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BOUNDS FOR THE FIRST SEVERAL

PRIME CHARACTER NONRESIDUES

PAUL POLLACK

(Communicated by Matthew A. Papanikolas)

Abstract. Let ε > 0. We prove that there are constants m0 = m0(ε) and
κ = κ(ε) > 0 for which the following holds: For every integer m > m0 and
every nontrivial Dirichlet character modulo m, there are more than mκ primes

� ≤ m
1

4
√

e
+ε

with χ(�) /∈ {0, 1}. The proof uses the fundamental lemma of the

sieve, Norton’s refinement of the Burgess bounds, and a result of Tenenbaum
on the distribution of smooth numbers satisfying a coprimality condition. For
quadratic characters, we demonstrate a somewhat weaker lower bound on the

number of primes � ≤ m
1
4
+ε with χ(�) = 1.

1. Introduction

Let χ be a nonprincipal Dirichlet character. An integer n is called a χ-nonresidue
if χ(n) /∈ {0, 1}. Problems about character nonresidues go back to the beginnings
of modern number theory. Indeed, one can read in Gauss’s Disquisitiones that for
primes p ≡ 1 (mod 8) and χ(·) =

(
p
·
)
, the smallest χ-nonresidue does not exceed

2
√
p + 1 [10, Article 129]. This was an auxiliary result required for Gauss’s first

proof of the quadratic reciprocity law.
In the early 20th century, I.M. Vinogradov initiated the study of how the qua-

dratic residues and nonresidues modulo a prime p are distributed in the interval
[1, p − 1]. A particularly natural problem is to estimate the size of np, the small-
est quadratic nonresidue modulo p. Vinogradov conjectured that np �ε pε, for
each ε > 0. By means of a novel estimate for character sums (independently dis-
covered by Pólya), coupled with a clever sieving argument, he showed [24] that

np �ε p
1

2
√

e
+ε

. Burgess’s character sum bounds [4], in conjunction with Vino-
gradov’s methods, yield the sharper estimate

(1) np �ε p
1

4
√

e
+ε

.

Fifty years of subsequent research has not led to any improvement in the exponent
1

4
√
e
. But generalizing (1), Norton showed that if χ is any nontrivial character

modulo m, then the least χ-nonresidue is Oε(m
1/4

√
e+ε). See [18, Theorem 1.30].

Since χ is completely multiplicative, the smallest χ-nonresidue is necessarily
prime. In this note, we prove that there are actually many prime χ-nonresidues
satisfying the Burgess–Norton upper bound.
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Theorem 1.1. For each ε > 0, there are numbers m0(ε) and κ = κ(ε) > 0 for
which the following holds: For all m > m0 and each nontrivial character χ mod m,

there are more than mκ prime χ-nonresidues not exceeding m
1

4
√

e
+ε

.

The problem of obtaining an upper bound on the first several prime character
nonresidues was considered already by Vinogradov. In [24], he showed that for large

p, there are at least log p
7 log log p prime quadratic nonresidues modulo p not exceeding

p
1
2−

1
log log p .

For characters to prime moduli, a result resembling Theorem 1.1 was proved by
Hudson in 1983 [15]. (See also Hudson’s earlier investigations [12–14].) But even
restricted to prime m, Theorem 1.1 improves on [15] in multiple respects. In [15],
the exponent on p is 1

4 + ε instead of 1
4
√
e
+ ε, and the number of nonresidues

produced is only cε
log p

log log p . Moreover, it is assumed in [15] that the order of χ is

fixed. Stronger results than those of [15] were announced by Norton already in 1973
[17].1 Unfortunately, a full account of Norton’s work seems never to have appeared.

It becomes easier to produce small character nonresidues as the order of χ in-
creases. This phenomenon was noticed by Vinogradov [25] and further investigated
by Buhs̆tab [3] and Davenport and Erdős [5]. To explain their results requires us
to first recall the rudiments of the theory of smooth numbers. For each positive
integer n, let P+(n) denote the largest prime factor of n, with the convention that
P+(1) = 1. A natural number n is called y-smooth (or y-friable) if P+(n) ≤ y. For
x ≥ y ≥ 2, we let Ψ(x, y) be the count of y-smooth numbers up to x. We let ρ be
Dickman’s function, defined by

ρ(u) = 1 for 0 ≤ u ≤ 1 and uρ′(u) = −ρ(u− 1) for u > 1.

