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PRODUCT ANOSOV DIFFEOMORPHISMS

AND THE TWO-SIDED LIMIT SHADOWING PROPERTY

BERNARDO CARVALHO

(Communicated by Yingfei Yi)

Abstract. We characterize product Anosov diffeomorphisms in terms of the
two-sided limit shadowing property. It is proved that an Anosov diffeomor-
phism is a product Anosov diffeomorphism if and only if any lift to the uni-
versal covering has the unique two-sided limit shadowing property. Then we
introduce two maps in a suitable Banach space such that fixed points of these
maps are related with shadowing orbits on the universal covering.

1. Product Anosov diffeomorphisms

An Anosov diffeomorphism defined in a smooth manifold M is a smooth diffeo-
morphism f : M → M satisfying:

(1) for every x ∈ M there is a splitting TxM = Es(x)⊕Eu(x) which is invariant
under the derivative map Df(x) : TxM → Tf(x)M , that is,

Df(x)(Es(x)) = Es(f(x)) and Df(x)(Eu(x)) = Eu(f(x)).

We call Es(x) the stable space of x and Eu(x) is called the unstable space
of x.

(2) There exist a Riemannian metric in M and a constant 0 < λ < 1 such that

|Dfk(x)(v)|fk(x) ≤ λk|v|x and |Df−k(x)(w)|f−k(x) ≤ λk|w|x
for all v ∈ Es(x), w ∈ Eu(x), k ∈ Z and x ∈ M , where |.|x denotes the
norm in TxM induced by the Riemannian metric. This metric is said to be
adapted to f .

Such systems have been intensely studied since the works of Anosov [1] and
Smale [13] in the sixties. They introduced several examples of Anosov diffeomor-
phisms and stated some questions about them that have been not answered yet (to
our best knowledge). The central problem of this theory is to understand all exam-
ples of Anosov diffeomorphisms (up to topological conjugacy). Smale conjectured
that every Anosov diffeomorphism must be topologically conjugated to an Anosov
automorphism on an infra-nilmanifold. The following properties are expected to be
true for an Anosov diffeomorphism f : M → M :

(1) M is an infra-nilmanifold and the universal covering is the Euclidean space,
(2) the lift of f to R

n is topologically conjugated to a hyperbolic matrix,
(3) the stable and unstable foliations are on global product structure,
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(4) there exists a fixed point of f ,
(5) if M is compact and connected, then f is transitive.

We recall some definitions. We denote by M a closed and connected smooth n-

dimensional manifold, by M̃ its universal covering and by π : M̃ → M the covering
projection. Consider a Riemannian metric 〈., .〉 in M and the distance d induced

by this metric. We can lift this metric to a Riemannian metric in M̃ (which we

also denote by 〈., .〉) as follows: for x ∈ π−1(x0) and v, w ∈ TxM̃ we define

〈v, w〉x = 〈Dπ(x)(v), Dπ(x)(w)〉x0
,

where 〈., .〉x0
is the inner product in Tx0

M . We also denote by d the distance in M̃
induced by the lifted metric. By definition, the covering map π is a local isometry.

Hence, there exists ε0 > 0 such that for each x ∈ M̃ , π maps the ε0-neighborhood
of x isometrically onto the ε0-neighborhood of π(x).

For an Anosov diffeomorphism f0 : M → M we consider f : M̃ → M̃ any lift
of f0 to the universal covering. Since π is a local diffeomorphism, the derivative

map Dπ(x) : TxM̃ → Tx0
M is a linear isomorphism and the splitting Tx0

M =

Es(x0)⊕Eu(x0) can be lifted to a splitting TxM̃ = Es(x)⊕Eu(x) that is invariant
by Df(x). If the adapted metric is lifted, then it is easy to check that f is an
Anosov diffeomorphism and that the lifted metric is adapted to f .

The sets

W s(x0) = {y ∈ M ; d(fk(y), fk(x0)) → 0, k → ∞} and

Wu(x0) = {y ∈ M ; d(fk(y), fk(x0)) → 0, k → −∞}
are called the stable set and the unstable set of the point x0, respectively. For an
Anosov diffeomorphism these sets are leafs of two respective foliations which we

call stable foliation and unstable foliation. We denote by W̃ s(x0) and by W̃u(x0)
the lift of the stable and unstable leaves, respectively, to the universal covering.

