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ABSTRACT. Let p be an odd prime. Let F' be the function field of a p-adic
curve. Let A be a central simple algebra of period 2 over F' with an involution
o. There are known upper bounds for the u-invariant of hermitian forms
over (A,o). In this article we compute the exact values of the u-invariant of
hermitian forms over (A, o).

1. INTRODUCTION

Let A be a central simple algebra over a field K. Let ¢ be an involution on A.
Let k = K = {x € K | o(z) = x}. Suppose chark # 2. Suppose ¢ € {1,—1}.
If V is a finitely generated right A-module and h : V x V' — A is an e-hermitian

di Vv
space over (A, o), the rank of h is defined to be Rank(h) = ﬁiid()/l)' Let
Herm® (A4, o) denote the category of e-hermitian spaces over (A, o). The hermitian

u-invariant [Mah05] 2.1] of (4, o,¢) is defined to be:
u(A, o,e) = sup{n|there exists an anisotropic h € Herm®(A, ), Rank(h) = n}.

Suppose that o and 7 are involutions on A. Mahmoudi has proved that [Mah05,
2.2] if o and 7 are of the same type, then u(A,0,¢) = u(A, 7,¢); if o is orthogonal
and 7 is symplectic, then u(A, 0,¢) = u(A, 7, —¢); if o is unitary, then u(A,0,1) =
u(A,o,—1). Thus we have only three types of hermitian u-invariants [Mah05] 2.3],
and we denote:

uT(A), ife=1 and o is orthogonal,
or, ¢ = —1 and o is symplectic;
u(A,0,6) = ¢ u (A4), ife=—1 and o is orthogonal,
or, ¢ = 1 and o is symplectic;
u?(A), if o is unitary,

where uT is called the orthogonal hermitian u-invariant, u~ is called the symplectic
hermitian u-invariant and u is called the unitary hermitian u-invariant.

In section 3] we provide upper bounds for hermitian u-invariants of division alge-
bras with Springer’s property over 7 (2)-fields. For definitions of 27 (2)-fields and
Springer’s property, see the beginning of section [3
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Theorem 1.1. Let D be a division algebra over a field K with an involution o.
Suppose k = K7, chark # 2, ¢ € {1,—1} and d = deg(D). Suppose k is an
o2;(2)-field and D satisfies the Springer’s property.

(i) If o is of the first kind, then u* (D) < (1+ )27 and u= (D) < (1 — )20~ 1.
(ii) If o is of the second kind, then u®(D) < 2¢71.

Let p be an odd prime number. Let F be the function field of a smooth projective
geometrically integral curve over a p-adic field. The field F is also called a semi-
global field. Let D be a central division F-algebra with an involution o of the first
kind. Suppose D # F'. As a consequence of an inequality of Mahmoudi [Mah05}, 3.6]
with w(F) = 8 ([PSI0] or [HBIO] and [Leeld]), wt (D) < 27 and v~ (D) < 10.
Parihar and Suresh [PS13] have proved that u™(D) < 14 and u™ (D) < 8. We

obtain exact values of hermitian u-invariants:

Theorem 1.2. Let F be the function field of a curve over a p-adic field with p # 2.
Let D be a central division algebra over F. Let L/F be a quadratic extension.

(1) If D is quaternion, then ut (D) =6 and u~ (D) = 2.

(2) If D is quaternion and D @ L is division, then u®(D ®p L) = 4.

(3) If D is biquaternion, then ut (D) =5 and v~ (D) = 3.

Let A be a central simple algebra over a field k. Suppose char k # 2 and per(A) =
2. Then, by a special case [Mer81] of the Merkur’ev-Suslin theorem [MS82], A
is Brauer equivalent to H; ® --- ® H, for some quaternion algebras Hi,---, H,
over k. Let K/k be a quadratic extension. In [PS13|, upper bounds for u*(A),
u™ (A), u’(A® K) are given and they depend only on u(k) and n. In section [ we
obtain sharper upper bounds for these hermitian u-invariants. In fact we prove the
following

Theorem 1.3. Let A be a central simple algebra over a field k. Suppose char k # 2
and per(A) = 2. Suppose A is Brauer equivalent to Hy ® - - - ® H,, for n quaternion
algebras Hy,--- , Hy, over k.

