
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 145, Number 7, July 2017, Pages 3085–3104
http://dx.doi.org/10.1090/proc/13447

Article electronically published on January 27, 2017

STABILITY OF THE SOLUTION

OF STOCHASTIC DIFFERENTIAL EQUATION

DRIVEN BY TIME-CHANGED LÉVY NOISE
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Abstract. This paper studies stabilities of the solution of stochastic differ-
ential equations (SDE) driven by time-changed Lévy noise in both probability
and moment sense. This provides more flexibility in modeling schemes in ap-
plication areas including physics, biology, engineering, finance and hydrology.
Necessary conditions for the solution of time-changed SDE to be stable in
different senses will be established. The connection between stability of the
solution to time-changed SDE and that to corresponding original SDE will be
disclosed. Examples related to different stabilities will be given. We study
SDEs with time-changed Lévy noise, where the time-change processes are the
inverse of general Lévy subordinators. These results are an important gener-
alization of the results of Q. Wu (2016).

1. Introduction

Recently, stochastic differential equations (SDEs) have been applied in various
areas, including biology [7], physics [5], engineering [17], and finance [6]. SDEs are
taken as important tools in modeling and simulating real phenomena, and the sta-
bility of SDEs has been studied widely by mathematicians in different senses, such
as stochastically stable, stochastically asymptotically stable, moment exponentially
stable, almost surely stable, mean square polynomial stable; see [1, 10, 16, 19]. A
systematic introduction of stabilities is provided by Mao in [12].

During the last few decades, time-changed SDEs attracted lots of attention and
became one of the most active areas in stochastic analysis and many applied areas of
science. Their probability density functions provide solutions to fractional Fokker-
Planck equations of different kinds (see [13, 15]), which are also very important in
modeling and describing phenomena in applied areas; see [14].

In [8] Kobayashi discussed the relationship between time-changed SDEs

(1.1)
dX(t) = f(Et, X(t−))dEt + g(Et, X(t−))dZEt

,

X(0) = x0,

and the corresponding non-time-changed SDEs

(1.2)
dY (t) = f(t, Y (t−))dt+ g(t, Y (t−))dZt,

Y (0) = x0,
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where Zt is an Ft-semimartingale and Et is an inverse of a right continuous with left
limit (RCLL) nondecreasing process {D(t), t ≥ 0}: if a process Y (t) satisfies SDE
(1.2), then X(t) := Y (Et) satisfies the time-changed SDE (1.1); if a process X(t)
satisfies the time-changed SDE (1.1), then Y (t) := X(D(t)) satisfies SDE (1.2).

Kobayashi also studied the Itô formula driven by time-changed SDE which is
provided under certain conditions as below:

(1.3)

f(Xt)− f(x0) =

∫ t

0

f ′(Xs−)Asds+

∫ Et

0

f ′(XD(s−)−)FD(s−)ds

+

∫ Et

0

f ′(XD(s−)−)GD(s−)dZs

+
1

2

∫ Et

0

f ′′(XD(s−)−){GD(s−)}2d[Z,Z]cs

+
∑

0<s≤t

{f(Xs)− f(Xs−)− f ′(Xs−)ΔXs},

where f : R → R is a C2 function.
In light of the time-changed Itô formula, the recent paper [18] analyzes the SDE

driven by time-changed Brownian motion

(1.4)
dX(t) = k(t, Et, X(t−))dt+ f(t, Et, X(t−))dEt + g(t, Et, X(t−))dBEt

,

X(0) = x0,

where Et is specified as an inverse of a stable subordinator of index β in (0, 1), and
discusses the stability of the solution to the above SDE in the probability sense,
including stochastically stable, stochastically asymptotically stable and globally
stochastically asymptotically stable.

The main result of this paper is to provide necessary conditions for solutions of
SDEs driven by time-changed Lévy noise to be stable not only in the probability
sense but also in the moment sense. Our results generalize the results of [18] in two
respects. Firstly, we study SDEs with time-changed Lévy noise. Secondly, we work
with time-change processes that are the inverse of the general Lévy subordinators.

In the remaining parts of this paper, further needed concepts and related back-
ground will be given in the preliminary section. In the main result section, necessary
conditions for the solution of time-changed SDEs to be stable in different senses
will be given. Connections between the stability of the solution to time-changed
SDE and that to corresponding original SDE will be disclosed and some examples
will be given. The last section will show proofs of theorems mentioned in the main
result section.

2. Preliminaries

Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space satisfying the usual hy-
potheses of completeness and right continuity. Let Ft-adapted Poisson random
measure N be defined on R+ × (R− {0}) with compensator Ñ and intensity mea-

sure ν, where ν is a Lévy measure such that Ñ(dt, dy) = N(dt, dy) − ν(dy)dt and∫
R−{0}(|y|

2 ∧ 1)ν(dy) < ∞.
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Let {D(t), t ≥ 0} be an RCLL increasing Lévy process that is called subordinator
starting from 0 with Laplace transform

(2.1) �e−λD(t) = e−tφ(λ),

where the Laplace exponent is φ(λ) =
∫∞
0

(1− e−λx)ν(dx).
Define its inverse:

(2.2) Et := inf{τ > 0 : D(τ ) > t}.

This paper focuses on different stabilities of the following SDE:

(2.3)

dX(t) = f(t, Et, X(t−))dt+ k(t, Et, X(t−))dEt + g(t, Et, X(t−))dBEt

+

∫
|y|<c

h(t, Et, X(t−), y)Ñ(dEt, dy),

with X(0) = x0, where f, k, g, h are real-valued functions satisfying the follow-
ing Lipschitz condition (Assumption 2.1), growth condition (Assumption 2.2) and
Assumption 2.3 such that there exists a unique Gt = FEt

adapted process X(t)
satisfying time-changed SDE (2.3); see Lemma 4.1 in [8].

Assumption 2.1 (Lipschitz condition). There exists a positive constant K1 such
that
(2.4)∣∣∣f(t1, t2, x)− f(t1, t2, y)

∣∣∣2 + ∣∣∣k(t1, t2, x)− k(t1, t2, y)
∣∣∣2 + ∣∣∣g(t1, t2, x)− g(t1, t2, y)

∣∣∣2
+

∫
|z|<c

∣∣∣h(t1, t2, x, z)− h(t1, t2, x, z)
∣∣∣2ν(dz) ≤ K1|x− y|2,

for all t1, t2 ∈ R+ and x, y ∈ R.

