2, then G = An in the case

disc(f) is a square and G = Sn otherwise.

Proof. The first result is a basic fact about Newton polygons: briefly, since the
p-adic valuation of a root α of f is r/s, s divides a ramification index in Q(α)/Q
and hence it divides |G|; for more details, see e.g. [7]. The second result is Jordan’s
criterion [14]: a transitive subgroup of Sn containing a cycle of prime length s with
n/2 < s < n− 2 contains An. �

We can now state the main theorem of this section.

Theorem 4.5. Suppose � = 12n + e with e ∈ {1, 5, 7, 11}. Assume K�(x) is irre-
ducible over Q and let G be its Galois group. Then:

(1) For every prime p ∈ [6n+e, 12n+e] satisfying p ≡ e (mod 6), q = (�−p)/6
divides |G|.

(2) If � = p+6q and p, q are primes satisfying either of the equivalent conditions
(i) q ∈ (n/2, n− 2) or (ii) p ∈ (6n+ 12 + e, 9n+ e), then G = Sn.

Proof. We simply apply Theorem 4.4 to Proposition 4.1 and Corollary 3.4. �
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Table 1. Representative Data For N (�) and N∗(�)

� N (�) N∗(�) N∗(�)/N (�) N (�)/H (�)
101 5 1 0.200 0.421
1009 19 6 0.315 0.489
10007 86 21 0.244 0.603
100003 492 107 0.217 0.674
1000003 3157 734 0.232 0.730
10000019 22128 5381 0.243 0.765
100000007 162251 39182 0.241 0.799
1000000007 1249125 302624 0.242 0.820
10000000019 9909630 2411952 0.243 0.837
100000000003 80503641 19650597 0.244 0.852
1000000000039 666827226 163133972 0.244 0.864

Remark 4.6. Theorem 4.5 gives an effective criterion for checking the Galois part
of the Mahlburg-Ono conjecture for any given �. After checking irreducibility of
K�(x), a much shorter computation to find a suitable prime pair (p, q) satisfying
condition (2) of the theorem would run over the primes q > n/2, testing each time
whether p = � − 6q is prime. Assuming such a prime pair (p, q) is found with
q < n−2, it is in essence a certificate that G = Sn. We used GP-Pari [11] to carry
out this procedure for finding such prime pairs for all � coprime to 6 in the range
(551, 109). We did not check irreducibility of the polynomials in this entire range,
but for the smaller range 1 ≤ � ≤ 105, we checked the irreducibility of K�(x) in
Magma [2]. For those � ≤ 551 coprime to 6 which do not admit a decomposition
� = p + 6q with q ∈ (n/2, n − 2), we verified that G = Sn in Magma. Thus, we
have fully checked the Mahlburg-Ono conjecture for all � coprime to 6 in the range
[1, 105].

We now explain why, in addition to being a numerical criterion for checking the
Mahlburg-Ono conjecture, Theorem 4.5 provides heuristic evidence for it as well. In
their celebrated series of papers on the Partitio Numerorum, Hardy and Littlewood
present conjectures for the distribution of primes in a number of arithmetic contexts.
For example, fixing positive integers a and b, they estimate the asymptotics of the
number of ways of expressing a large integer � as ap + bq with p, q prime. Let us
write N (�) for the number of prime pairs (p, q) such that � = p+6q. For simplicity,
we focus on the case where � is prime, but this is just to simplify the formula a
little. Conjecture C from [8] predicts that for large primes �,

N (�) ∼ 2C2

3

�− 1

�− 2

�

(log �)2
,

where C2 :=
∏

primes r≥3

(
1− 1

(r − 1)2

)
≈ 0.6601618 . . . .

Now, let us write N∗(�) for the number of prime pairs (p, q) such that � = p+6q with
q restricted to (n/2, n−2), where as usual n = ��/12�. In the computation of N (�),
q is allowed to roam inside the interval [1, 2n], but (n/2, n−2) covers just a quarter
of that interval as n → ∞, so it is reasonable to expect that N∗(�) ∼? 1

4N (�).
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In addition to finding just one prime pair (p, q) for each � coprime to 6 up to 109,
we also computed N (�) and N∗(�) for many large prime numbers � as a numerical
study of the robustness of the Hardy-Littlewood asymptotics in this limited range,
with a particular interest in the hypothesis that N∗(�)/N (�) ∼ 1/4, which our
data tend to support. In Table 1, we give some representative results, only for
primes just exceeding powers of 10. The last column lists the computed values of
N (�)/H (�) where

H (�) :=
2C2

3

�− 1

�− 2

�

(log �)2
.