(1) w(A) < (¢ 1) ulh);

(2) u=(A) < (=5 + 5(™)ulk);

(3) uP(A @y K) < (% + %(—)”)u(k) for all quadratic extension K/k.

2. PRELIMINARIES

Let K be a field. Let A be a central simple algebra over K with an involution
o. Let k = K?. We suppose char(k) # 2 throughout the paper. Let V be a
finitely generated right A-module and ¢ € {1,—1}. Amap h: VxV — Ais
called an e-hermitian form over (A, o) if h is bi-additive; h(za, yb) = o(a)h(z,y)b
for all a,b € A, z,y € V; and h(y,x) = eo(h(x,y)) for all z,y € V. We call h an
e-hermitian space if given h(xz,y) = 0 for all z € V; we have y = 0. We say that
h is isotropic if there exists x € V, x # 0 such that h(z,z) = 0; otherwise we say
that h is anisotropic.

Lemma 2.1 (Morita invariance). Let K, A, o, k be as before. Suppose A ~ M,,(D)
for a central division algebra D over K. Suppose o is an involution on A and
e € {1,—1}. Then there exists an involution 7 on D and g9 € {1, —1} such that
u(A,o,e) = u(D, T, eg).

Furthermore, ut(A) = ut (D), u=(A) = u= (D) and u°(A) = u°(D).
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Proof. It is a consequence of [Knu91l ch. I, 9.3.5] and [KMRT98| 4.2]. O
From now on, we mostly focus on central division algebras.

Lemma 2.2. Let D be a central division algebra over a field K with an involution
o. Let k = K%, chark # 2. Suppose k is a non-archimedean local field.

(1) If o is of the first kind and D # k, then ut(D) =3, u~ (D) = 1.

(2) If o is of the second kind, then u°(D) = 2.

Proof. See [Tsu61l Thm. 1, Thm. 3] and [Sch85] ch. 10, 2.2]. O

We fix the following notation from 2.3 to 2.9. Let (k,v) be a complete discrete
valued field with residue field k, char k # 2. Let D be a finite-dimensional division
k-algebra with center K with an involution ¢ such that K7 = k. By [CE6T, ch. I,
10.1], v extends to a valuation v’ on K such that v'(z) = [K 7l v(Ngp(r)) for
all x € K*. By [Wad86], v’ extends to a valuation w on D such that w(z) =
mv’(NrdD/K(aj)) for all z € D*. Since Nrdp k(v) = Nrdp,x(o(z)), we have
w(o(z)) = w(z) for all z € D. Let R, = {x € D | w(z) > 0} and m,, = {z €
D | w(z) > 0}. Let D = R,,/m,, be the residue division algebra (see [Rei03] 13.2])
of (D, w) over k with involution & such that &(Z) = o(z) for all z € R,,, where T =
x+my. Let h: VXV — D be an e-hermitian space over (D, o). By [Knu91, Ch. I,
6.2], V is free with an orthogonal basis {es,...,en} such that h(e;,e;) = a; for
some a; € D with o(a;) = €a; for all 1 <4 < n; and h(e;,e;) =0 for all 1 <i <n,
1 <j<mnandi#j Wedenote h = (a1, --,a,). If w(a;) = 0 for all
1<i<n,then h= (@, - ,a,) € Herm®(D, 7). Let tp be a parameter of (D,w).
By [Lar99, 2.7], there exists mp € D such that w(np) = w(tp) mod 2w(D*) and
o(np) = €'mp for some & € {1,—1}. Larmour proved the following hermitian
analogue of a theorem of Springer.

Proposition 2.3 ([Lar06l 3.4] or [Lar99l 3.27]). Let k, v, D, K, o, w, h, 7p and
¢’ be as above. There exist hy € Herm®(D, o), he € Herm®®’ (D,Int(mp) o o), with
h ~hy L homp and each diagonal entries of hy and hy have w-value 0. Further,
the following are equivalent: (i) h is isotropic; (ii) h1 or ha is isotropic; (iii) h1 or
hy is isotropic.