Assumption 2.2 (Growth condition). There exists a positive constant K2 such
that, for all t1, t2 ∈ R+ and x ∈ R,
(2.5)

|f(t1, t2, x)|2+|g(t1, t2, x)|2+|h(t1, t2, x)|2+
∫
|y|<c

|h(t1, t2, x)|2ν(dy) ≤ K2(1+|x|2).

Assumption 2.3. If X(t) is an RCLL and Gt-adapted process, then

(2.6) f(t, Et, X(t)), k(t, Et, X(t)), g(t, Et, X(t)), h(t, Et, X(t), y) ∈ L(Gt),

where L(Gt) denotes the class of RCLL and Gt-adapted processes.

Next we give definitions of different stabilities of SDE. Consider a differential
equation dX(t) = f(X(t), t)dt for t ≥ 0. Assume existence and uniqueness of solu-
tion X(t, x0) for each initial value X(0) = x0; also assume that f(0, t) = 0 for t ≥ 0.
Then the differential equation has trivial solution X(t) ≡ 0. In general, the stability
of the trivial solution means the insensitivity of the system to the small change in
initial value. More details can be found in [12]. Two categories of stabilities will be
discussed in this paper: among stabilities in probability, stochastically asymptoti-
cally stable is weaker than globally stochastically stable, while stochastically stable
is weakest; among moment stabilities, p-th moment exponentially stable is stronger
than p-th moment asymptotically stable.
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Definition 2.4.
(1) The trivial solution of the time-changed SDE (2.3) is said to be stochastically

stable or stable in probability if for every pair of ε ∈ (0, 1) and r > 0, there exists
a δ = δ(ε, r) > 0 such that

(2.7) P{|X(t, x0)| < r for all t ≥ 0} ≥ 1− ε

whenever |x0| < δ.
(2) The trivial solution of the time-changed SDE (2.3) is said to be stochastically

asymptotically stable if for every ε ∈ (0, 1), there exists a δ0 = δ0(ε) > 0 such that

(2.8) P{ lim
t→∞

X(t, x0) = 0} ≥ 1− ε

whenever |x0| < δ0.
(3) The trivial solution of the time-changed SDE (2.3) is said to be globally

stochastically asymptotically stable or stochastically asymptotically stable in the
large if it is stochastically stable and for all x0 ∈ R,

(2.9) P{ lim
t→∞

X(t, x0) = 0} = 1.

Definition 2.5.
(1) The trivial solution of the time-changed SDE (2.3) is said to be p-th moment

exponentially stable if there are positive constants λ and C such that

(2.10) E[|X(t)|p] ≤ C|x0|p exp(−λt), ∀t ≥ 0, ∀x0 ∈ R, p > 0.

(2) The trivial solution of the time-changed SDE (2.3) is said to be p-th moment
asymptotically stable if there is a function v(t) : [0,+∞) → [0,∞) decaying to 0 as
t → ∞ and a positive constant C such that

(2.11) E[|X(t)|p] ≤ C|x0|pv(t), ∀t ≥ 0, ∀x0 ∈ R, p > 0.

Let K denote the family of all nondecreasing functions μ : R+ → R+ such that
μ(r) > 0 for all r > 0. Also let Sh = {x ∈ R : |x| < h} and S̄h = {x ∈ R : |x| ≤ h}
for all h > 0.

3. Main results

In this section, the time-changed Itô formula driven by SDE (2.3) will be given,
then necessary conditions for different stabilities will be established, followed by
some examples.

The next lemma is a version of the Itô formula in Corollary 3.4 in [8].

Lemma 3.1 (Itô formula for time-changed Lévy noise). Let D(t) be an RCLL
subordinator and Et its inverse process as in (2.2). Define a filtration {Gt}t≥0 by
Gt = FEt

. Let X be a process defined as follows:
(3.1)

X(t) = x0+

∫ t

0

f(t, Et, X(t−))dt+

∫ t

0

k(t, Et, X(t−))dEt+

∫ t

0

g(t, Et, X(t−))dBEt

+

∫ t

0

∫
|y|<c

h(t, Et, X(t−), y)Ñ(dEt, dy),

where f, k, g, h are measurable functions such that all integrals are defined. Here c
is the maximum allowable jump size.
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Then, for all F : R+ ×R+ ×R → R in C1,1,2(R+ ×R+ ×R,R), with probability
one,
(3.2)

F (t, Et, X(t))−F (0, 0, x0)=

∫ t

0

L1F (s, Es, X(s−))ds+

∫ t

0

L2F (s, Es, X(s−))dEs

+

∫ t

0

∫
|y|<c

[
F (s, Es, X(s−) + h(s, Es, X(s−), y))−F (s, Es, X(s−))

]
Ñ(dEs, dy)

+

∫ t

0

Fx(s, Es, X(s−))g(s, Es, X(s−))dBEs
,

where
(3.3)
L1F (t1, t2, x) = Ft1(t1, t2, x) + Fx(t1, t2, x)f(t1, t2, x),

L2F (t1, t2, x) = Ft2(t1, t2, x) + Fx(t1, t2, x)k(t1, t2, x) +
1

2
g2(t1, t2, x)Fxx(t1, t2, x)

+

∫
|y|<c

[
F (t1, t2, x+ h(t1, t2, x, y))− F (t1, t2, x)−Fx(t1, t2, x)h(t1, t2, x, y)

]
ν(dy).