The functions Ψ(x, y) and ρ(u) are intimately connected: it is known that Ψ(x, y) ∼
xρ(u), where u := log x

log y , in a wide range of x and y. In fact, Hildebrand [11] has

shown that this asymptotic formula holds whenever x → ∞, as long as

y ≥ exp((log log x)5/3+λ)

for some fixed positive λ. For this estimate to be useful, one needs to understand
the behavior of ρ(u). It is not hard to show that ρ is strictly decreasing for u > 1
and that ρ(u) ≤ 1/Γ(u + 1). So for any k > 1, there is a unique uk > 1 with
ρ(uk) = 1

k . Buhs̆tab and, independently, Davenport and Erdős (developing ideas
implicit in [25]) showed that if χ mod p has order k ≥ 2, then the least χ-nonresidue
is Oε,k(p

1/2uk+ε). If in their argument Burgess’s method (which was not available
at the time) is used in place of the Pólya–Vinogradov inequality, then 1/2uk may
be replaced by 1/4uk [26]. We prove the following:

Theorem 1.2. Let ε > 0 and k0 ≥ 2. There are numbers m0(ε, k0) and κ =
κ(ε, k0) > 0 for which the following holds: For all m > m0 and each nontrivial
character χ mod m of order k ≥ k0, there are more than mκ prime χ-nonresidues

not exceeding m
1

4uk0
+ε

.

1Norton claims in [17]: Let ε > 0 and k0 ≥ 2. If m ≥ 3 and [(Z/mZ)× : (Z/mZ)×k
] ≥ k0,

then each of the smallest �logm/ log logm� primes not dividing m that are kth power nonresidues

modulo m is �ε,k0
n1/4uk0

+ε. Here uk0
has the same meaning as in our introduction.
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Remarks.

• It follows readily from the definition that ρ(u) = 1 − log u for 1 ≤ u ≤ 2,
and so u2 = e1/2 = 1.6487 . . . and u3 = e2/3 = 1.9477 . . . . For k > 3, it
does not seem that uk has a simple closed form expression.

• Theorem 1.1 is the special case k0 = 2 of Theorem 1.2.

One might compare Theorem 1.1 for the quadratic character modulo a prime p
with a result of Banks–Garaev–Heath-Brown–Shparlinski [1]. They show that for

each fixed ε > 0 and each N ≥ p1/4
√
e+ε, the proportion of quadratic nonresidues

modulo p in [1, N ] is �ε 1 for all primes p > p0(ε).
Our arguments use the ideas of Vinogradov and Davenport–Erdős but take ad-

vantage of modern developments in sieve methods and the theory of smooth num-
bers. A variant of the Burgess bounds developed by Norton also plays an important
role. We note that an application of the sieve that is similar in spirit to ours appears
in work of Bourgain and Lindenstrauss [2, Theorem 5.1].2

It is equally natural to ask for small prime character residues, i.e., primes �
with χ(�) = 1. The most significant unconditional result in this direction is due to
Linnik and A. I. Vinogradov [23]. They showed that if χ is the quadratic character
modulo a prime p, then the smallest prime � with χ(�) = 1 satisfies � �ε p1/4+ε.
More generally, Elliott [8] proved that when χ has order k, the least such � is

Ok,ε(p
k−1
4 +ε). As Elliott notes, this bound is only interesting for small values of

k; otherwise, it is inferior to what follows from known forms of Linnik’s theorem
on primes in progressions. For extensions of the Linnik–Vinogradov method in a
different direction, see [19, 20].

Our final result is a partial analogue of Theorem 1.1 for prime residues of qua-
dratic characters. Regrettably, the number of primes produced falls short of a fixed
power of m.

Theorem 1.3. Let ε > 0 and let A > 0. There is an m0 = m0(ε, A) with the
following property: If m > m0 and χ is a quadratic character modulo m, then there
are at least (logm)A primes � ≤ m

1
4+ε with χ(�) = 1.