Corollary 2.4. u(D,0,¢) = u(D,7,¢) +u(D,Int(rp) o o, c€’).

Proof. Suppose h € Herm®(D, o) and h ~ hy L howp as in Proposition 223l Since
Rank(h) = Rank(h)+Rank(hy) = Rank(h;)+Rank(hs), if Rank(h) > u(D, 7, )+
u(D,Int(mp) o o,ec’), then

Rank(hy) > u(D,7,¢)
or
Rank(hy) > (D,Int(np) o o,c¢’).
Then h; or hy is isotropic. By Proposition 23] & is isotropic. Hence u(D,0,¢) <
u(D,7,e) 4+ u(D,Int(np) o o,ec’).

Conversely, suppose g1 = {(ai,--- ,a,,) € Herm®(D,) such that &(a;) = ea;,
m = u(D,7 5) and ¢ is anlsotroplc Since a; # 0, there exists b; € Ry, w(b; ) =0
such that b; = a;. Let ¢; = (b + eo(b;)). Then o(c;) = ec; and ¢ = a;.
Let hy = {c1, -+ ,¢m) € Herm® (D o). Then h; = g; and by [Lar06, 2.3], hy is
anisotropic.
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Suppose ga = {(Gmi1, " sAmin) € Hermael(ﬁ, Int(7p) o o) such that gy is
anisotropic. Similar to the previous paragraph, there exists hy €
HermEEI(D, Int(mp) o o) such that hy = go and hs is anisotropic.

By Proposition 23, h = hy L hgomp is anisotropic and Rank(h) = m + n.
u(D,o,¢) > u(D,7,e) +u(D,Int(rp) o 7,e€’). O

Lemma 2.5. Suppose D is ramified at the discrete valuation of k, Z(D) = k and
per(D)|2.  Then there exist an involution o on D of the first kind and elements
a,p € D satisfying the following conditions:

(a) T is an involution of the second kind;

(b) a2 is a unit at the valuation v of k and Z(D) = k(@);

(¢) mp is a parameter of D, o(wp) = £7p and Int(wp) o o is of the first kind.

Proof. Suppose D is ramified. Then D is Brauer equivalent to Do ® (u, 7) with Dy a
central division algebra over k unramified at v, 7 € k* a parameter and u € k*\ f*2
a unit at v. Furthermore, D Brauer is equivalent to Dy ®@k(v/a) and Z(D) = k(/u)
[TWI5, 8.77).

(a) By [CDT95, prop. 4], the non-trivial automorphism of Z(D)/k extends to
an involution on D of the second kind and it can be lifted to an involution o on D
of the first kind.

(b) Since k is complete, by [CDT95| p. 53, Lem. 1], there exists a € D such that
o? € Z(D), a € Z(D) corresponds to v/ in the isomorphism Z(D) = k(,/u) and
ola) =—a.

(¢) By [JW90, prop. 1.7], there exists a parameter tp € D such that Int(tp) is
the non-trivial Z(D)/k-automorphism. Since 7 is of the second kind and Int(tp)
induces the non-trivial automorphims of Z (D), Int(tp) o o is of the first kind. Since

o is an involution, w(tp) = w(o(tp)) and hence o(tp)ty' # 0 € D.

Case 1. Suppose that o(tp)ty' = 1. Let 7p = tp + o(tp). Then o(np) = 7p.
Since pty' = 1+ o(tp)ty', mpty' = 1+ o(tp)ty' = 1+ 1 =2 # 0. Hence

w(rp) = w(tp). Since Tpty' =2, Int(rp) o 0 = Int(tp) o o and hence Int(rp) o o
is of the first kind. Thus 7 satisfies (c).

Case 2. Suppose that O'(tD)tBl # 1. Let 1p = atp—o(atp). Then o(np) = —7p.