Proof. This proof is a direct application of the multidimensional Itô formula, which
is established in Corollary 3.4 in [8], to F (t, Et, X(t)) in C1,1,2(R+ × R+ × R,R):
(3.4)

F (t, Et, X(t))− F (0, 0, x0) =

∫ t

0

Ft1(s, Es, X(s−))ds+

∫ t

0

Ft2(s, Es, X(s−))dEs

+

∫ t

0

Fx(s, Es, X(s−))
[
f(s, Es, X(s−))ds+ k(s, Es, X(s−))dEs

+ g(s, Es, X(s−))dBEs

]
+

1

2

∫ t

0

Fxx(s, Es, X(s−))g(s, Es, X(s−))dEs

+

∫ t

0

∫
|y|<c

[
F (s, Es, X(s−) + h(s, Es, X(s−), y))− F (s, Es, X(s−))

]
Ñ(dEs, dy)

+

∫ t

0

∫
|y|<c

[
F (s, Es, X(s−) + h(s, Es, X(s−), y))− F (s, Es, X(s−))

− Fx(s, Es, X(s−))h(s, Es, X(s−), y)
]
ν(dy)dEs

=

∫ t

0

L1F (s, Es, X(s−))ds+

∫ t

0

L2F (s, Es, X(s−))dEs

+

∫ t

0

∫
|y|<c

[
F (s, Es, X(s−) + h(s, Es, X(s−), y))− F (s, Es, X(s−))

]
Ñ(dEs, dy)

+

∫ t

0

Fx(s, Es, X(s−))g(s, Es, X(s−))dBEs
.

�

Lemma 3.2. Let D(t) be an RCLL subordinator and Et its inverse process as in

(2.2). Define a filtration {Gt}t≥0 by Gt = FEt
. Let Ñ be a compensated Poisson

measure defined on R+ × (R − {0}) with intensity measure ν, where ν is a Lévy

measure such that Ñ(dt, dy) = N(dt, dy)− ν(dy)dt and
∫
R−{0}(|y|

2 ∧ 1)ν(dy) < ∞.
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Then, for any A ∈ B(R − {0}) bounded below, the time-changed process Ñ(Et, A)
is a martingale.

Proof. Let τn = inf{t ≥ 0; |Ñ(t, A)| ≥ n}; it is obvious that τn → ∞ as n → ∞.

Then |Ñ(τn∧t, A)| ≤ n+1, for all t ∈ R+; thus Ñ(τn∧t, A) is a bounded martingale.
By the optional stopping theorem, for any 0 ≤ s < t,

(3.5) E

[
Ñ(τn ∧ Et, A)|Gs

]
= Ñ(τn ∧ Es, A).

The right hand side Ñ(τn ∧ Es, A) converges to Ñ(Es, A), as n → ∞. For the left
hand side, we have

(3.6) |Ñ(τn ∧ Et, A)| ≤ sup
0≤u≤t

|Ñ(Eu, A)|.

Thus, by Hölder’s inequality and Doob’s martingale inequality,

(3.7)

E

[∣∣∣Ñ(τn ∧Et, A)
∣∣∣] ≤ E

[∣∣∣ sup
0≤u≤t

|Ñ(Eu, A)
∣∣∣] = E

[∣∣∣ sup
0≤u≤Et

|Ñ(u,A)
∣∣∣]

=

∫ ∞

0

E

[∣∣∣ sup
0≤u≤τ

|Ñ(u,A)
∣∣∣
∣∣∣∣∣τ = Et

]
fEt

(τ )dτ

≤
∫ ∞

0

E

[∣∣∣ sup
0≤u≤τ

|Ñ(u,A)
∣∣∣2
∣∣∣∣∣τ = Et

] 1
2

fEt
(τ )dτ

≤
∫ ∞

0

2E
[∣∣∣|Ñ(τ, A)

∣∣∣2
∣∣∣∣∣τ = Et

] 1
2

fEt
(τ )dτ

= 2

∫ ∞

0

[ν(A)τ ]
1
2 fEt

(τ )dτ

= 2ν(A)
1
2E[E

1
2
t ]

≤ 2ν(A)
1
2E[Et]

1
2 ,

where the last inequality follows from Jensen’s inequality.
For any t ≥ 0 and x > 0, by Markov’s inequality, we have

(3.8)

P (Et > s) ≤ P (D(s) < t) = P (e−xD(s) ≥ e−xt) ≤ ext�[e−xD(s)] = exte−sφ(x).

It follows that

(3.9) �[Et] =

∫ ∞

0

P (Et > s)ds = ext
1

φ(x)
< ∞.

Then, by the dominated convergence theorem, we have

(3.10) E

[
Ñ(τn ∧ Et, A)|Gs

]
→ E

[
Ñ(Et, A)|Gs

]
,

as n → ∞. So

(3.11) E

[
Ñ(Et, A)|Gs

]
= Ñ(Es, A).

Also,

(3.12) E

[
|Ñ(Et, A)|

]
≤ E

[
sup

0≤u≤t
|Ñ(Eu, A)|

]
< ∞;

thus Ñ(Et, A) is a martingale. �
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Theorem 3.3. Assume there exists a function V (t1, t2, x) ∈ C1,1,2(R+×R+×Sh,R)
with h ≥ 2c and μ ∈ K such that for all (t1, t2, x) ∈ R+ × R+ × Sh:

(3.13)

1. V (t1, t2, 0) = 0,

2. μ(|x|) ≤ V (t1, t2, x),

3. L1V (t1, t2, x) ≤ 0,

4. L2V (t1, t2, x) ≤ 0.

Then the trivial solution of the time-changed SDE (2.3) is stochastically stable or
stable in probability.

The proofs of Theorem 3.3 and other results in this section are given in Section
4.

Remark 3.4. Note that L1 and L2 mentioned here and in the following theorems
are the same as those in Lemma 3.1, and c is the maximum allowable jump size in
(2.3).

Theorem 3.5. Assume there exists a function V (t1, t2, x) ∈ C1,1,2(R+×R+×Sh,R)
with h ≥ 2c and μ ∈ K such that for all (t1, t2, x) ∈ R+ × R+ × Sh:
(3.14)

1. V (t1, t2, 0) = 0,

2. μ(|x|) ≤ V (t1, t2, x),

3. L1V (t1, t2, x) ≤ −γ1(α) a.s. and L2V (t1, t2, x) ≤ −γ2(α) a.s., for any

α ∈ (0, h), where γ1(α) ≥ 0 and γ2(α) ≥ 0 but not equal to zero at the same

time, x ∈ Sh − S̄α.

Then the trivial solution of the time-changed SDE (2.3) is stochastically asymptot-
ically stable.

