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SOME CHARACTERIZATIONS ON CRITICAL METRICS

FOR QUADRATIC CURVATURE FUNCTIONS

GUANGYUE HUANG AND LI CHEN

(Communicated by Guofang Wei)

Abstract. Under some integral conditions, we classify closed n-dimensional
manifolds of which the metrics are critical for quadratic curvature functions.
Moreover, under some curvature conditions, we also obtain that a critical
metric must be Einstein.

1. Introduction

Let M1(M
n) be the space of equivalence classes of smooth Riemannian metrics

of volume one on closed Riemannian manifold Mn, n ≥ 3. It is well known that
Einstein metrics are critical for the Einstein-Hilbert functional

H =

∫
M

RdV

on M1(M
n). Then, it is natural to study canonical metrics which arise as solutions

of the Euler-Lagrange equations for more general curvature functionals or even high
order curvature functionals. In [2], Berger commenced the study of Riemannian
functionals which are quadratic in curvature functionals (see [3, Chapter 4] and
[23] for surveys). In particular, if n > 4, it is not true that Einstein metrics are
always critical points for this functional on M1(M

n). Therefore, problems arise:
when are Einstein metrics critical points for this quadratic curvature functional?
In [6], Catino considers the curvature functional

(1.1) Ft =

∫
M

|Ric|2 dv + t

∫
M

R2 dv

defined for some constant t ∈ R (with t = −∞ formally corresponding to the
functional

∫
M

R2 dv). Here Ric and R denote the Ricci curvature and the scalar
curvature, respectively. It has been observed in [3] that every Einstein metric is
critical for Ft on M1(M

n), for all t ∈ R (this can be obtained by virtue of the
formula (2.3)). Of course, there exist critical metrics which are not necessarily
Einstein (for instance, see [3, Chapter 4] and [20]). It is natural to ask under what
conditions a critical metric for Ft must be Einstein. For example, one can assume
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some curvature conditions or some integral conditions. For some development in
this direction, see [1, 10, 11, 13, 14, 19, 24] and the references therein.

In this paper, we will give some new characterizations on critical metrics for Ft

on M1(M
n). Throughout this paper, we denote by E the traceless Ricci tensor.

Our main results are as follows:

Theorem 1.1. Let Mn be a closed manifold of dimension n ≥ 3 with positive
scalar curvature and g be a critical metric for Ft on M1(M

n). Then
(i) for n = 3, there exists ε0 > 0 (ε0 ≈ 0.3652) such that for −ε0 ≤ t < − 1

6 and

1 + 6t

3
R+

4√
6
|E| < 0,

we have that M3 is of constant positive sectional curvature.
(ii) For n ≥ 5 there exist εn > 0 and ηn > 0 such that for − 1

2 < t < −εn or
−ηn < t < − n

4(n−1) , if

(1.2)
2(n− 2) + 2n(n− 1)t

n(n− 1)
R+

4√
n(n− 1)

|E|+
√

2(n− 2)

n− 1
|W | < 0,

we have that Mn is Einstein. In particular, if the Weyl curvature tensor W = 0,
then Mn is also of constant positive sectional curvature.

Next, we will give the following integral inequality under the condition that the
curvature tensor is harmonic which is stronger than that the scalar is constant.

Theorem 1.2. Let Mn be a closed manifold with harmonic curvature tensor. If
g is a critical metric for Ft on M1(M

n) with positive scalar curvature and n �= 4,
then

(1.3)

∫
M

[2[(n− 2) + n(n− 1)t]

n(n− 1)
R+

4√
n(n− 1)

|E|

+

√
2(n− 2)

n− 1
|W |

]
|E|n−2

n ≥ 0

and equality occurs if and only if
(1) either Mn is Einstein;
(2) or Mn is isometrically covered by R

1 × S
n−1 with a product metric. In this

case, we have t = − 1
n−1 and R =

√
n(n− 1)|E|.