We have mptp! = a—o(tp)o(a)ty'. Since o(a) = —@ and tpat' = —@, we have
oty = a@—o(tp)o(a)ty!
= a+o(tp)ty'tpaty!
= a-+o(tp)ty' (@)
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Hence w(mp) = w(tp). Since o(a) = —@, «
o(tp)ao(tp)~! = —a@ and

2 ¢ k and tDoafB1 = —a, we have

(rpampt 4+ a)rpty

= 7TDOétBI + athf)l

= (atp —o(tp)o(a))aty' + alatp — o(tp)o(a))tyt

= atpaty' —o(tp)o(@)aty! + a2 + ac(tp)aty!

= —a?+o(tp)a2ty! + a2 + a(o(tp)ac(tp)~Ho(tp)t,
a20(tp)ty! — a2o(tp)ty' = 0.

—1

Since mpty' # 0, mpary' +a = 0 and hence (Int(rp)oo)(@) = a. Thus 7p
satisfies (c).

To summarize, o, o and 7p satisfy the required properties. O

Corollary 2.6. Suppose Z(D) =k and per(D) = 2.
(1) If D is unramified at the discrete valuation of k, then

ut(D)=2ut(D) and u (D)=2u" (D).
(2) If D is ramified at the discrete valuation of k, then
uT (D) =u®(D) +u™ (D) and u (D)=u’(D)+u (D).

Proof. Suppose D is unramified. Then we can take mp = 7, where 7 is a parameter
of k. Since o(w) = m, we have ¢’ = 1 and Int(7wp) oo = 0. Hence, by Corollary 241
we have the required result.

Suppose D is ramified. Then choose ¢ and 7p as in Lemma Then, by
Corollary 24 we have the required result. O

Let K/k be a quadratic extension. Let D be a central division algebra over k
with an involution ¢ of the first kind. Then ¢ ® ¢ is an involution on D ®; K of
the second kind with ¢ being the non-trivial automorphism of K/k.

Remark 2.7. Suppose D ® K is division. Then there are three possibilities of
ramification:

(1) K/k is unramified and D ® K/K is unramified;

(2) K/k is unramified and D ® K/K is ramified;

(3) K/k is ramified and D ® K/K is unramified.

We show that “K/k is ramified and D ® K/K is ramified” cannot happen.

In fact, if K/k is ramified, then K = k(y/m) for some parameter 7 € k and
K = k. If D/k is unramified, then D ® K/K is unramified. Suppose D/k is
ramified. Then D is Brauer equivalent to Dy ® (u,7) for some Dy unramified on
k and w € k a unit at the valuation of k [TW15, 8.77]. Thus D ® K is Brauer
equivalent to Dy ® K and hence D ® K/K is unramified.

Consequently, (2) and (3) can be shortened to

(2) D® K/K is ramified. (3) K/k is ramified.

Remark 2.8. Suppose we are in case (2) of Remark Z7l Suppose K = k(v/A) and
D is Brauer equivalent to Dy ® (u, ) for some Dy unramified on k and u € k a
unit at the valuation of k. Then K = E(ﬁ), Z(D) = k(yu) and Z(DRK) =
E(ﬁ, ﬁ) Here u and X are in different square classes of k, otherwise (u,m)x
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is split and hence D ® K is unramified over K. Since D ® K = D®K=D®
k(v/u, v/A) and D has an involution of the first kind, D ® K has three possible types

of involutions of the second kind with fixed fields k1 = k(y/u), k2 = k(vV/A) and ks =

k(v/u)) respectively. The corresponding u’(D ® K) are written as u®(D @ K /k1),
u’(D ® K /ky) and v®(D @ K /k3).

Corollary 2.9. Let K/k be a quadratic extension and let v be the non-trivial au-
tomorphism of K/k. Let D be a central division algebra over k with an involution
o of the first kind such that D ®y K s division.

(1) If DQ K is unramified at the discrete valuation of K and K/k is unramified,
then w’(D® K) = 2u°(D ® K).