Actually, W̃ s(x0) (W̃u(x0)) is the stable (unstable) set of x with respect to the
lifted Anosov diffeomorphism.

Definition 1.1. The stable and the unstable foliations are on global product struc-

ture if for every x, y ∈ M the leaves W̃ s(x) and W̃u(y) intersect in exactly one point
in the universal covering. If this is the case, we say that f0 is a product Anosov
diffeomorphism.

When M is compact and connected, the following three classes of diffeomor-
phisms are expected to be the same:

• Anosov diffeomorphisms,
• transitive Anosov diffeomorphisms,
• product Anosov diffeomorphisms.

Product Anosov diffeomorphisms are transitive but the converse of this statement
is not known (see J. Franks’ thesis [8]). In [4] transitive Anosov diffeomorphisms
are characterized in terms of the two-sided limit shadowing property. Recall that
a homeomorphism f defined in a metric space (X, d) is transitive if for every pair
(U, V ) of non-empty open subsets of X there exists k ∈ N such that fk(U)∩V 
= ∅.
We say that f has the two-sided limit shadowing property if for every sequence
(xk)k∈Z ⊂ X satisfying

d(f(xk), xk+1) → 0, |k| → ∞,
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there exists z ∈ X satisfying

d(fk(z), xk) → 0, |k| → ∞.

The sequence (xk)k∈Z is called a two-sided limit pseudo-orbit and we say that it
is two-sided limit shadowed (see [2], [4], [5] and [6] for more information on this
property). The following is proved in [4] but we state it here since it is not stated
as a theorem in [4]:

Theorem 1.2. An Anosov diffeomorphism, defined in a compact and connected
manifold, is transitive if and only if it has the two-sided limit shadowing property.

Our first result characterizes product Anosov diffeomorphisms in terms of the
two-sided limit shadowing property. We say that f has the unique two-sided limit
shadowing property when every two-sided limit pseudo-orbit is two-sided limit shad-
owed by a single point.

Theorem A. An Anosov diffeomorphism is a product Anosov diffeomorphism if
and only if any lift to the universal covering has the unique two-sided limit shad-
owing property.

So the following three classes of diffeomorphisms are expected to be the same:

• Anosov diffeomorphisms,
• Anosov diffeomorphisms with the two-sided limit shadowing property,
• Anosov diffeomorphisms with the unique two-sided limit shadowing prop-
erty on the universal covering.

We note that the uniqueness of the shadowing point and also the uniqueness of
the intersection between the lifted stable and unstable leaves is a problem apart
from the existence of these points. Though it is an interesting problem, on this
note we will focus on the existence of these points.

2. Lifting shadowing properties

In [9] (and also in [10]) it is proved that a homeomorphism f : M → M has
the shadowing property if and only if any lift of f to the universal covering also
has it. We prove this also holds for the limit shadowing property. First, we state
some definitions. For any number δ > 0 we say that a sequence (xk)k∈Z ⊂ M is a
δ-pseudo-orbit if

d(f(xk), xk+1) < δ, k ∈ Z.

This sequence is ε-shadowed by a point z ∈ M if

d(fk(z), xk) < ε, k ∈ Z.

We say that f has the shadowing property if for every ε > 0 there exists δ > 0
such that every δ-pseudo-orbit is ε-shadowed. A sequence (xk)k∈N ⊂ M is a limit
pseudo-orbit if

d(f(xk), xk+1) → 0, k → ∞.

This sequence is limit shadowed if there exists z ∈ M such that

d(fk(z), xk) → 0, k → ∞.

We say that f has the limit shadowing property if every limit pseudo-orbit is limit
shadowed. Information about these properties can be found in [12].
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Lemma 2.1. If f0 is a homeomorphism defined in a compact manifold M and f is

any lift of f0 to the universal covering M̃ , then f has the limit shadowing property
if and only if f0 also has it.

Proof. Suppose that f has the limit shadowing property and consider (xk)k∈N ⊂ M
a limit pseudo-orbit for f0. Choose N ∈ N such that

d(f0(xk), xk+1) < ε0, k ≥ N.

The number ε0 was chosen in the first section. Note that from the definition of ε0
we have

ε0 < min{d(x̃, ỹ); x ∈ M, x̃, ỹ ∈ π−1(x), x̃ 
= ỹ}.
Thus, for each choice of yN ∈ π−1(xN ) there exists a unique limit pseudo-orbit
(yk)k≥N of f such that yk ∈ π−1(xk) and d(f(yk), yk+1) < ε0 for every k ≥ N .