Theorem 3.6. Assume there exists a function V (t1, t2, x) ∈ C1,1,2(R+×R+×R,R)
and u ∈ K such that for all (t1, t2, x) ∈ R+ × R+ × R:

(3.15)

1. V (t1, t2, 0) = 0,

2. μ(|x|) ≤ V (t1, t2, x),

3. L1V (t1, t2, x) ≤ −γ1(x) a.s. and L2V (t1, t2, x) ≤ −γ2(x) a.s.,

where γ1(x) ≥ 0 and γ2(x) ≥ 0 but not equal to zero at the same time,

4. lim
|x|→∞

inf
t1,t2≥0

V (t1, t2, x) = ∞.

Then the trivial solution of the time-changed SDE (2.3) is globally stochastically
asymptotically stable.

Proof. This proof has similar ideas as in Theorem 4.2.4 in [12], so we omit the
details here. �

Example 3.7. Consider the following SDE driven by time-changed Lévy noise:

(3.16)

dX(t) =f(t, Et)X(t)dt+ k(t, Et)X(t)dEt

+ g(t, Et)X(t)dBEt
+

∫
|y|<c

h(t, Et, y)X(t)dÑ(dEs, dy)
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with X(0) = x0, where k, f, g, h are Gt-measurable real-valued functions satisfy-
ing Lipschitz condition (Assumption 2.1), growth condition (Assumption 2.2) and
Assumption 2.3. Define Lyapunov function

(3.17) V (t1, t2, x) = |x|α

on R+ × R+ × R for some α ∈ (0, 1). Then

(3.18) L1V (t1, t2, x) = αf(t1, t2)|x|α

and

L2V (t1, t2, x) =

[
αk(t1, t2) +

α(α− 1)

2
g2(t1, t2)

(3.19)

+

∫
|y|<c

[
|1 + h(t1, t2, y)|α − 1− αh(t1, t2, y)

]
ν(dy)

]
|x|α.

Thus, if

(3.20) αf(t, Et) ≤ 0 a.s.

and
(3.21)

αk(t, Et) +
α(α− 1)

2
g2(t, Et) +

∫
|y|<c

[
|1 + h(t, Et, y)|α − 1− αh(t, Et, y)

]
ν(dy)

≤ 0 a.s.

for all t, Et ∈ R+, then the trivial solution of SDE (3.16) is stochastically stable,
by Theorem 3.3.

Let α= 0.5, c = 1 and f(t1, t2) =−1, k(t1, t2) = 0.25, g(t1, t2) = 1, h(t1, t2, y) = y
for all t1, t2 ∈ R+. Then

(3.22) L1V (t1, t2, x) = −|x|α
2

≤ 0

and

(3.23) L2V (t1, t2, x) =

∫
|y|<1

[
|1 + y| 12 − 1− 1

2
y
]
ν(dy) < 0.

Therefore, by Theorem 3.6, the trivial solution of SDE

(3.24) dX(t) = −X(t)dt+ 0.25X(t)dEt +X(t)dBEt
+

∫
|y|<1

yX(t)dÑ(ds, dy)

with X(0) = x0 is globally stochastically asymptotically stable.

Remark 3.8. Note that V (t1, t2, x) = |x|α with α ∈ (0, 1) is not a C2 function with
respect to x in R, but it is sufficient in this case since X(t) 
= 0 if X(0) 
= 0 for
t ≥ 0; see the following for details. That is, V (t1, t2, x) = |x|α is a C2 function with
respect to x in the domain of X(t) for t ≥ 0.
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By the Itô formula for time-changed Lévy noise, we have, for x0 
= 0,
(3.25)

ln(|X(t)|) = ln(|x0|)+
∫ t

0

1

X(s−)
f(s, ES)X(s−)ds+

∫ t

0

1

X(s−)
g(s, ES)X(s−)dBEs

+

∫ t

0

[ 1

X(s−)
k(s, ES)X(s−) +

1

2
g(s, Es)

2X(s−)2
−1

X(s−)2

+

∫
|y|<c

[
ln(|X(s−) + h(s, Es, y)X(s−)|)− ln(|X(s−)|)

− 1

X(s−)
h(s, Es, y)X(s−)

]
ν(dy)

]
dEs

+

∫ t

0

∫
|y|<c

[
ln(|X(s−)+h(s, Es, y)X(s−)|)−ln(|X(s−)|)

]
Ñ(dEs, dy)

= ln(|x0|) +
∫ t

0

f(s, ES)ds+

∫ t

0

g(s, ES)dBEs

+

∫ t

0

∫
|y|<c

[
ln(|1 + h(s, Es, y)|)

]
Ñ(dEs, dy)

+

∫ t

0

[
k(s, ES)−

1

2
g(s, Es)

2

+

∫
|y|<c

[
ln(|1 + h(s, Es, y)|)− h(s, Es, y)

]
ν(dy)

]
dEs.

Let
(3.26)

M(t) =

∫ t

0

f(s, ES)ds+

∫ t

0

g(s, ES)dBEs
+

∫ t

0

∫
|y|<c

[
ln(|1 + h(s, Es, y)|

]
Ñ(dEs, dy)

+

∫ t

0

[
k(s, ES)−

1

2
g(s, Es)

2 +

∫
|y|<c

[
ln(|1 + h(s, Es, y)| − h(s, Es, y)

]
ν(dy)

]
dEs.

Then |X(t)| = |x0| exp(M(t)) > 0 for all t ≥ 0.
A similar argument applies to Example 3.10.

Theorem 3.9. Let p, α1, α2, α3 be positive constants. If V ∈ C2(R+×R+×R;R+)
satisfies

(3.27)
1. V (t1, t2, 0) = 0, 2. α1|x|p ≤ V (t1, t2, x) ≤ α2|x|p,
3. L2V (t1, t2, x) ≤ 0, 4. L1V (t1, t2, x) ≤ −α3V (t1, t2, x),

∀(t1, t2, x) ∈ R+ ×R+ ×R, then the trivial solution of the time-changed SDE (2.3)
is p-th moment exponentially stable with

(3.28) E|X(t, x0)|p ≤ α2

α1
|x0|p exp(−α3t).