Remark 1.1. Catino proved (see Theorem 1.5 in [6]) that for n = 3, if t ∈ [− 1
3 ,−

1
6 )

and

1 + 6t

3
R+

4√
6
|E| < 0,

then M3 is of constant positive sectional curvature. We note that [− 1
3 ,−

1
6 ) ⊂

[−ε0,− 1
6 ). Thus, the result for n = 3 in Theorem 1.1 generalizes Theorem 1.5 in

[6]. On the other hand, the result for n ≥ 5 in Theorem 1.1 is new.
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2. Proof of results

First, we generalize Lemma 5.1 in [6] into arbitrary dimension.

Proposition 2.1. Let Mn be a closed manifold of dimension n ≥ 3 with nonneg-
ative scalar curvature. If g is a critical metric for Ft on M1(M

n), then
(2.1)∫

M

[1
2
〈∇|E|2,∇R〉+R|∇E|2 − (n− 2)(1 + 2t)

2n
R|∇R|2

− (1 + 2t)E(∇R,∇R)
]
dv

≤
∫
M

R|E|2
[2[(n− 2) + n(n− 1)t]

n(n− 1)
R +

4√
n(n− 1)

|E|+
√

2(n− 2)

n− 1
|W |

]
dv.

In particular, if the scalar curvature R in (2.1) is a positive constant and n �= 4,
then

(2.2)

∫
M

|∇E|2 dv ≤
∫
M

|E|2
[2[(n− 2) + n(n− 1)t]

n(n− 1)
R+

4√
n(n− 1)

|E|

+

√
2(n− 2)

n− 1
|W |

]
dv,

and equality occurs if and only if
(1) either Mn is Einstein;
(2) or Mn is isometrically covered by R

1 × S
n−1 with a product metric. In this

case, we have t = − 1
n−1 and R =

√
n(n− 1)|E|.

Proof. It has been shown in [6, Proposition 2.1] by Catino that a metric g is critical
for Ft on M1(M

n) if and only if it satisfies the following equations:

(2.3)
ΔEij =(1 + 2t)∇2

ijR − 1 + 2t

n
(ΔR)gij − 2RikjlEkl

− 2 + 2nt

n
REij +

2

n
|E|2gij ,

(2.4) [n+ 4(n− 1)t]ΔR = (n− 4)[|Ric|2 + tR2 − λ],

where λ = Ft(g). Recall that for n ≥ 3, the Weyl curvature tensor is defined by

(2.5)

Wijkl =Rijkl −
1

n− 2
(Rikgjl −Rilgjk +Rjlgik −Rjkgil)

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk)

=Rijkl −
1

n− 2
(Eikgjl − Eilgjk + Ejlgik − Ejkgil)

− R

n(n− 1)
(gikgjl − gilgjk).



388 GUANGYUE HUANG AND LI CHEN

Hence, it is easy to see from (2.3) that

(2.6)

1

2
Δ|E|2 =|∇E|2 + EijΔEij

=|∇E|2 + (1 + 2t)Eij∇2
ijR− 2RikjlEklEij −

2 + 2nt

n
R|E|2

=|∇E|2 + (1 + 2t)Eij∇2
ijR− 2(n− 2) + 2n(n− 1)t

n(n− 1)
R|E|2

+
4

n− 2
EijEjkEki − 2WikjlEklEij .

Multiplying both sides of (2.6) with R and integrating it, we obtain
(2.7)∫
M

[1
2
〈∇|E|2,∇R〉+R|∇E|2 − (n− 2)(1 + 2t)

2n
R|∇R|2

− (1 + 2t)E(∇R,∇R)
]
dv

=

∫
M

[2[(n− 2) + n(n− 1)t]

n(n− 1)
R2|E|2 − 4

n− 2
REijEjkEki + 2RWikjlEklEij

]
dv,

where we used the second Bianchi identity Eij,j =
n−2
2n R,i.

We recall the following inequality which was first proved by Huisken (cf. [17,
Lemma 3.4]):

(2.8) |WikjlEijEkl| ≤
√

n− 2

2(n− 1)
|W ||E|2,

and

(2.9) EijEjkEki ≥ − n− 2√
n(n− 1)

|E|3,

with equality in (2.9) at some point p ∈ M if and only if E can be diagonalized at
p and the eigenvalue multiplicity of E is at least n− 1. If |E| �= 0 and the equality
in (2.9) occurs, then n− 1 of eigenvalues which are equal must be positive (see also
[22] or Lemma 5.1 in [14]). Therefore, for R ≥ 0, we have

(2.10)

2(n− 2) + 2n(n− 1)t

n(n− 1)
R2|E|2 − 4

n− 2
REijEjkEki + 2RWikjlEklEij

≤ R|E|2
[2[(n− 2) + n(n− 1)t]

n(n− 1)
R+

4√
n(n− 1)

|E|+
√

2(n− 2)

n− 1
|W |

]
.