Since f has the limit shadowing property, there exists z ∈ M̃ that limit shadows
(yk)k≥N . Therefore π(f−N (z)) limit shadows (xk)k∈N. Since this holds for every
limit pseudo-orbit, it follows that f0 has the limit shadowing property.

Now suppose that f0 has the limit shadowing property and consider (xk)k∈N ⊂ M̃
a limit pseudo-orbit for f . Since π is a local isometry, the sequence (π(xk))k∈N ⊂ M
is a limit pseudo-orbit of f0 and, hence, it is limit shadowed by some point z ∈ M .
Let K ∈ N be such that

d(fk
0 (z), π(xk)) < ε0, k ≥ K.

There is a unique point z̃ ∈ π−1(fK
0 (z)) satisfying d(z̃, xK) < ε0. We will prove

that w = f−K(z̃) limit shadows (xk)k∈N. Indeed, fk(w) ∈ π−1(fk
0 (z)) for every

k ∈ N, and, moreover, d(fk(w), xk) < ε0 if k ≥ K. It follows that

d(fk(w), xk) = d(fk
0 (z), π(xk)), k ≥ K,

since π is an isometry in every ball B(xk, ε0). This equality proves that w limit
shadows (xk)k∈N, because z limit shadows (π(xk))k∈N. Since this holds for every
limit pseudo-orbit, it follows that f has the limit shadowing property. �

Proof of Theorem A. We first prove that if the lift f of an Anosov diffeomorphism
f0 to the universal covering has the unique two-sided limit shadowing property, then

f0 is a product Anosov diffeomorphism. For each pair (x, y) ∈ M̃ × M̃ consider the
two-sided limit pseudo-orbit (xk)k∈Z defined by

xk =

{
fk(y), k ≥ 0,

fk(x), k < 0.

Since f has the unique two-sided limit shadowing property, there exists a unique

point z ∈ M̃ that two-sided limit shadows (xk)k∈Z. In particular, z ∈ Wu(x) ∩
W s(y). Moreover, Wu(x)∩W s(y) = {z}, since w ∈ Wu(x)∩W s(y) implies that w
two-sided limit shadows (xk)k∈Z, which, in turn, implies that w = z. This proves
that f has the global product structure.

Now we prove the converse statement. Let f be any lift of f0 to the universal
covering and (xk)k∈Z be any two-sided limit pseudo-orbit of f . Since f0 is an
Anosov diffeomorphism, it has the limit shadowing property (see [12] for a proof)
and the previous lemma assures that f also has it. Then there exist two points

z1, z2 ∈ M̃ satisfying

d(fk(z1), xk) → 0, k → −∞ and d(fk(z2), xk) → 0, k → ∞.
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Since f0 is a product Anosov diffeomorphism there exists a unique point z ∈
Wu(z1) ∩W s(z2). It is easy to see that z two-sided limit shadows (xk)k∈Z. More-
over, this point is unique because if a point two-sided limit shadows (xk)k∈Z, then
it belongs to Wu(z1) ∩W s(z2), which is a singleton. �

3. Fixed point problem in the universal covering

Theorem A says to us that the shadowing theory might play an important role in
solving Smale’s conjectures. Then we use some ideas contained in the proof of the
Shadowing Lemma of [12] and introduce some new techniques: for any two-sided
limit pseudo-orbit (xk)k∈Z in the universal covering, we discuss two maps F and
G, from a suitable Banach space to itself, such that fixed points of these maps are
related with points that two-sided limit shadows (xk)k∈Z. In this section, we define
these maps, the Banach space and clarify this relation.

Let f0 be a homeomorphism defined in a compact manifold M , f be any lift of f0
to the universal covering M̃ and (xk)k∈Z ⊂ M̃ be a two-sided limit pseudo-orbit of

f . We denote by C the set of all bilateral sequences v̄ = (vk)k∈Z where vk ∈ Txk
M̃

for every k ∈ Z. Let B denote the subset of C consisting of bounded sequences,
i.e., sequences (vk)k∈Z ∈ C that satisfy

sup
k∈Z

|vk|xk
< ∞,

where |.|xk
is the norm in Txk

M̃ induced by the lifted metric. The map ||.|| : B →
R

+ defined by

||v̄|| = sup
k∈Z

|vk|xk

is a norm in B that makes (B; ||.||) a Banach space. We consider the subspace C0

of B as the space of sequences (vk)k∈Z ∈ B that satisfy

|vk|xk
→ 0, |k| → ∞.