Example 3.10. Consider the following SDE driven by time-changed Lévy noise:

(3.29) dX(t) = −X(t)dt+X(t)E2
t dBEt

+

∫
|y|<1

[
X(t)y2 −X(t)

]
Ñ(dEt, dy)

with X(0) = x0 and ν a Lévy measure. Let V (t1, t2, x) = |x|. Then
(3.30) L1V (t1, t2, x) = −|x|
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and
(3.31)

L2V (t1, t2, x) =
1

2
x2t42

(
− 1

x2

)
+

∫
|y|<1

[
|x+ xy2 − x| − |x|−sgn(x)(xy2 − x)

]
ν(dy)

= − t42
2
+

∫
|y|<1

[
(|y2| − y2)|x|

]
ν(dy) ≤ 0.

By Theorem 3.9, X(t) is first moment exponentially stable, that is,

(3.32) E|X(t, x0)| ≤ |x0| exp(−t), ∀t ≥ 0.

Next, we reduce SDE (2.3) by setting f(t, Et, X(t−)) = 0:
(3.33)

dX(t) = k(Et, X(t−))dEt + g(Et, X(t−))dBEt
+

∫
|y|<c

h(Et, X(t−), y)Ñ(dEt, dy),

with X(0) = x0.
Kobayashi [8] mentioned duality related to (3.33) and the following SDE:

(3.34)

dY (t) = k(t, Y (t−))dt+ g(t, Y (t−))dBt +

∫
|y|<c

h(t, Y (t−), y)Ñ(dt, dy), Y (0) = x0,

with Y (0) = x0, stating that:
1. If a process Y (t) satisfies SDE (3.34), then X(t) := Y (Et) satisfies the time-

changed SDE (3.33).
2. If a process X(t) satisfies the time-changed SDE (3.33), then Y (t) := X(D(t))

satisfies SDE (3.34).

Corollary 3.11. Let Y (t) be a stochastically stable (stochastically asymptotically
stable, globally stochastically asymptotically stable) process satisfying SDE (3.34).
Then the trivial solution X(t) of SDE (3.33) is a stochastically stable (stochas-
tically asymptotically stable, globally stochastically asymptotically stable) process,
respectively.

Proof. This proof has similar ideas as in Corollary 3.1 in [18]; thus we omit the
details. Though the conclusion of Corollary 3.1 in [18] is correct, there is a minor
problem in the proof. We correct it as follows:

(3.35)

P
{
|X(t, x0)| < h, ∀t ≥ 0

}
= P

{
|Y (Et, x0)| < h, ∀t ≥ 0

}
= P

{
sup

0≤t<∞
|Y (Et, x0)| < h

}
= P

{
sup

{Et: 0≤t<∞}
|Y (Et, x0)| < h

}

= P
{

sup
0≤τ<∞

|Y (τ, x0)| < h
}

= P
{
|Y (t, x0)| < h, ∀t ≥ 0

}
= 1− ε.

Here, we use the fact that the image of [0,∞) under the Et process is almost surely
equal to [0,∞). �
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Corollary 3.12. Let Y (t) be a p-th moment exponentially stable process satisfying
SDE (3.34), and let X(t) be a p-th moment asymptotically stable satisfying SDE
(3.33).

Remark 3.13. Existence of p-th moment stability of the solution of SDE (3.34) has
been proved by Theorem 3.5.1 in Siakalli [16].

Remark 3.14. Our results cannot be easily extended to time-changed stochastic
differential equations with large jumps. This is because that stochastic integral
against the Poisson process is not automatically local martingale. Thus, the nor-
mal method to prove stability of solutions of time-changed stochastic differential
equations as used in this paper does not work. It is possible to apply stricter con-
ditions to derive similar results for time-changed stochastic differential equations
with large jumps, but the strength of the results has to be compromised.

Remark 3.15. The Lyapunov functions V in our main results above vary from case
to case, but under certain conditions it is possible to construct Lyapunov functions
by a general formula; see [2] as an example.

4. Proofs of main results

4.1. Proof of Theorem 3.3.

Proof. Let ε ∈ (0, 1) and r ∈ (0, h) be arbitrary. By continuity of V (t1, t2, x) and
the fact that V (t1, t2, 0) = 0, we can find a δ = δ(ε, r, 0) > 0 such that

(4.1)
1

ε
sup
x∈Sδ

V (0, 0, x0) ≤ μ(r).

By (4.1) and condition (2), δ < r. Fix initial value x0 ∈ Sδ arbitrarily and define
the stopping time

(4.2) τr = inf{t ≥ 0 : |X(t, x0)| ≥ r},

where r ≤ h
2 , and

(4.3)

Uk =k ∧ inf{t ≥ 0;

∣∣∣∣∣
∫ τr∧t

0

Vx(s, Es, X(s−))g(s, Es, X(s−))dBEs

∣∣∣∣∣ ≥ k},

Wk =k ∧ inf{t ≥ 0;

∣∣∣∣∣
∫ τr∧t

0

∫
|y|<c

[
V (s, Es, X(s−) +H(s, Es, X(s−), y))

− V (s, Es, X(s−))

]
Ñ(dEs, dy)

∣∣∣∣∣ ≥ k},
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for k = 1, 2, . . . . It is easy to see that Uk → ∞ and Wk → ∞ as k → ∞. Apply Itô
formula (3.2) to V (t1, t2, x) associated with SDE (2.3). Then for any t ≥ 0,

(4.4)

V (t ∧ τr ∧ Uk ∧Wk, Et∧τr∧Uk∧Wk
, X(t ∧ τr ∧ Uk ∧Wk))− V (0, 0, x0)

=

∫ t∧τr∧Uk∧Wk

0

L1V (s, Es, X(s−))ds

+

∫ t∧τr∧Uk∧Wk

0

L2V (s, Es, X(s−))dEs

+

∫ t∧τr∧Uk∧Wk

0

Vx(s, Es, X(s−))g(s, Es, X(s−))dBEs

+

∫ t∧τr∧Uk∧Wk

0

∫
|y|<c

[
V (s, Es, X(s−) +H(s, Es, X(s−), y))

− V (s, Es, X(s−))

]
Ñ(dEs, dy).