The desired estimate (2.1) follows from (2.7) and (2.10) immediately.
If the equality in (2.1) occurs, then the two inequalities (2.8) and (2.9) now must

both be equalities. Hence, as stated in the lines following (2.9), E has, at each
point p, an eigenvalue of multiplicity n − 1 or n. For n = 3, it is well known that
W = 0 and (2.8) is an equality. When n ≥ 4, writing Eij = agij + bvivj at p, with
two scalars a, b and a vector v, we see that the left-hand side of (2.8) is zero at
p. This shows that Mn, n ≥ 4, must be conformally flat or Einstein due to the
equality in (2.8).

In particular, if the scalar curvature R is a positive constant, the inequality (2.2)
follows from (2.1) directly. Furthermore, if the equality in (2.2) occurs and Mn is
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not Einstein (that is, E �= 0), we have W = 0 according to the arguments above,
which shows from (2.2) that

(2.11)

∫
M

|∇E|2 dv =

∫
M

|E|2
[2[(n− 2) + n(n− 1)t]

n(n− 1)
R+

4√
n(n− 1)

|E|
]
dv.

When n = 3 or n ≥ 5, we have from (2.4) that |Ric|2 is constant and hence |E|2 is
also constant. Therefore, we obtain that eigenvalues of Ricci curvature are constant
from E a traceless tensor and hence Mn has parallel Ricci curvature. In particular,
in this case, ∇E = 0 and from the de Rham decomposition theorem, Mn splits as a
product of two Einstein manifolds N1×Nn−1, where Nn−1 is an Einstein manifold.
Let λ1, · · · , λn be the eigenvalues of Ricci curvature and λ2 = · · · = λn. Since one
factor N1 of N1 × Nn−1 has dimension n = 1, we have λ1 = 0. In particular, we
have

(2.12) (λ2 + · · ·+ λn)
2 = (n− 1)(λ2

2 + · · ·+ λ2
n)

which shows that R2 = (n − 1)|Ric|2 and hence R =
√
n(n− 1)|E|. In this case,

(2.11) becomes

(2.13)
2n[1 + (n− 1)t]√

n(n− 1)

∫
M

|E|3 dv = 0,

which shows t = − 1
n−1 . The proof of Proposition 2.1 is completed. �

Remark 2.1. We can also obtain t = − 1
n−1 by the relationship between eigenvalues

of Ricci curvature. In fact, using Eij = Rij − R
n gij , (2.3) can be written as (see the

formula (2.1) in [6])

(2.14)
1

n
(|Ric|2 + tR2)gij −RikjlRkl − tRRij = 0.

Since the Ricci curvature is parallel, from the Ricci identity, we have

0 = Rik,jp −Rik,pj = RlijpRkl +RlkjpRil,

which gives RikjlRkl = RikRjl and (2.14) becomes

1

n
(|Ric|2 + tR2)gij −RikRjl − tRRij = 0.

In particular, every eigenvalue λ of the Ricci curvature satisfies

1

n
(|Ric|2 + tR2)− λ2 − tRλ = 0,

which is equivalent to

nλ2 + ntRλ− (|Ric|2 + tR2) = 0.

Solving this quadratic equation with respect to λ yields

λ =
−ntR±

√
(n2t2 + 4nt)R2 + 4n|Ric|2

2n
.

Then we have

(2.15)

⎧⎨
⎩ λ1 =

−ntR−
√

(n2t2+4nt)R2+4n|Ric|2
2n ,

λ2 = · · · = λn =
−ntR+

√
(n2t2+4nt)R2+4n|Ric|2

2n ,
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or

(2.16)

⎧⎨
⎩ λ1 =

−ntR+
√

(n2t2+4nt)R2+4n|Ric|2
2n ,

λ2 = · · · = λn =
−ntR−

√
(n2t2+4nt)R2+4n|Ric|2

2n .