(2) If D® K/K is ramified, then u’(D® K) = u®(D ® K /k1) + u®(D ® K /k3).

(3) If K/k is ramified, then u®(D @ K) = u* (D) +u~ (D).

Proof. (1) Suppose D is unramified and K /k is unramified. Then D ® K = D® K
and K/k is a quadratic extension. Let m be a parameter of k. Take 7p = 7.
Then o(np) = mp and Int(rp)o (0 ® ) = o @¢. By Corollary 24, v°(D @ K) =
2u°(D ® K).

(2) Suppose D is ramified. Suppose o and 7mp are as in Lemma Then
the fixed field of o @ ¢ is k3 and the fixed field of Int(7p)o (¢ ®¢) is k1 (where
k1 and k3 are as in Remark ZZ8). Thus, by Corollary 24, we have u°(D ® K) =
(D ® K /k1) + v’ (D ® K /k3).

(3) Suppose K/k is ramified. Let o be an involution of the first kind on D and
0 ~ 09 ® v, where 7 is the canonical involution of (u,7). We have D ® K = D
and oo ®7=70. Let np = /7 € K C D® K. Then Int(np) o (0p ®¢) = 7. Thus,
by Corollary 24, w(D ® K, 0,¢) = u(D, 59, ¢) + u(D, 5o, —¢). Hence u®(D ® K) =

ut(D) +u= (D). O

We end this section with the following well-known lemma.

Lemma 2.10. Let k be a discrete valued field with residue field k and completion
k. Suppose char(k) # 2. Let D be a division algebra over k with center K. Let o
be an involution on D such that K° = k. If D ® k is division, then u(D,o,e) >
u(D® E,&,E), where ¢ = o ® Idz.

Proof. Let v be the discrete valuation on k and m € k be a parameter. Since D ®k
is division, v extends to a valuation w on D. Let ¢ = £1 and Sym®(D,o0) = {z €

D |o(z) =ex}. Let eq,- -+, e be a k-basis of Sym®(D, o). Let a € Sym®(D,0)®@k
and write a = a1e1 +---+a,e, with a; € k. Let b; € k be such that a; = b; modulo
7e(@+1 and b= bie; + - - - + bre, € Sym® (D, o), where e is the ramification index
[w(D*) : v(k*)]. Then w(a) = w(b) and ab-1 =1 € D & k.

Let s=ab™* € D®k. Then w(s) =0 and 5 =1

a=sb = 7(a)=o0(b)a(s) =  ca=c¢bo(s)
= a="0bo(s) = sb=1"ba(s)
=  s=(Int(b)o)(s) = (Int(b) 0T)[k(s) = Idp(s) -
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Since k(s) is complete, by Hensel’s lemma, there exists ¢ € k(s) such that ¢? = s
and ¢ =35 =1 € k(s). Then

(Int(b)0oT)(c) =c = bo(c)=cb
= a=sb=ccb=cba(c)
= (o)~ (b)) @k

Let h be an e-hermitian form over (D ® k, o). Since D ® k is division, h =
(a1, -+, ap) for some «o; € Sym®(D, o) ® k. For each ay, let B; € Sym®(D, o) be
such that (a;) ~ (8;) ® k and ho = (B1,-++ ,Bn). Then hg is an e-hermitian form
over (D, o) and hy ® k~h Ifhis anisotropic over E, then hg is anisotropic. In
particular, uw(D,0,e) > u(D ® E, o®1d,e). O

3. DIVISION ALGEBRAS OVER % (2)-FIELDS

A field k is called an <7 (m)-field [Leel3l 2.1] if every system of r homogeneous
forms of degree m in more than rm! variables over k has a non-trivial simultaneous
zero over a field extension L/k such that ged(m, [L : k]) = 1.

Let A be a central simple algebra over a field k. We say that A satisfies the
Springer’s property if for any involution o on A of the first kind, £ € {1,—1} and
for any odd degree extension L/k, if h is an anisotropic e-hermitian space over
(A,0), then h ® L is anisotropic. In [PSS01], Parimala, Sridharan and Suresh
have shown that Springer’s property holds for hermitian or skew-hermitian spaces
over quaternion algebras with involution of the first kind. In [Wulb], the author
has shown that Springer’s property holds for hermitian or skew-hermitian spaces
over central simple algebras with involution of the first kind over function fields of
p-adic curves.