By [11] and [9], both

(4.5)

∫ t∧τr∧Uk∧Wk

0

Vx(s, Es, X(s−))g(s, Es, X(s−))dBEs

and

(4.6)

∫ t∧τr∧Uk∧Wk

0

∫
|y|<c

[
V (s, Es, X(s−) +H(s, Es, X(s−), y))

− V (s, Es, X(s−))

]
Ñ(dEs, dy)

are mean zero martingales.
Taking expectations on both sides, we have

E[V (t ∧ τr ∧ Uk ∧Wk, Et∧τr∧Uk∧Wk
, X(t ∧ τr ∧ Uk ∧Wk))] ≤ V (0, 0, x0).

Letting k → ∞,

E[V (t ∧ τr, Et∧τr , X(t ∧ τr))] ≤ V (0, 0, x0).

Now, |X(t ∧ τr)| < r for t < τr. For all w ∈ {τr < ∞}, |X(τr)(w)| ≤ r + c ≤ h.
Since V (t1, t2, x) ≥ μ(|x|) for all x ∈ Sh, we have for all w ∈ {τr < ∞},
(4.7) V (τr, Eτr , X(τr)(w)) ≥ μ(|X(τr)(w)|) ≥ μ(r).

Also,
(4.8)
V (0, 0, x0) ≥ E[V (t∧τr, Et∧τr , X(t∧τr))1{τr<t}] ≥ E[μ(r)1{τr<t}] = μ(r)P (τr < t).

Thus, combined with (4.1),

(4.9) P (τr < t) ≤ V (0, 0, x0)

μ(r)
≤ εμ(r)

μ(r)
= ε.

Then, letting t → ∞, we have

(4.10) P (τr < ∞) ≤ ε;
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equivalently,

(4.11) P (|X(t, x0)| < r for all t ≥ 0) ≥ 1− ε,

so X(t, x0) is stochastically stable. �

4.2. Proof of Theorem 3.5.

Proof. By Theorem 3.3, the trivial solution of (2.3) is stochastically stable. For
any fixed ε ∈ (0, 1), there exists δ = δ(ε) > 0 such that

(4.12) P (|X(t, x0)| < h) ≥ 1− ε

5

when x0 ∈ Sδ. Fix x0 ∈ Sδ and let 0 < α < β < |x0| arbitrarily. Define the
following stopping times:
(4.13)
τh = inf{t ≥ 0; |X(t, x0)| > h},
τα = inf{t ≥ 0; |X(t, x0)| < α},

Uk = k ∧ inf{t ≥ 0;

∣∣∣∣∣
∫ t∧τh∧τα

0

Vx(s, Es, X(s−))g(s, Es, X(s−))dBEs

∣∣∣∣∣ ≥ k},

Wk = k ∧ inf{t ≥ 0;

∣∣∣∣∣
∫ t∧τh∧τα

0

∫
|y|<c

[
Vx(s, Es, X(s−) + h(s, Es, X(s−), y))

− Vx(s, Es, X(s−))
]
Ñ(dEs, dy)

∣∣∣∣∣ ≥ k}.

By Itô’s formula (3.2), we have
(4.14)
0 ≤ E

[
V (t ∧ τh ∧ τα ∧ Uk ∧Wk, Et∧τh∧τα∧Uk∧Wk

, X(t ∧ τh ∧ τα ∧ Uk ∧Wk))
]

= V (0, 0, x0) + E

∫ t∧τh∧τα∧Uk∧Wk

0

L1V (s, Es, X(s−))ds

+ E

∫ t∧τh∧τα∧Uk∧Wk

0

L2V (s, Es, X(s−))dEs

≤ V (0, 0, x0)− γ1(α)E[t ∧ τh ∧ τα ∧ Uk ∧Wk]− γ2(α)E[Et∧τh∧τα∧Uk∧Wk
].

Letting k → ∞ and t → ∞, we have

(4.15) γ1(α)E[τh ∧ τα] + γ2(α)E[Eτh∧τα ] ≤ V (0, 0, x0).

By condition (3) and Et → ∞ a.s. as t → ∞ (see proof of Theorem 3.9), we
have

(4.16) P (τh ∧ τα < ∞) = 1.

Since P (τh = ∞) > 1− ε
5 , it follows that P (τh < ∞) ≤ ε

5 . Thus

(4.17) 1 = P (τh ∧ τα < ∞) ≤ P (τh < ∞) + P (τα < ∞) ≤ P (τα < ∞) +
ε

5
,

that is,

(4.18) P (τα < ∞) ≥ 1− ε

5
.
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Choose θ sufficiently large for

(4.19) P (τα < θ) ≥ 1− 2ε

5
.

Then
(4.20)
P (τα<τh ∧ θ) ≥ P ({τα<θ} ∩ {τh=∞}) = P (τα<θ)− P ({τα<θ} ∩ {τh<∞})

≥ P (τα < θ)− P (τh < ∞) ≥ 1− 2ε

5
− ε

5
= 1− 3ε

5
.

Now define some stopping times:

σ =

{
τα, if τα < τh ∧ θ,

∞, otherwise,
(4.21)

(4.22)

τβ = inf{t ≥ σ; |X(t, x0)| ≥ β},

Si = inf{t ≥ σ;
∣∣ ∫ τβ∧t

σ

Vx(s, Es, X(s−))g(s, Es, X(s−))dBEs

∣∣ ≥ i},

Ti = inf{t ≥ σ;
∣∣ ∫ τβ∧t

σ

∫
|y|<c

[
V (s, Es, X(s−) + h(s, Es, X(s−), y))

− V (s, Es, X(s−))
]
Ñ(dEs, dy)

∣∣ ≥ i}.

Again, by Itô’s formula,

(4.23)

E

[
V (t ∧ τβ ∧ Si ∧ Ti, Et∧τβ∧Si∧Ti

, X(t ∧ τβ ∧ Si ∧ Ti))

]

≤E

[
V (t ∧ σ,Et∧σ, X(t ∧ σ∧))

]
+ E

[ ∫ t∧τβ∧Si∧Ti

t∧σ∧
L1V (s, Es, X(s−))ds

]

+ E

[ ∫ t∧τβ∧Si∧Ti

t∧σ∧
L2V (s, Es, X(s−))dEs

]

≤E

[
V (t ∧ σ,Et∧σ, X(t ∧ σ))

]
.