Note that while N (�)/H (�) is quite a bit smaller than 1, it does exhibit a generally
upward movement, so the Hardy-Littlewood Conjecture’s prediction that it tends
towards 1 as � becomes larger seems reasonable. The expectation that N∗(�) ∼
N (�)/4 is more strongly reflected in the data we collected.

5. New cases of irreducibility

For this section we set n = 2ν with ν > 0 and give a purity result for the 2-adic
Newton polygon for certain choices of λ, μ and ν. In particular, this will imply that

K
(λ,μ)
n (x) is irreducible for these choices.

Theorem 5.1. Let n = 2ν . If ν is odd and λ = −1, or if ν is even and λ = 1, then

NP2(K
(λ,μ)
n (x)) is pure of slope (n − 1)/n. In particular, under these conditions

the polynomial K
(λ,μ)
n (x) is irreducible over Q.

Proof. The final conclusion follows from the fact that the Newton polygon is pure
with denominator n, since the Newton polygon of a product is the Minkowski sum

of the Newton polygons of the factors. Write K
(λ,μ)
n (x) =

∑n
j=0 ajx

j . We break

the proof into three parts: first we show that ord2(an) = 0, then ord2(a0) = n− 1,
and then finally that ord2 aj > (n− j)(n− 1)/n when 0 < j < n, thereby showing
that the 2-adic valuations of the middle coefficients lie above the line defined by
the two endpoints.

Step 1 (ord2 an = 0). It is clear for all choices of λ and μ that an is odd:

an = 3n2nn!

(
2n+ λ/3 + μ/2

n

)
= (12n+ 2λ+ 3μ)(12n− 6 + 2λ+ 3μ) · · · (6n+ 6 + 2λ+ 3μ).

Step 2 (ord2 a0 = n − 1). We only give details for the case of odd ν and λ = −1;
the case of even ν is similar. The proof is by induction on ν with ν = 1 being clear.
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Let ν = 2m+ 1. Then

ord2(a0) = ord2

22m+1−1∏
j=0

(2 + 3j)

= ord2

22m−1∏
j=0

(2 + 6j) (omitting the odd terms)

= 22m + ord2

22m−1∏
j=0

(1 + 3j)

= 22m + ord2

22m−2∏
j=0

(4 + 3j) (reindexing)

= 22m + ord2

22m−1−1∏
j=0

(4 + 6j) (omitting the odd terms)

= 22m + 22m−1 + ord2

22m−1−1∏
j=0

(2 + 3j)

= 22m + 22m−1 + 22m−1 − 1 (by induction)

= n− 1.

Step 3 (ord2 aj > (n− j)(n−1)/n). Again, we give details in the case of odd ν and
λ = −1. Recall that 0 < j < n so that the binomial coefficient will now contribute
to the valuation:

ord2(aj) = ord2

⎛⎜⎜⎜⎝
(
n

j

) n∏
k=j+1

(3k − 1)

j∏
k=1

(6n+ 6k + 4 + 3μ)︸ ︷︷ ︸
odd

⎞⎟⎟⎟⎠
= ord2

(
n

j

)
+ ord2(a0)− ord2

(
j−1∏
k=0

(2 + 3k)

)
,

where the latter equality follows from writing aj = a0/
∏j−1

k=0(2 + 3k). Moreover,

since n = 2ν , the 2-valuation of
(
n
j

)
is simply ν − ord2(j). Combining this with

ord2 a0 = n− 1 gives us

ord2(aj) = n− 1 + ν − ord2(j)− ord2

j−1∏
k=0

(2 + 3k)︸ ︷︷ ︸
def
=Δj

.

Step 3 of the proof will then follow by showing ν − ord2(j)− ord2(Δj) > j/n− j,
i.e. that

j/n+ ord2(Δj) + ord2(j) < ν + j.
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Write j in base-2 as j = 2m0 + · · ·+ 2m� with 0 ≤ m0 < m1 < · · · < m� < ν. Then

j/n+ ord2(j) + ord2(Δj) < 1 + ord2(j) + ord2(Δj)

= 1 +m0 + ord2(Δj)

< 1 +m0 + 2m� since ord2(Δ2u) =

{
2u u even

2u − 1 u odd

and ord2(Δj) is non-decreasing in j

< 1 +m0 + j

≤ ν + j.

This completes the proof of Theorem 5.1 and of Theorem 1.9. �

Remark 5.2. We have strong computational evidence for further purity results of
this type for the p-adic Newton polygons when n is a power of an odd prime p. We
explore this and more in a forthcoming paper.
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Math. Pures et Appl. 2 (1906), 191–258.

[7] Farshid Hajir, On the Galois group of generalized Laguerre polynomials (English, with
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