By a direct computation, by using (2.15) combining with λ1 + · · · + λn = R or
(2.16) combining with λ1 + · · ·+ λn = R, we can obtain t = − 1

n−1 from λ1 = 0. In

this case, R =
√
n(n− 1)|E|.

Next, we will prove Theorem 1.2.

Proof of Theorem 1.2. Using the second Bianchi identity, we have

(2.17) Rjkil,l = Rij,k −Rik,j .

Hence, for the harmonic curvature tensor, we have that the Ricci curvature is
Codazzi. Thus, we derive

(2.18) R,i = Rjj,i = Rij,j =
1

2
R,i

which shows that R,i = 0 and the scalar curvature is constant. In particular,
the trace-less tensor Eij is also a Codazzi tensor and satisfies the following sharp
inequality (for a proof, see for instance [12], this inequality was first observed by
Bourguignon [4]):

(2.19) |∇E|2 ≥ n+ 2

n
|∇|E||2.

Inserting (2.8), (2.9) and (2.19) into (2.6) yields

(2.20)

1

2
Δ|E|2 ≥n+ 2

n
|∇|E||2 − 2[(n− 2) + n(n− 1)t]

n(n− 1)
R|E|2

− 4√
n(n− 1)

|E|3 −
√

2(n− 2)

n− 1
|W ||E|2.

Let

Ω0 = {p ∈ M : |E| �= 0}.
By virtue of Lemma 2.2 in [5] (or see [18, Theorem 1.8]), we have Vol(M\Ω0) = 0.
For any ε > 0, we define Ωε = {p ∈ M : |E| ≥ ε} and

fε(p) =

{
|E|(p) if p ∈ Ωε;
ε if p ∈ M\Ωε.

Then at the regular value ε of |E|, integration by parts gives

(2.21)

∫
M

(
− 1

2
Δ|E|2 + n+ 2

n
|∇|E||2

)
f
−n+2

n
ε

=− n+ 2

n

∫
M

〈∇|E|,∇fε〉|E|f−n+2
n −1

ε +
n+ 2

n

∫
M

|∇|E||2f−n+2
n

ε

which tends to the zero as ε → 0, where in the last equality we used fε = |E| on
Ωε and ∇fε = 0 on M\Ωε. Multiplying both sides of inequality (2.20) by f

−n+2
n

ε
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and applying (2.21), we have

(2.22)

0 ≤
∫
M

[2[(n− 2) + n(n− 1)t]

n(n− 1)
R|E|2 + 4√

n(n− 1)
|E|3

+

√
2(n− 2)

n− 1
|W ||E|2

]
f
−n+2

n
ε

=

∫
M

|E|
n−2
n

[2[(n− 2) + n(n− 1)t]

n(n− 1)
R +

4√
n(n− 1)

|E|

+

√
2(n− 2)

n− 1
|W |

]
|E|

n+2
n f

−n+2
n

ε .

Taking ε → 0 in (2.22), we have |E|n+2
n f

−n+2
n

ε → 1 a.e. on M and the desired
estimate (1.3) follows. Then, we can obtain our results by using Proposition 2.1. �

Next, we will estimate the left-hand side of (2.1). By using some sharp inequal-
ities, we can prove the following result:

Proposition 2.2. Let Mn be a closed manifold of dimension n ≥ 3 with positive
scalar curvature and g be a critical metric for Ft on M1(M

n). Then, for n = 3
and t > − 3

8 ,

(2.23)

∫
M

|∇E|2
R

[
R2− (5 + 16t)2

2(1 + 2t)(3 + 8t)
|E|2

]
dv

≤
∫
M

R|E|2
[1 + 6t

3
R+

4√
6
|E|

]
dv;

for n ≥ 5 and − 1
2 < t < − n

4(n−1) ,

(2.24)∫
M

|∇E|2
R

{
R2 +

[3n− 4 + 8(n− 1)t]2

2(n− 4)(1 + 2t)[n+ 4(n− 1)t]
|E|2

}
dv

≤
∫
M

R|E|2
[2(n− 2) + 2n(n− 1)t

n(n− 1)
R+

4√
n(n− 1)

|E|+
√

2(n− 2)

n− 1
|W |

]
dv.