Letting i → ∞,

(4.24) E

[
V (σ ∧ t, Eσ∧t, X(σ ∧ t))

]
≥ E

[
V (τβ ∧ t, Eτβ∧t, X(τβ ∧ t))

]
,

that is,

(4.25)

E

[
V (σ ∧ t, Eσ∧t, X(σ ∧ t))[�{σ<∞} + �{σ=∞}]

]

≥ E

[
V (τβ ∧ t, Eτβ∧t, X(τβ ∧ t))[�{σ<∞} + �{σ=∞}]

]
.

For w ∈ {τα ≥ τh ∧ θ}, we have σ = ∞. Then τβ = ∞; thus

(4.26) V (σ ∧ t, Eσ∧t, X(σ ∧ t)) = V (t, Et, X(t))

and

(4.27) V (τβ ∧ t, Eτβ∧t, X(τβ ∧ t)) = V (t, Et, X(t)).
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Thus,

(4.28) E

[
V (σ∧t, Eσ∧t, X(σ∧t))�{σ<∞}

]
≥ E

[
V (τβ∧t, Eτβ∧t, X(τβ∧t))�{σ<∞}

]
.

Now, focusing on the right hand side of (4.28), by definition of τβ , τβ ≥ σ, thus
�{σ<∞} ≥ �{τβ<∞}. Then
(4.29)

E

[
V (τβ ∧ t, Eτβ∧t, X(τβ ∧ t))�{σ<∞}

]
≥ E

[
V (τβ ∧ t, Eτβ∧t, X(τβ ∧ t))�{τβ<∞}

]
.

Combining (4.28) and (4.29), we have

(4.30) E

[
V (σ∧t, Eσ∧t, X(σ∧t))�{σ<∞}

]
≥ E

[
V (τβ∧t, Eτβ∧t, X(τβ∧t))�{τβ<∞}

]
.

Since P (σ < ∞) = P (τα < τh ∧ θ) and P (τβ < ∞) ≥ P ({τβ < ∞}∩ {τh = ∞}),
it follows that

(4.31) E
[
V (τβ, Eτβ , X(τβ))�{τβ<∞}∩{τh=∞}

]
≤ E

[
V (τα, Eτα , X(τα))�{τα<τh∧θ}

]
.

By condition (2)

(4.32) 0 ≤ μ(|x|) ≤ V (t1, t2, x),

for all (t1, t2, x) ∈ R+ × R+ × R, and |X(τβ)| ≥ β > 0.
Then, for the left hand side of (4.31), we have

(4.33)

E
[
V (τβ, Eτβ , X(τβ))�{τβ<∞}∩{τh=∞}

]
≥ E

[
μ(|X(τβ)|)�{τβ<∞}∩{τh=∞}

]
≥ E

[
μ(β)�{τβ<∞}∩{τh=∞}

]
= μ(β)E

[
�{τβ<∞}∩{τh=∞}

]
= μ(β)P ({τβ < ∞} ∩ {τh = ∞}).

Let

(4.34) Bα = sup
t1×t2×x∈R+×R+×S̄α

V (t1, t2, x).

Then Bα → 0 as α → 0, that is, Bα

μ(β) <
ε
5 for some α.

For the right hand side of (4.31),

(4.35)

E
[
V (τα, Eτα , X(τα))�{τα<τh∧θ}

]
≤ E

[
Bα�{τα<τh∧θ}

]
= BαE

[
�{τα<τh∧θ}

]
= BαP (τα < τh ∧ θ).

Combining (4.33) and (4.35), we have

(4.36) P ({τβ < ∞} ∩ {τh = ∞})μ(β) ≤ BαP (τα < τh ∧ θ),

thus

(4.37) P ({τβ < ∞} ∩ {τh = ∞}) ≤ Bα

μ(β)
P (τα < τh ∧ θ) <

ε

5
.

Also,

(4.38) P ({τβ < ∞} ∩ {τh = ∞}) ≥ P (τβ < ∞)− P (τh < ∞) > P (τβ < ∞)− ε

5
,

so

(4.39) P (τβ < ∞) <
2ε

5
.
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Next

(4.40)

P ({σ < ∞} ∩ {τβ = ∞}) ≥ P (σ < ∞)− P (τβ < ∞)

> P (τα < τh ∧ θ)− 2ε

5

≥ 1− 3ε

5
− 2ε

5
= 1− ε.

Hence,

(4.41) P{ω; lim sup
t→∞

∣∣X(t, x0)
∣∣ ≤ β} > 1− ε.

Since β is arbitrary, we have

(4.42) P{ω; lim sup
t→∞

∣∣X(t, x0)
∣∣ = 0} > 1− ε,

as desired. �

4.3. Proof of Theorem 3.9.

Proof. Define a function Z : R+ × R+ × R → R+ by

(4.43) Z(t1, t2, x) = exp(α3t1)V (t1, t2, x).

Fix any x0 
= 0 in R. For each n ≥ |x0|, define

τn = inf{t ≥ 0 : |X(t)| ≥ n}

and
(4.44)

Uk =k ∧ inf{t ≥ 0;

∣∣∣∣∣
∫ τn∧t

0

Vx(s, Es, X(s−))g(s, Es, X(s−))dBEs

∣∣∣∣∣ ≥ k},

Wk =k ∧ inf{t ≥ 0;

∣∣∣∣∣
∫ τn∧t

0

∫
|y|<c

[
V (s, Es, X(s−) + h(s, Es, X(s−), y))

− V (s, Es, X(s−))

]
Ñ(ds, dy)

∣∣∣∣∣ ≥ k},

for k = 1, 2, . . . . It is easy to see that Uk → ∞ and Wk → ∞ as k → ∞.
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Apply Itô formula (3.2) to Z(τn ∧Uk ∧Wk, Eτn∧Uk∧Wk
, X(τn∧Uk ∧Wk)). Then

we have
(4.45)
Z(t ∧ τn ∧ Uk ∧Wk, Et∧τn∧Uk∧Wk

, X(t ∧ τn ∧ Uk ∧Wk))− Z(0, 0, x0)