Results of the sort proven here have direct consequences for prime splitting in
cyclic extensions of Q. For example, Theorem 1.1 (respectively, Theorem 1.3)
implies that there are more than |Δ|κ inert (respectively, more than (log |Δ|)A

split) primes p ≤ |Δ|
1

4
√

e
+ε

(respectively, p ≤ |Δ| 14+ε) in the quadratic field of
discriminant Δ as soon as |Δ| is large enough in terms of ε (and A).

2. Small prime nonresidues: Proofs of Theorems 1.1 and 1.2

2.1. Preparation. As might be expected, the Burgess bounds play the key role in
our analysis. The following version is due to Norton (see [18, Theorem 1.6]).

Proposition 2.1. Let χ be a nontrivial character modulo m of order dividing k.
Let r be a positive integer, and let ε > 0. For all x > 0,∑

n≤x

χ(n) �ε,r Rk(m)1/rx1− 1
r m

r+1

4r2
+ε.

2A special case of their result: Given ε > 0, there is an α > 0 such that
∑

pα≤�≤p1/4+ε(
�
p

)
=−1

1
�
>

1
2
− ε, for all p > p0(ε).
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Here

Rk(m) = min
{
M(m)3/4, Q(k)9/8

}
,

where
M(m) =

∏
pe‖m, e≥3

pe and Q(k) =
∏

pe‖k, e≥2

pe.

The factor of Rk(m)1/r can be omitted if r ≤ 3.

Another crucial tool is a theorem of Tenenbaum concerning the distribution of
smooth numbers satisfying a coprimality condition. For x ≥ y ≥ 2, let

Ψq(x, y) = #{n ≤ x : gcd(n, q) = 1, P+(n) ≤ y}.

Proposition 2.2. For positive integers q and real numbers x, y satisfying

P+(q) ≤ y ≤ x and ω(q) ≤ y1/ log(1+u),

we have

Ψq(x, y) =
ϕ(q)

q
Ψ(x, y)

(
1 +O

(
log(1 + u) log(1 + ω(q))

log y

))
.

As before, u denotes the ratio log x/ log y.

Proof. This is the main result of [21] in the case c = 1. �

Remark. If q′ is the largest divisor of q supported on the primes not exceeding y,
then Ψq(x, y) = Ψq′(x, y). So the assumption in Proposition 2.2 that P+(q) ≤ y
does not entail any loss of generality.

Theorem 1.2 will be deduced from two variant results claiming weaker upper
bounds.

Theorem 2.3. Let ε > 0 and k0 ≥ 2. There are numbers m0(ε, k0) and κ =
κ(ε, k0) > 0 for which the following holds: For all m > m0 and each nontrivial
character χ mod m of order k ≥ k0, there are more than mκ prime χ-nonresidues

not exceeding m
1

3uk0
+ε

.

Theorem 2.4. Let ε > 0 and k0 ≥ 2. There are numbers m0(ε, k0) and κ =
κ(ε, k0) > 0 for which the following holds: For all m > m0 and each nontrivial
character χ mod m of order k ≥ k0, there are more than mκ prime χ-nonresidues

not exceeding Rk(m)m
1

4uk0
+ε

. Here Rk(m) is as defined in Proposition 2.1.

The proof of Theorem 2.4 is given in detail in the next section. We include only a
brief remark about the proof of Theorem 2.3, which is almost entirely analogous (but
slightly simpler). We then present the derivation of Theorem 1.2 from Theorems
2.3 and 2.4. We remind the reader that Theorem 1.1 is the special case k0 = 2 of
Theorem 1.2.

2.2. Proof of Theorem 2.4. We let χ be a nontrivial character modulo m of
order k ≥ k0, where k0 ≥ 2 is fixed. With δ ∈ (0, 14 ), we set

x = Rk(m) ·m 1
4+δ, y = x

1
uk0

+δ
.

To prove Theorem 2.4, it suffices to show that for all large m (depending only on
k0 and δ), there are at least xκ prime χ-nonresidues in [1, y] for a certain constant
κ = κ(k0, δ) > 0.
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Let q be the product of the prime χ-nonresidues in [1, y]. Note that gcd(q,m) =
1, from the definition of a χ-nonresidue. Our strategy is to estimate

(2)
∑
n≤x

gcd(n,mq)=1

(1 + χ(n) + χ2(n) + · · ·+ χk−1(n))

in two different ways.
We first derive a lower bound on (2) under the assumption that there are not so

many prime χ-nonresidues in [1, y].