Now we prove Theorem [L](i).

Proof. Let o be an orthogonal involution on D. Let Sym®(D,o) = {z € D | o(z) =
ex} and r = dimg (Sym®(D, 0)). Then r = d(d+¢)/2 [KMRT98, 2.6]. Let ey, - - , e,
be a k-basis of Sym®(D,o). Let h be an e-hermitian form over (D, o) of rank
n > (14 £)2=!. Then for z € D", we have

Mz, z) = qi(z, x)er + - + ¢ (z, 2)er,

with each ¢; a quadratic form over k in d?n variables [MahO5, proof of prop. 3.6].
Since k is an 7 (2)-field and d?n > d(d+¢)2'~1 = r2¢, there exists an odd degree
extension L/k such that {q,--- ,¢-} have a simultaneous non-trivial zero over L.
Then hy, is isotropic over Dy. By Springer’s property, h is isotropic over D. Hence
u(D,o,e) < (1+£)207 1.
Similarly, if ¢ is a symplectic involution on D, then r = d(d — £)/2 and hence
u(D,o,e) < (1—5)207 1. O

Next, we prove Theorem [[I[ii).
Proof. Let o be an involution on D of the second kind. Let Sym(D) = {x € D |

o(x) = z}. Then Sym(D) is vector space over k and dimy Sym(D) = d?, where
d?* = dimg (D). Let eq,- -+ ,eq2 be a k-basis of Sym(D). Let h be a hermitian form
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over (D, o) of rank n > 2¢=1. Then, for z € D", h(z,x) € Sym(D) and we have
h(:Ll‘) = QI('ra'r)el R qq42 (I, I)ean

with each ¢; a quadratic form over k in 2d?n variables.
Since k is an 7 (2)-field and 2d?n > 2d?2'71 = d?2¢, there exists an odd degree

extension L/k such that {qi,- -, g2} have a simultaneous non-trivial zero over L.
In particular, hy is isotropic over Dy. By Springer’s property, h is isotropic over
D. Hence u°(D) < 2¢-1. O

Corollary 3.1. If D is a quaternion division algebra over an 2;(2)-field k and o
is of the first kind, then u*(D) < 3-272 and u= (D) < 2172,

Proof. Since, by [PSS01l, 3.5], (D, o,¢) satisfies Springer’s property, the corollary
follows from Theorem [LI(i). O

Corollary 3.2. If D is a quaternion division algebra over a global function field
k, then ut(D) =3, u= (D) =1, and u°(D) = 2.

Proof. By the Chevalley-Warning theorem [Che35,[War35], every finite field is a C;-
field. By the Tsen-Lang theorem [Lan52], every global function field is a Cs-field.
Since every Co-field is an o (2)-field [Leeld, between 2.1 and 2.2], by Theorem
LI(i), v (D) < 3 and v~ (D) < 1 and by Theorem [[T[(ii), u°(D) < 2. The equality
follows from Lemmas 210 and O

Corollary 3.3. Let F be the function field of an integral variety X over a p-adic
field with p # 2. Let D be a quaternion algebra over F. If dim(X) = n, then
ut(D) <3-2" and u= (D) < 2",

Proof. Since D is a quaternion algebra, by [PSS01] 3.5], D satisfies the Springer’s
property. Since dim(X) = n, by [HB10] and [Leel3|, F is an @7,42(2)-field. Hence
the corollary follows from Corollary Bl O

Corollary 3.4. Let F be the function field of a p-adic curve. Let D be a division
algebra over F with an involution of the first kind.

(1) If D is a quaternion division algebra, then ut (D) < 6 and v~ (D) < 2.

(2) If D is a biquaternion division algebra, then ut (D) <5 and u~ (D) < 3.