The set C0 is a closed subspace of B with respect to the norm defined above, so it
is also a Banach space. We define a map F : C0 → C0 as follows: for each sequence
v̄ = (vk)k∈Z ∈ C0 we define F (v̄) as the sequence

F (v̄)k = exp−1
xk

◦f ◦ expxk−1
(vk−1), k ∈ Z,

where expx : TxM̃ → M̃ is the exponential map at x in the universal covering.
The map F is already considered in the proof of the Shadowing Lemma. However,
the pseudo-orbit (xk)k∈Z is considered in M , which is a compact manifold, so the
exponential maps are just defined locally. If we suppose that the ambient manifold
has non-positive sectional curvature, then the Hadamard Theorem assures that the

exponential map expx is a global diffeomorphism for each x ∈ M̃ , and this assures
that F is defined in the whole space C0. This puts a restriction on the ambient
manifold but it seems to be no problem, since it is expected that the universal
covering of a manifold supporting an Anosov diffeomorphism is the Euclidean space.
For F to be well defined we just have to prove the following.

Lemma 3.1. If v̄ ∈ C0, then F (v̄) ∈ C0.

Proof. A standard compactness argument (which we omit here) proves that f is

uniformly continuous on M̃ . Thus for each ε > 0 we can choose 0 < δ < ε
2 such
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that d(x, y) < δ implies d(f(x), f(y)) < ε
2 . Since v̄ ∈ C0 and (xk)k∈Z is a two-sided

limit pseudo-orbit of f we can choose K ∈ N such that for |k| ≥ K we have

|vk|xk
< δ and d(f(xk), xk+1) < δ.

Thus for |k| > K we have

d(expxk−1
(vk−1), xk−1) = |vk−1|xk−1

< δ,

which imply

|F (v̄)k|xk
= | exp−1

xk
◦f ◦ expxk−1

(vk−1)|xk

= d(f(expxk−1
(vk−1)), xk)

≤ d(f(expxk−1
(vk−1)), f(xk−1)) + d(f(xk−1), xk)

<
ε

2
+

ε

2
= ε.

This is enough to prove that F (v̄) ∈ C0. �

We prove that fixed points of F are in a bijective relation with the set of points
that two-sided limit shadows (xk)k∈Z.

Theorem B. There exists a bijection between the set of fixed points of F and the
set of points that two-sided limit shadows (xk)k∈Z.

Proof. For a two-sided limit pseudo-orbit (xk)k∈Z of f , consider the space C0 and
the map F defined above. We suppose that v̄ is a fixed point of F and we prove
that the sequence (expxk

(vk))k∈Z is an orbit that two-sided limit shadows (xk)k∈Z.
Indeed, for each k ∈ Z we have

vk = F (v̄)k = exp−1
xk

◦f ◦ expxk−1
(vk−1),

which implies

expxk
(vk) = f ◦ expxk−1

(vk−1).

By induction, we obtain

expxk
(vk) = fk(expx0

(v0)), k ∈ Z.

Therefore,

d(fk(expx0
(v0)), xk) = d(expxk

(vk), xk) = |vk|xk
→ 0, |k| → ∞.

Now, suppose that z two-sided limit shadows (xk)k∈Z. For each k ∈ Z let

vk = exp−1
xk

(fk(z)).

We have v̄ = (vk)k∈Z ∈ C0 since

|vk|xk
= d(expxk

(vk), xk) = d(fk(z), xk) → 0, |k| → ∞.

Moreover, for each k ∈ Z

F (v̄)k = exp−1
xk

◦f ◦ expxk−1
(vk−1) = exp−1

xk
(fk(z)) = vk,

which proves v̄ is a fixed point of F . These arguments construct the desired bijec-
tion. �
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The map F can be defined for any homeomorphism f0 defined in a compact
manifold, any lift f of f0 to the universal covering and any two-sided limit pseudo-
orbit (xk)k∈Z of f . It is not expected that F admits fixed points in all cases though,
but it is when f0 is an Anosov diffeomorphism. In this case, we use the hyperbolic
structure of f to define a new map G in C0, with more structure than F , but with
the same fixed points. We can assume, with no restriction, that (xk)k∈Z has the
form

xk =

{
fk(y), k ≥ 0,

fk(x), k < 0,

for some points x, y ∈ M̃ (see the proof of Theorem A). Consider a linear isomor-

phism I : TxM̃ → TyM̃ satisfying

(1) I(Es(x)) = Es(y),
(2) I(Eu(x)) = Eu(y),

and define a map T : C0 → C0 by

T (v̄)k =

{
Df(xk−1)(vk−1), k 
= 0,

I ◦Df(x−1)(v−1), k = 0.