=

∫ t∧τn∧Uk∧Wk

0

exp(α3s)

[
α3V (s, Es, X(s−)) + Vs(s, Es, X(s−)

]
)ds

+

∫ t∧τn∧Uk∧Wk

0

exp(α3s)VEs
(s, Es, X(s−))dEs

+

∫ t∧τn∧Uk∧Wk

0

exp(α3s)Vx(s, Es, X(s−))

[
f(s, Es, X(s−))dt

+ k(s, Es, X(s−))dEt + g(s, Es, X(s−))dBEt

]

+
1

2

∫ t∧τn∧Uk∧Wk

0

exp(α3s)Vxx(s, Es, X(s−))g2(s, Es, X(s−))dEs

+

∫ t∧τn∧Uk∧Wk

0

∫
|y|<c

exp(α3s)

[
V (s, Es, X(s−) + h(s, Es, X(s−), y))

− V (s, Es, X(s−))

]
Ñ(dEs, dy)

+

∫ t∧τn∧Uk∧Wk

0

∫
|y|<c

exp(α3s)

[
V (s, Es, X(s−) + h(s, Es, X(s−), y))

− V (s, Es, X(s−))− Vx(s, Es, X(s−))h(s, Es, X(s−), y)

]
ν(dy)dEs

=

∫ t∧τn∧Uk∧Wk

0

exp(α3s)

[
α3V (s, Es, X(s−)) + Vs(s, Es, X(s−))

+ Vx(s, Es, X(s−))f(s, Es, X(s−))

]
ds

+

∫ t∧τn∧Uk∧Wk

0

exp(α3s)

[
VEs

(s, Es, X(s−)) + Vx(s, Es, X(s−))k(s, Es, X(s−))

+
1

2
Vxx(s, Es, X(s−))g2(s, Es, X(s−))

+

∫
|y|<c

[
V (s, Es, X(s−) + h(s, Es, X(s−), y))

− V (s, Es, X(s−))− Vx(s, Es, X(s−))h(s, Es, X(s−), y)

]
ν(dy)

]
dEs

+

∫ t∧τn∧Uk∧Wk

0

exp(α3s)g(s, Es, X(s−))Vx(s, Es, X(s−))dBEs

+

∫ t∧τn∧Uk∧Wk

0

∫
|y|<c

exp(α3s)

[
V (s, Es, X(s−) + h(s, Es, X(s−), y))

− V (s, Es, X(s−))

]
Ñ(dEs, dy)
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=

∫ t∧τn∧Uk∧Wk

0

exp(α3s)

[
α3V (s, Es, X(s−)) + L1V (s, Es, X(s−)

]
ds

+

∫ t∧τn∧Uk∧Wk

0

exp(α3s)L2V (s, Es, X(s−))dEs

+

∫ t∧τn∧Uk∧Wk

0

exp(α3s)g(s, Es, X(s−))Vx(s, Es, X(s−))dBEs

+

∫ t∧τn∧Uk∧Wk

0

∫
|y|<c

exp(α3s)

[
V (s, Es, X(s−) + h(s, Es, X(s−), y))

− V (s, Es, X(s−))

]
Ñ(dEs, dy).

By similar ideas as in the proof of (4.1), we have that∫ t∧τn∧Uk∧Wk

0

exp(α3s)g(s, Es, X(s−))Vx(s, Es, X(s−))dBEs

and∫ t∧τn∧Uk∧Wk

0

∫
|y|<c

exp(α3s)

[
V (s, Es, X(s−) + h(s, Es, X(s−), y))

− V (s, Es, X(s−))

]
Ñ(dEs, dy)

are mean zero martingales. Taking expectations on both sides, we have
(4.46)
E[exp(α3(t∧τn∧Uk∧Wk))V (t∧τn∧Uk∧Wk, Et∧τn∧Uk∧Wk

, X(t∧τn∧Uk∧Wk))]

≤E

∫ t∧τn∧Uk∧Wk

0

exp(α3s)

[
α3V (s, Es, X(s−))+L1V (s, Es, X(s−)

]
ds+ V (0, 0, x0)

≤V (0, 0, x0).

Letting k → ∞ and n → ∞, E[exp(α3t)V (t, Et, X(t))] ≤ V (0, 0, x0). By condi-
tion (2),

(4.47) α1|X(t)|p ≤ V (t, Et, X(t)).

Then
(4.48)

α1E(exp(α3t)|X(t)|p) ≤ E(exp(α3s)V (t, Et, X(t))) ≤ V (0, 0, x0) ≤ α2|x0|p,
that is,

(4.49) E(|X(t)|p) ≤ α2

α1
exp(−α3t)|x0|p,

as desired. �

4.4. Proof of Corollary 3.12.

Proof. If Y (t) satisfies SDE (3.34), by Theorem 4.2 in [8], X(t) = Y (Et) satisfies
(3.33).

Since Y (t) is p-th moment exponentially stable, there exist two positive constants
λ and C such that

(4.50) E[|X(t)|p] ≤ C|x0|p exp(−λt), ∀t ≥ 0, ∀x0 ∈ R, p > 0.
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Then

(4.51)

E[|Y (t)|p] = E[|X(Et)|p]

=

∫ ∞

0

E[|X(s)|p exp(λs) exp(−λs)|Et = s]fEt
(s)ds

=

∫ ∞

0

E[|X(s)|p exp(λs)|Et = s] exp(−λs)fEt
(s)ds

≤
∫ ∞

0

C|x0|p exp(−λs)fEt
(s)ds

= C|x0|pE[exp(−λEt)].

Since Et is nondecreasing and E0 = 0, by definition of Et, we claim that limt→∞ Et

= ∞ a.s.. Assume to the contrary that there exists B > 0 such that Et < B for
all t > 0 with positive probability. Then D(B) > t for all t > 0 with positive
probability. However, by Lemma 12.1 of [3], D(B) is bounded, which results in a
contradiction. Consequently, E[exp(−λEt)] → 0 as t → ∞, as desired. �
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