Proof. By [Sal97| 3.4;[Sal98], deg(D) =d =2 or 4. If d = 2, then D is a quaternion
algebra and the result follows from Corollary B3l Suppose d = 4. By [Wul5l 1.5],

D satisfies Springer’s property. Since F' is an «73(2)-field, the result follows from
Theorem [LTL(i). O

Corollary 3.5. Let F' be the function field of a p-adic curve. Let L/F be a quadratic
extension. Let D be a division algebra over F with an involution of the first kind.
Then u®(D ®@p L) < 4.

Proof. By [Wulbl 1.5], D satisfies Springer’s property. Since F is an «73(2)-field,
the result follows from Theorem [LII(ii). O

4. DIVISION ALGEBRAS OVER SEMI-GLOBAL FIELDS

Let p be an odd prime number. Let F' be the function field of a curve over a p-
adic field. Let D be a division algebra over F' with an involution . In this section,
we show that the bounds in Corollary B4l for the u-invariants of the hermitian of
forms over central simple algebras over F are in fact exact values. We also compute
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u(D) if D is a quaternion division algebra with an involution of the second kind
over F.

Lemma 4.1. Let k be a complete discrete valued field with residue field k. Suppose
k is a non-archimedean local field or a global function field with char(k) # 2. Let D
be a division algebra over k with an involution of the first kind and K/k a quadratic
extension.

(1) If D is a quaternion division algebra, then u™ (D) =6 and v~ (D) = 2.

(2) If D is a biquaternion algebra, then u™ (D) =5 and u~ (D) = 3.

(3) If D @y, K is a division algebra, then u°(D ® K) = 4.

Proof. (1) Suppose D is an unramified quaternion algebra. Then D is a quaternion
algebra. Since k is either a local field or a global function field, by Lemma and
Corollary B2, we have u* (D) =3, u~ (D) = 1 and u~ (D) = 2. Thus, by Corollary
ZB(1), ut (D) =2%3=6and u= (D) =2+ 1 =2,

Suppose D is a ramified quaternion algebra. Then D is a quadratic extension of k
and by Lemma 22 and Corollary 2:6)(2), u™ (D) = 2+4 =6 and u™ (D) = 240 = 2.

(2) Suppose D is a biquaternion algebra. Since k is a complete discrete valued
field with & a global field or local field, D is ramified by a theorem of Albert
[Lam03, 111, 4.8] and a theorem of Springer [Lam05|, VI, 1.9]. Thus D is a quaternion
algebra and hence by Lemma and Corollary 2.6(2), (D) = 2+ 3 = 5 and
u (D)=2+1=3.

(3) Suppose D ® K is a division algebra. Then, by Corollary 229, we have either
WD K)=20DaK) or v’ (D® K) = u’(D® K/ki) +u’(D® K /ks) or
u?(D ® K) = ut(Dg) + u~(Dyg) for some central division algebra Dy unramified
over k with deg(D) = deg(Dy).

In the case of Corollary Z9(1), u’(D ® K) =2u’(D®@ K) = 2% 2 = 4.

In the case of Corollary 29(2), u’(D® K) = u*(D®K k1) +u’(D®K /k3). Since

k is a p-adic field or a global field, so are k; and k3. We have u(k;) = u(k3) = 4.
Since D ® K is a quadratic extension of k1, we have u’(D ® K /k1) = 2u(k;) = 2.
Similarly, u’(D ® K /k3) = 3u(ks) = 2. Thus, we also have u’(D® K) = 2+2 = 4.

In the case of Corollary Z9(3), u®(D® K) = ut (D) +u~ (Do) =3+1=4. O

Now we prove our main result Theorem

Proof. Since D is a division algebra, by [RS13], 2.6], there exists a divisorial discrete
valuation v of F' such that D ® F, is division. Since v is a divisorial discrete
valuation, the residue field at v is either a p-adic field or a global function field.
(1) and (3) follow from Corollary B4 Lemma T(1)(2) and Lemma 2100
(2) By [RS13| 2.6], there exists a divisorial discrete valuation v of F' such that
D ® L ® F, is division. Thus, the result follows from Corollary B8 Lemma [41]3)
and Lemma 210 O

5. TENSOR PRODUCT OF QUATERNIONS OVER ARBITRARY FIELDS

In this section, we revisit and prove Theorem We begin with the following.