Lemma 2.5. There are constants η = η(δ, k0) > 0, κ = κ(δ, k0) > 0, and m0 =
m0(δ, k0) with the following property: If m > m0 and ω(q) ≤ xκ, then∑

n≤x
gcd(n,mq)=1

(1 + χ(n) + · · ·+ χ(n)k−1) ≥
(
1 +

2k

3
η

)
ϕ(mq)

mq
x.

Proof. Observe that∑
n≤x

gcd(n,mq)=1

(1 + χ(n) + · · ·+ χ(n)k−1) = k
∑
n≤x

gcd(n,q)=1, χ(n)=1

1

≥ k
∑
n≤x

gcd(n,mq)=1
p|n⇒p≤y

1

= k ·Ψmq(x, y).

We estimate Ψmq(x, y) using Proposition 2.2 and the succeeding remark. We have
u �k0

1 or, equivalently, log y �k0
log x. So if κ is sufficiently small in terms of k0

and ω(q) ≤ xκ, Proposition 2.2 gives

Ψmq(x, y) =

(
Ψ(x, y)

∏
p|mq
p≤y

(
1− 1

p

) ) (
1 +Ok0

(
log(1 + xκ)

log x

))

≥ Ψ(x, y)
ϕ(mq)

mq

(
1 +Ok0

(
log(1 + xκ)

log x

))
.

Now the result of Hildebrand quoted in the introduction (or a much more elementary

theorem) shows that Ψ(x, y) = Ψ(x, x
1

uk0
+δ

) ≥ ( 1
k0
+η)x for a certain η = η(k0, δ) >

0 and all large x. So if κ is fixed sufficiently small, depending on k0 and δ, and x
is sufficiently large, then

Ψmq(x, y) >

(
1

k0
+

2

3
η

)
ϕ(mq)

mq
x.

Hence,∑
n≤x

gcd(n,q)=1

(1+χ(n)+ · · ·+χ(n)k−1) ≥
(

k

k0
+

2k

3
η

)
ϕ(mq)

mq
x ≥

(
1 +

2k

3
η

)
ϕ(mq)

mq
x.

�

We turn next to an upper bound.
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Lemma 2.6. Let β > 0. There are numbers η′ = η′(δ) > 0, κ′ = κ′(δ, β) > 0 and

m0 = m0(δ, β) with the following property: If m > m0 and ω(q) ≤ xκ′
, then∑

n≤x
gcd(n,mq)=1

(1 + χ(n) + χ(n)2 + · · ·+ χ(n)k−1) ≤ (1 + β)
ϕ(mq)

mq
x+Oδ(kx

1−η′
).

Proof. We let A = {n ≤ x : gcd(n,m) = 1, χ(n) = 1} and observe that

(3)
∑
n≤x

gcd(n,mq)=1

(1 + χ(n) + χ(n)2 + · · ·+ χ(n)k−1) = k
∑
n∈A

gcd(n,q)=1

1.

We apply the fundamental lemma of the sieve to estimate the right-hand sum. (The
precise form of the fundamental lemma is not so important, but we have in mind
[7, Theorem 4.1, p. 29].) Let d ∈ [1, x] be a squarefree integer dividing q. Then∑

n∈A
d|n

1 =
1

k

∑
n≤x

gcd(n,m)=1, d|n

(1 + χ(n) + · · ·+ χ(n)k−1).

For each j = 0, 1, 2, . . . , k − 1,∑
n≤x

gcd(n,m)=1, d|n

χj(n) = χj(d)
∑

e≤x/d
gcd(e,m)=1

χj(e).