Note that T (v̄) ∈ C0 if v̄ ∈ C0. Let Id denote the identity map in C0. The following
theorem allows us to define the map G.

Theorem 3.2. The map Id−T is a bounded linear isomorphism in C0 with bounded
inverse (Id− T )−1.

We prove this theorem in the next section and use it to define the map G : C0 →
C0 as follows. For each v̄ ∈ C0 let

G(v̄) = (Id− T )−1 ◦ (F − T )(v̄).

By definition, F and G have the same fixed points in C0. This proves the following.

Theorem C. There exists a bijection between the set of fixed points of G and the
set of points that two-sided limit shadows (xk)k∈Z.

The map (Id − T )−1 will be defined in the proof of Theorem 3.2 and the map
F − T is the following one:

(F − T )(v̄)k =

{
exp−1

xk
◦f ◦ expxk−1

(vk−1)−Df(xk−1)(vk−1), k 
= 0,

exp−1
y ◦f ◦ expx(v−1)− I ◦Df(x−1)(v−1), k = 0.

We do not know how to obtain fixed points for the map G in the general case, but
we do when f is linear or when the numbers d(f(xk), xk+1) are sufficiently small
(which are known cases). In the first case, G is a constant map and in the second
case, G is a contraction in an invariant small neighborhood of 0̄ in C0 (see [12]).
We hope some fixed point theorem applies in the general case.

If we consider a curve γ : [0, 1] → M̃ such that γ(0) = y and γ(1) = x, then
for each t ∈ [0, 1] we can consider the two-sided limit pseudo-orbit (xt

k)k∈Z defined
as the past orbit of γ(t) and the future orbit of y. This induces one-parameter
families of Banach spaces (Ct

0)t∈[0,1] and maps (Gt)t∈[0,1] where Ct
0 and Gt were

defined above with respect to (xt
k)k∈Z.
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WhenM has zero sectional curvature, the uniqueness of space forms says that the
universal covering is the Euclidean space R

n and the lifted metric is the Euclidean
metric. In this case, the Banach space C0 does not depend on the two-sided limit
pseudo-orbit. Thus, the family (Gt)t∈[0,1] is a one-parameter family of maps defined

on the same space C0. For t = 0 the sequence (x0
k)k∈Z is the orbit of x0 and 0̄ is a

fixed point of G0. We think some fixed point continuation theorem applies and the
fixed point of G0 can be carried through (Gt)t∈[0,1] for a fixed point of G1. More
precisely, we would like to obtain a curve Γ: [0, 1] → C0 such that Γ(0) = 0̄ and
Γ(t) is a fixed point of Gt for each t ∈ [0, 1].

In J. Franks’ Ph.D. thesis [8] there is a similar discussion about product Anosov
diffeomorphisms: it might happen (though it is not expected) that there exists some
t0 ∈ (0, 1) such that for s < t0 there exists an intersection between Wu(γ(s)) and
W s(x0) but for s ≥ t0 there is not. In this case the intersections Wu(γ(s))∩W s(x0)
go to infinity in R

n when s converges to t0 to the left. In our setting, this means
the set

K = {v̄ ∈ C0; v̄ = Gt(v̄) for some t ∈ [0, 1]}
is unbounded in C0. The problem is to determine if this set is bounded or not. If
we could prove that K is bounded, then it would follow that there exists a finite
number of points in Wu(x) ∩W s(y), which is a weaker form of product structure.

Remark. The only fixed points continuations theorems we know are for completely
continuous maps on Banach spaces. These maps satisfy that the image of every
bounded set is compact. Moreover, there is some hypothesis on the set of solutions
that is called a priori bound hypothesis and is usually the most difficult one to check
(see [11]). This hypothesis is equivalent to the set K defined above to be bounded.

Question. Is the map H : C0× [0, 1] → C0 defined by H(v̄, t) = Gt(v̄) a completely
continuous map? Is it continuous with respect to the product topology in C0×[0, 1]?