Lemma 5.1. Forn >1, leta, = 24+1(2)", b, = =1+ 1(2)" and ¢, = 1+ 3 (9)".
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Then
3 1 1 3 3
Ap4+1 = Zan +Cn; anrl - §bn + §Cn, Cn = 50," +bna 5(1” Z Cp, Z 5bna
for alln > 1.
Proof. Tt follows from definitions of a,, b, and ¢, above. O

Now we prove Theorem [L.3]

Proof. By Lemma 1] we may assume that A = H1®---®@H,,. Let 0 = 11 ®- - - Q7,,
Where T; is the canonical involutions of H; for 1 < ¢ < n. Forn > 1, let a, =
55D ba =3 +3(3)" and ¢ = 5 + 55(D".

We proceed by induction. For n = 1 by [Mah05l, 3.4] and [Lee84, 2.10] we
have u™ (H;) < ayu(k), by [Sch85, ch. 10, 1.7], we have u~ (H;) < byu(k) and by
[PS13] 4.4], we have u®(Hy) < cu(k).

Suppose ut (Hy ®p -+ Qk Hy) < apu(k), v (Hy Qf -+ Q Hy) < byu(k) and
uP(Hy ®p - @ Hy) < cpu(k).

Let Hy,---, H,11 be quaternion algebas over k, 7; the canonical involution of
Hiando=7® - ®mpy1on A=H; ® - ® Hpy1. Since H, 41 is a quaternion
algebra and 7,41 is the canonical involution, there exist A, y1, ping1 € Hy; 4 such
that 7,11(Ant1) = —Aat1, Tat1(Bnt1) = —fnt1s Antifnt1 = —fnp1Ang1 and
k(An+1)/k is a quadratic extension. Let A=1® - @1 ® A1 €A, p=1® - ®
1® pins1 € A and A be the centralizer of k(\) in A. Then A = H; ®---® H, @ k(\).
Let 01 = 0|4 and 02 = Int(u~!) 0 01. By [MahO5} 3.1, 3.2], we have oy is unitary,
o9 and o are of the same type and

u(4,0,e) < min{Nu(fl, o1,€) + %u(;l ® k(X), 02, —€),
Tu(A®@k(N),01,6) + u(A® k(N), 02, =€)}

Since o1 is unitary and A=H Q- - @ H, ®k(A), by the induction hypothesis,
we have u(A4,01,¢) < cpu(k). By [PS13l 4.2],

uw(A, 09, —€) = u(Hy, ®p, - - Qp Hy, @ k(N), 09, —¢)
3
< iu(Hl Qk - Rk Hp, 11 Q@ -+ @ Ty, —€).
Since both ¢ and 71 ® - - - ® 7, are of the first kind and of different types, we have

. .13 3 1
ut(H1®p @ Hpp1) < mm{i(gan)—i—cn, 5an+§cn}u(k‘) = Zan—i—cn = ap+1u(k),

1.3 3 1 3 1
U (Hl@k' . '®ern+1) S mln{§(§bn)+cn, §bn+§cn}u(k) = §bn+§cn = bn+1u(k)

Finally by [PS13, 4.3], u’(H; ®j, -+ @ Hpp1 @1 K) < min{%an_H + bnt1, Gnt1 +
%bnﬂ}u(k) = %anﬂ + bpt1 = cpt1u(k). Here Lemma [5.1] was used in all three
calculations. O

Remark. When n = 2, ay = % is the same as that of [PS13, 4.5], by = % is
smaller than the bound % of [PS13, 4.6, 4.7]. When k is a semi-global field,
u™ (D) < |£] = 6 is smaller than the bound 8 of [PSlS 4.8].

When n > 3, a, is smaller than the bound 3 —— - 213 of [PS13] 4.10, 4.11].
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