When j = 0, the right-hand side is x
d
ϕ(m)
m +Oε(m

ε) by a straightforward inclusion-
exclusion. For j ∈ {1, 2, . . . , k − 1}, Proposition 2.1 gives∑

e≤x/d
gcd(e,m)=1

χj(e) =
∑

e≤x/d

χj(e)
∑
f |e
f |m

μ(f) =
∑
f |m

μ(f)χj(f)
∑

g≤x/df

χj(g)

�ε,r Rk(m)1/rx1− 1
r d−1+ 1

r m
r+1

4r2
+ε

∑
f |m

f−1+ 1
r

�ε Rk(m)1/rx1− 1
r d−1+ 1

r m
r+1

4r2
+2ε;

here r ≥ 2 and ε > 0 are parameters to be chosen. (We used in the last step
that the sum on f has only Oε(m

ε) terms, each of which is O(1).) Assembling the
preceding estimates,∑

n∈A
d|n

1 =
x

dk

ϕ(m)

m
+ r(d), where r(d) �ε,r Rk(m)1/rx1− 1

r d−1+ 1
r m

r+1

4r2
+2ε.

By the fundamental lemma, for any choices of real parameters z ≥ 2 and v ≥ 1
with z2v < x,

∑
n∈A

gcd(n,q)=1

1 ≤
∑
n∈A

p|gcd(n,q)⇒p≥z

1 =

(
x

k

ϕ(m)

m

∏
p|q
p<z

(
1− 1

p

) ) (
1 +O(v−v)

)

+Oε,r

(
Rk(m)1/rx1− 1

r m
r+1

4r2
+2ε

∑
d<z2v

d|q

μ2(d)3ω(d)d−1+ 1
r

)
.



BOUNDS FOR THE FIRST SEVERAL PRIME CHARACTER NONRESIDUES 2821

We now make a choice of parameters. Let r = 
 1
2δ � (so that δ ≥ 1

2r ). Since

x = Rk(m) ·m1/4+δ, we have

Rk(m)1/rx1− 1
r m

r+1

4r2 = x ·m− 1
4r−δ/rm

r+1

4r2 = x ·m 1
r (

1
4r−δ) ≤ x ·m− δ

4r2 .

We take ε = δ
16r2 , so that

m2ε = m
δ

8r2 .

Since r ≥ 2 and 3ω(d) � d1/2, each term in the sum on d is O(1). Putting it all
together, the O-term above is

�δ x ·m− δ
4r2 ·m

δ
8r2 · z2v.

Since x = Rk(m)·m1/4+δ ≤ m3/4·m1/4+δ < m2, this upper bound is�δ x1− δ
16r2 z2v.

Taking z = x
δ

64r2v gives a final upper bound on the O-term of

�δ x1−η′
, where η′ =

δ

32r2
.

Turning attention to the main term, we fix v large enough that the factor 1 +
O(v−v) is smaller than 1 + 1

2β. Then our main term above does not exceed

x

k

ϕ(mq)

mq

(
1 +

1

2
β

) ∏
p|q
p≥z

(
1− 1

p

)−1

≤ x

k

ϕ(mq)

mq

(
1 +

1

2
β

)
exp

(
2

∑
p|q
p≥z

1

p

)

≤ x

k

ϕ(mq)

mq

(
1 +

1

2
β

)
exp(2ω(q)z−1).

Take κ′ = δ
128r2v . Under the assumption that ω(q) ≤ xκ′

, we have 2ω(q)z−1 ≤
2x−δ/128r2v and exp(2ω(q)z−1) = 1+O(x−δ/128r2v). So once x (or equivalently, m)

is large enough, our main term is smaller than x
k
ϕ(mq)
mq (1 + β). So we have shown

that for large m, ∑
n∈A

gcd(n,q)=1

1 ≤ x

k

ϕ(mq)

mq
(1 + β) +Oδ(x

1−η′
).

Recalling (3) finishes the proof. �

Completion of the proof of Theorem 2.4. We keep the notation from earlier in this
section. Let η, κ be as specified in Lemma 2.5. With β = η/2, choose η′ and κ′ as
in Lemma 2.6. If m is large and we assume that

ω(q) ≤ xκ′′
, where κ′′ = min{κ, κ′},

then these lemmas imply that(
1 +

2k

3
η

)
ϕ(mq)

mq
x ≤

(
1 +

1

2
η

)
ϕ(mq)

mq
x+Oδ(kx

1−η′
).