Proof. From the Bochner formula, we have

1

2
Δ|∇R|2 =|∇2R|2 +Ric(∇R,∇R) + 〈∇ΔR,∇R〉

=|∇2R|2 + E(∇R,∇R) +
1

n
R|∇R|2 + 〈∇ΔR,∇R〉

which gives

(2.25)

∫
M

E(∇R,∇R) dv =

∫
M

[−|∇2R|2 + (ΔR)2 − 1

n
R|∇R|2] dv

≤n− 1

n

∫
M

(ΔR)2 dv − 1

n

∫
M

R|∇R|2 dv,
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where in the inequality of (2.25) we used the Cauchy inequality |∇2R|2 ≥ 1
n (ΔR)2.

On the other hand, from the traced equation of critical metrics (2.4) with t �=
− n

4(n−1) , one has

(2.26)

∫
M

(ΔR)2 dv =

∫
M

RΔ2Rdv

=
n− 4

n+ 4(n− 1)t

∫
M

R(Δ|Ric|2 dv + tΔR2) dv

=− n− 4

n+ 4(n− 1)t

∫
M

(〈∇|Ric|2,∇R〉+ 2tR|∇R|2) dv

=− n− 4

n+ 4(n− 1)t

∫
M

(
〈∇|E|2,∇R〉+ 2(1 + nt)

n
R|∇R|2

)
dv.

Inserting (2.26) into (2.25) yields

(2.27)

∫
M

E(∇R,∇R) dv ≤− (n− 1)(n− 4)

n[n+ 4(n− 1)t]

∫
M

〈∇|E|2,∇R〉 dv

−
[2(n− 1)(n− 4)(1 + nt)

n2[n+ 4(n− 1)t]
+

1

n

] ∫
M

R|∇R|2 dv.

Since t > − 1
2 , we have by (2.1) that

(2.28)∫
M

[1
2
〈∇|E|2,∇R〉+R|∇E|2 − (n− 2)(1 + 2t)

2n
R|∇R|2

− (1 + 2t)E(∇R,∇R)
]
dv

≥
[ (n− 1)(n− 4)(1 + 2t)

n[n+ 4(n− 1)t]
+

1

2

] ∫
M

〈∇|E|2,∇R〉 dv

+

∫
M

R|∇E|2 dv + (1 + 2t)
[2(n− 1)(n− 4)(1 + nt)

n2[n+ 4(n− 1)t]
− n− 4

2n

] ∫
M

R|∇R|2 dv.

On the other hand, for any positive constant ε, it holds that

(2.29)

[ (n− 1)(n− 4)(1 + 2t)

n[n+ 4(n− 1)t]
+

1

2

]
〈∇|E|2,∇R〉

≥ − 2
∣∣∣ (n− 1)(n− 4)(1 + 2t)

n[n+ 4(n− 1)t]
+

1

2

∣∣∣|E||∇|E|||∇R|

≥ − 2
∣∣∣ (n− 1)(n− 4)(1 + 2t)

n[n+ 4(n− 1)t]
+

1

2

∣∣∣|E||∇E||∇R|

≥ −
∣∣∣ (n− 1)(n− 4)(1 + 2t)

n[n+ 4(n− 1)t]
+

1

2

∣∣∣[εR|∇R|2 + 1

ε

|E|2
R

|∇E|2
]
,
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where we use Kato inequality |∇E| ≥ |∇|E|| in the third line. Note that under the
assumption that n ≥ 5 and − 1

2 < t < − n
4(n−1) , or n = 3 and t > − 3

8 , we have both

(1 + 2t)
[2(n− 1)(n− 4)(1 + nt)

n2[n+ 4(n− 1)t]
− n− 4

2n

]
= − (n− 4)(n− 2)2(1 + 2t)

2n2[n+ 4(n− 1)t]
> 0.

Hence, there exists a positive constant ε0 such that

(2.30)

(1 + 2t)
[2(n− 1)(n− 4)(1 + nt)

n2[n+ 4(n− 1)t]
− n− 4

2n

]

−
∣∣∣ (n− 1)(n− 4)(1 + 2t)

n[n+ 4(n− 1)t]
+

1

2

∣∣∣ε0 = 0.