Remark. An interesting problem is to understand how these techniques translate
to the theory of Anosov flows. Does there exist a Banach space and a map on this
space such that an analogous of Theorem C holds? There are some examples of
Anosov flows that are not product Anosov flows (see [3], [7]) so if we are able to
obtain this map it should not admit fixed points.

4. Proof of Theorem 3.2

Now we turn our attention to the proof of Theorem 3.2. For each k ∈ Z we

consider projections πs
k : Txk

M̃ → Es(xk) and πu
k : Txk

M̃ → Eu(xk), parallel to
Eu(xk) and Es(xk) respectively. Since M is compact, we can choose N ∈ N such
that for every k ∈ Z we have

|πs
k(v)|xk

≤ N |v|xk
and |πu

k (v)|xk
≤ N |v|xk

.

For each k ∈ Z, consider the map Ak : Txk
M̃ → Txk+1

M̃ defined by

Ak(v) =

{
Df(xk)(v), k 
= −1,

I ◦Df(x−1)(v), k = −1.

Since Ak(E
s(xk)) = Es(xk+1) for every k ∈ Z, we can compose these maps to

obtain

Ak−1 ◦ · · · ◦An(E
s(xn)) = Es(xk), n < k.
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Since A−1
k (Eu(xk+1)) = Eu(xk), we analogously have

A−1
k ◦ · · · ◦A−1

n (Eu(xn+1)) = Eu(xk), n ≥ k.

Thus, we can define a map G : C0 → C0 as follows: for each v̄ = (vk)k∈Z ∈ C0, the
sequence G(v̄) = (G(v̄)k)k∈Z is defined by

G(v̄)k = πs
k(vk) +

k−1∑
n=−∞

Ak−1 ◦ · · · ◦Anπ
s
n(vn)−

+∞∑
n=k

A−1
k ◦ · · · ◦A−1

n ◦ πu
n+1(vn+1).

We will prove that the map G is exactly the inverse of the map Id− T . First, note
that for every v ∈ Es(xk) and w ∈ Eu(xk+1) we have

|Ak(v)|xk+1
≤

{
λ|v|xk

, k 
= −1,

‖I‖λ|v|x−1
, k = −1,

and

|A−1
k (w)|xk

≤
{
λ|w|xk+1

, k 
= −1,

‖I−1‖λ|w|y, k = −1.

Thus, for every v ∈ Es(xn) and k > n we have

|Ak−1 ◦ · · · ◦An(v)|xk
≤

{
‖I‖λk−n|v|xn

, if n < −1 ≤ k,

λk−n|v|xn
, otherwise.

Also, for every w ∈ Eu(xn+1) and k ≤ n we have

|A−1
k ◦ · · · ◦A−1

n (w)|xk
≤

{
‖I−1‖λn−k+1|w|xn+1

, if k ≤ −1 ≤ n,

λn−k+1|w|xn+1
, otherwise.

Hence, if k ≥ 0, then

∣∣∣∣∣
k−1∑

n=−∞
Ak−1 ◦ · · · ◦An ◦ πs

n(vn)

∣∣∣∣∣
xk

≤
k−1∑

n=−∞
‖I‖λk−n|πs

n(vn)|xn

≤ N‖I‖
k−1∑

n=−∞
λk−n|vn|xn

≤ N‖I‖‖v̄‖
k−1∑

n=−∞
λk−n

≤ N‖I‖‖v̄‖ λ

1− λ
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and ∣∣∣∣∣
+∞∑
n=k

A−1
k ◦ · · · ◦A−1

n ◦ πu
n+1(vn+1)

∣∣∣∣∣
xk

≤
+∞∑
n=k

λn−k+1|πu
n+1(vn+1)|xn+1

≤ N

+∞∑
n=k

λn−k+1|vn+1|xn+1

≤ N ||v̄||
+∞∑
n=k

λn−k+1

≤ N ||v̄|| λ

1− λ
.

And if k < 0, then∣∣∣∣∣
k−1∑

n=−∞
Ak−1 ◦ · · · ◦An ◦ πs

n(vn)

∣∣∣∣∣
xk

≤
k−1∑

n=−∞
λk−n|πs

n(vn)|xn

≤ N
k−1∑

n=−∞
λk−n|vn|xn

≤ N‖v̄‖
k−1∑

n=−∞
λk−n

≤ N‖v̄‖ λ

1− λ

and∣∣∣∣∣
+∞∑
n=k

A−1
k ◦ · · · ◦A−1

n ◦ πu
n+1(vn+1)

∣∣∣∣∣
xk

≤
+∞∑
n=k

‖I−1‖λn−k+1|πu
n+1(vn+1)|xn+1

≤ N‖I−1‖
+∞∑
n=k

λn−k+1|vn+1|xn+1

≤ N‖I−1‖‖v̄‖
+∞∑
n=k

λn−k+1

≤ N‖I−1‖‖v̄‖ λ

1− λ
.