Rearranging,

kη
ϕ(mq)

mq
x � 4k − 3

6
η · ϕ(mq)

mq
x �δ kx1−η′

,

and so
mq

ϕ(mq)
�k0,δ xη′

.
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Noting that m < x4 and q ≤ yω(q) ≤ xω(q), we see that for large x,

mq

ϕ(mq)
� log log(mq + 2) � log log x+ log(ω(q) + 2) � log x.

Comparing with the above lower bound, we see that x, and hence m, is bounded.
Turning it around, for m large enough, there are at least xκ′′

prime χ-nonresidues
in [1, y]. �

Sketch of the proof of Theorem 2.3. The proof of Theorem 2.3 is quite similar, ex-
cept that now we take x = m1/3+δ. With this choice of x, we can apply the Burgess
bounds with r = 3, which allows us to omit the factor of Rk(m) in the resulting
estimates. �

2.3. Deduction of Theorem 1.2. Let ε > 0 and k0 ≥ 2 be fixed. Let χ be a
nonprincipal character mod m of order k, where k ≥ k0. We would like to show
that as long as m is large enough there must be at least mκ prime χ-nonresidues
not exceeding x1/4uk0

+ε, for a certain κ = κ(ε, k0) > 0. Let k1 be the smallest
positive integer with 3uk1

> 4uk0
. If k ≥ k1, apply Theorem 2.3: We find that for

large m, there are at least mκ0 prime χ-nonresidues

≤ m
1

3uk1
+ε ≤ m

1
4uk0

+ε
,

where κ0 = κ(ε, k1) in the notation of Theorem 2.3. Suppose instead that k0 ≤ k <
k1. Then Rk(m) is bounded in terms of k0. Theorem 2.4 thus shows that for large
m, there are at least mκ1 prime χ-nonresidues

≤ Rk(m)m
1

4uk0
+ε/2 ≤ m

1
4uk0

+ε
,

where κ1 = κ(ε/2, k0) in the notation of Theorem 2.4. Theorem 1.2 follows with
κ = min{κ0, κ1}.

Remark. By a minor modification of our proof, one can establish the following more
general result. Theorem 1.2 corresponds to the case H = kerχ.

Theorem 2.7. Let ε > 0 and k0 ≥ 2. There are numbers m0(ε, k0) and κ =
κ(ε, k0) > 0 for which the following holds: For all m > m0 and every proper
subgroup H of G = (Z/mZ)× of index k ≥ k0, there are more than mκ primes �

not exceeding m
1

4uk0
+ε

with � � m and � mod m /∈ H.

This strengthens [18, Theorem 1.20], where the bound Ok0,ε(m
1

4uk0
+ε

) is estab-
lished for the first such prime �.

The main idea in the proof of the generalization is to replace 1 + χ(n) + · · · +
χ(n)k−1 with

∑
χ∈̂G/H

χ(n), where Ĝ/H denotes the group of characters χ mod m

with kerχ ⊃ H. We leave the remaining details to the reader.

3. Small prime residues of quadratic characters:

Proof of Theorem 1.3

The next proposition is a variant of [23, Theorem 2]. Given a character χ, we
let rχ(n) =

∑
d|n χ(d). Since χ will be clear from context, we will suppress the

subscript.
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Proposition 3.1. For each ε > 0, there is a constant η = η(ε) > 0 for which the
following holds: If χ is a quadratic character modulo m and x ≥ m1/4+ε, then∑

n≤x

r(n) = L(1, χ)x+Oε(x
1−η).

Proof. With υ = 1/4+ε/2
1/4+ε , put y = xυ, so that y ≥ m

1
4+

1
2 ε. Put z = x/y. By

Dirichlet’s hyperbola method,

(4)
∑
n≤x

r(n) =
∑
d≤y

χ(d)
∑

e≤x/d

1 +
∑
e≤z

∑
d≤x/e

χ(d)−
∑
d≤y

χ(d)
∑
e≤z

1.

By Proposition 2.1 (with k = 2, so that Rk(m)1/r = 1), there is an η0 = η0(ε) > 0
with

∑
d≤T χ(d) �ε T 1−η0 for all T ≥ y. Thus, the second double sum on the

right of (4) is �δ x1−η0
∑

e≤z e
η0−1 �δ x(z/x)η0 = xy−η0 . Similarly, the third

double sum is �ε zy
1−η0 = xy−η0 . Finally,∑

d≤y

χ(d)
∑

e≤x/d

1 =
∑
d≤y

χ(d)
(x

d
+O(1)

)
= xL(1, χ)− x

∑
d>y

χ(d)

d
+O(y)

= xL(1, χ) +Oε(xy
−η0) +O(y).