Inserting (2.29) with ε0 into (2.28) yields

(2.31)

∫
M

[1
2
〈∇|E|2,∇R〉+R|∇E|2 − (n− 2)(1 + 2t)

2n
R|∇R|2

− (1 + 2t)E(∇R,∇R)
]
dv

≥
∫
M

|∇E|2
R

[
R2 −

∣∣∣ (n− 1)(n− 4)(1 + 2t)

n[n+ 4(n− 1)t]
+

1

2

∣∣∣ 1
ε0
|E|2

]
dv

=

∫
M

|∇E|2
R

[
R2 −

(
(n−1)(n−4)(1+2t)

n[n+4(n−1)t] + 1
2

)2

(1 + 2t)
[
2(n−1)(n−4)(1+nt)

n2[n+4(n−1)t] − n−4
2n

] |E|2
]
dv

=

∫
M

|∇E|2
R

[
R2 +

[3n− 4 + 8(n− 1)t]2

2(n− 4)(1 + 2t)[n+ 4(n− 1)t]
|E|2

]
dv.

We complete the proof of Proposition 2.2 by combining (2.31) with (2.1). �

Proof of Theorem 1.1. Now with the help of Proposition 2.2, we will complete the
proof of Theorem 1.1.

When n = 3, if −ε0 ≤ t < − 1
6 , then

(2.32)
(1 + 6t)2

24
≤ 2(1 + 2t)(3 + 8t)

(5 + 16t)2
,

where −ε0 is just the unique negative root of the corresponding equation of the
above inequality and ε0 ≈ 0.3652. Therefore, under the assumption

(2.33)
1 + 6t

3
R+

4√
6
|E| < 0,

the inequalities (2.23), (2.32) and (2.33) imply

(2.34)

0 ≤
∫
M

|∇E|2
R

[
R2 − (5 + 16t)2

2(1 + 2t)(3 + 8t)
|E|2

]
dv

≤
∫
M

R|E|2
[1 + 6t

3
R+

4√
6
|E|

]
dv ≤ 0

which gives that E = 0 and M3 is Einstein. Thus, M3 is of constant positive
sectional curvature.
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When n ≥ 5 and − 1
2 < t < − n

4(n−1) , under the assumption that

2(n− 2) + 2n(n− 1)t

n(n− 1)
R+

4√
n(n− 1)

|E|+
√

2(n− 2)

n− 1
|W | < 0,

we have

(2.35)
2(n− 2) + 2n(n− 1)t

n(n− 1)
R+

4√
n(n− 1)

|E| < 0.

Let

f(t) = [3n−4+8(n−1)t]2[(n−2)+n(n−1)t]2+4n(n−1)2(n−4)(1+2t)[n+4(n−1)t].

Clearly,

f(− n

4(n− 1)
) = f(−1

2
) > 0

and

f(− 3n− 4

8(n− 1)
) < 0.

Therefore, we can find the roots −εn and −ηn of f(t) = 0 such that for − 1
2 < t <

−εn or −ηn < t < − n
4(n−1) , the inequality

− [3n− 4 + 8(n− 1)t]2

2(n− 4)(1 + 2t)[n+ 4(n− 1)t]
≤ 4n(n− 1)

[(n− 2) + n(n− 1)t]2
,

holds true. Then noticing that − n
4(n−1) < − n−2

n(n−1) , (2.24) and (2.35) imply

0 ≤
∫
M

|∇E|2
R

[
R2 +

[3n− 4 + 8(n− 1)t]2

2(n− 4)(1 + 2t)[n+ 4(n− 1)t]
|E|2

]
dv

≤
∫
M

R|E|2
[2(n− 2) + 2n(n− 1)t

n(n− 1)
R+

4√
n(n− 1)

|E|+
√

2(n− 2)

n− 1
|W |

]
dv

≤0.

This gives E = 0 andMn is Einstein. In particular, in this case, ifW = 0, then (2.5)
shows that Mn is of constant positive sectional curvature. The proof of Theorem
1.1 is complete. �
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