(Here the sum on d > y has been handled by partial summation.) Collecting our
estimates and keeping in mind that y = xυ, we obtain the theorem with η defined
by 1− η = max{υ, 1− vη0}. �
Proof of Theorem 1.3. Let ε ∈ (0, 14 ) and let χ be a quadratic character modulo m.
Let

x = m
1
4+ε,

and let q be the product of the primes � ≤ x with χ(�) = 1. We suppose that
ω(q) ≤ (logm)A, and we show that this implies that m is bounded by a constant
depending on ε and A. Throughout this proof, we suppress any dependence on ε
and A in our O-notation.

By Proposition 3.1,

(5)
∑
n≤x

r(n) = L(1, χ) · x+O(x1−η).

We can estimate the sum in a second way. Observe that

(6) r(n) =
∏
�e‖n

(1 + χ(�) + · · ·+ χ(�e)) ≥ 0.

Hence, if the subset S of [1, x] is chosen to contain the support of r(n) on [1, x],
then

0 ≤
∑
n≤x

r(n) ≤ #S ·
(
max
n∈S

r(n)

)
.

Examining the expression in (6) for r(n), we see that S can be chosen as the set of
n ≤ x where every prime that appears to the first power in the factorization of n
divides mq. For each n ∈ S, we can write n = n1n2, where n1 is a squarefree divisor
of mq and n2 is squarefull. The number of elements of S with n2 > x1/2 is O(x3/4).
For the remaining elements of S, we have n1 ≤ x/n2 and n1 is a squarefree product
of primes dividing mq. There is a bijection

ι : {squarefree divisors of mq}→{squarefrees composed of the first ω(mq) primes}
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with ι(r) ≤ r for all r. Hence, given n2, the number of choices for n1 is at most the
number of integers in [1, x/n2] supported on the product of the first ω(mq) primes.
By our assumption on ω(q), those primes all belong to the interval [1, (log x)A+1]
once x is large. Hence, given n2, the number of possible values of n1 is at most

Ψ(x/n2, (log x)
A+1).

For fixed θ ≥ 1, a classical theorem of de Bruijn [6] asserts that Ψ(X, (logX)θ) =

X1− 1
θ+o(1), as X → ∞. Since x/n2 ≥ x1/2, we deduce that

Ψ(x/n2, (log x)
A+1) ≤ (x/n2)

1− 1
A+2

if x is large. Summing on squarefull n2 ≤ x1/4, we see that the number of elements

of S arising in this way is O(x1− 1
A+2 ). Hence,

#S � x3/4 + x1− 1
A+2 � x1−η′

, where η′ = min

{
1

4
,

1

A+ 2

}
.

Since r(n) ≤ τ (n) � xη′/2 for n ≤ x,

(7)
∑
n≤x

r(n) � #S · xη′/2 � x1−η′/2.

Comparing (5) and (7) gives

L(1, χ) � x−min{η′/2,η}.

But for large x, this contradicts Siegel’s theorem [16, Theorem 11.14, p. 372]. �

Remark. Any improvement on Siegel’s lower bound for L(1, χ) would boost the
number of �’s produced in Theorem 1.3. Substantial improvements of this kind
would have other closely related implications. For example, a simple modification
of an argument of Wolke [27] shows that for any quadratic character χ mod m,∑

�≤m
χ(�)=1

1

�
≥ 1

2
log

(
ϕ(m)

m
L(1, χ) logm

)
+O(1),

where the O(1) constant is absolute. (Here is the short proof: By Proposition
3.1, 1

m

∑
n≤m r(n) � L(1, χ). On the other hand, [22, Theorem 5, p. 308] yields

1
m

∑
n≤m r(n) � 1

logm

∑
n≤m

r(n)
n � 1

logm · m
ϕ(m) · exp

(
2

∑
�≤m, χ(�)=1

1
�

)
.)
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