Thus, if k ≥ 0, then

|G(v̄)k|xk
≤ N‖v̄‖+N‖I‖‖v̄‖ λ

1− λ
+N‖v̄‖ λ

1− λ

= N

(
1 + ‖I‖λ
1− λ

)
||v̄||,

and if k < 0, then

|G(v̄)k|xk
≤ N‖v̄‖+N‖v̄‖ λ

1− λ
+N‖I−1‖‖v̄‖ λ

1− λ

= N

(
1 + ‖I−1‖λ

1− λ

)
||v̄||.
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This proves that G(v̄)k ∈ Txk
M̃ for every k ∈ Z. Actually, the following proposition

is proved.

Proposition 4.1. If v̄ ∈ C0, then G(v̄) ∈ C0.

Toward proving this proposition, we prove an auxiliary lemma:

Lemma 4.2. If v̄ = (vk)k∈Z ∈ C0, then
∑k−1

n=1 λ
k−n|vn|xn

→ 0 when k → ∞.

Proof. For each ε > 0, choose K ∈ N such that

|vn|xn
<

ε(1− λ)

2
, n ≥ K.

If k > K, we can write

k−1∑
n=1

λk−n|vn|xn
=

K∑
n=1

λk−n|vn|xn
+

k−1∑
n=K+1

λk−n|vn|xn
.

Note that
K∑

n=1

λk−n|vn|xn
= λk

K∑
n=1

λ−n|vn|xn
→ 0, k → ∞.

Then we can choose k ≥ K such that

K∑
n=1

λk−n|vn|xn
<

ε

2
.

Moreover,

k−1∑
n=K+1

λk−n|vn|xn
≤ ε(1− λ)

2

k−1∑
n=K+1

λk−n

≤ ε(1− λ)

2

1

1− λ

=
ε

2
.

Thus, for each ε > 0 there is k ∈ N such that

n−1∑
i=1

λn−i|vi|xi
< ε, n ≥ k.

This proves that
k−1∑
n=1

λk−n|vn|xn
→ 0, k → ∞.

�
Proof of Proposition 4.1. Let v̄ = (vk)k∈Z ∈ C0. To prove that G(v̄) ∈ C0 we need
to show that |G(v̄)k|xk

→ 0 when |k| → ∞. We consider separately the three terms
in the expression of G(v̄)k. The first one satisfies

|πs
k(vk)|xk

≤ N |vk|xk
→ 0, |k| → ∞.

For the second term, it is enough to prove that

k−1∑
n=−∞

λk−n|vn|xn
→ 0, |k| → ∞.
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If k > 1, we can write

k−1∑
n=−∞

λk−n|vn|xn
=

0∑
n=−∞

λk−n|vn|xn
+

k−1∑
n=1

λk−n|vn|xn
.

We proved in Lemma 4.2 that the second sum goes to zero when k → ∞. For the
first sum, we argue as follows:

0∑
n=−∞

λk−n|vn|xn
= λk

0∑
n=−∞

λ−n|vn|xn

≤ λk||v̄||
0∑

n=−∞
λ−n

= λk||v̄|| 1

1− λ
→ 0, k → ∞.

If k ≤ 0, then for each ε > 0 we choose K ∈ N such that

|vn|xn
<

ε(1− λ)

λ
, n ≤ −K.

Thus, if k ≤ −K, then

k−1∑
n=−∞

λk−n|vn|xn
≤ ε(1− λ)

λ

k−1∑
n=−∞

λk−n

=
ε(1− λ)

λ

λ

1− λ
= ε.

This proves that
k−1∑

n=−∞
λk−n|vn|xn

→ 0, k → −∞.

The same arguments can be applied for the third term in G(v̄)k, so we leave the
details to the reader. �
Lemma 4.3. For each v̄ ∈ C0 and each k ∈ Z the following holds:

Ak(G(v̄)k) = G(v̄)k+1 − vk+1.

Proof. Note that for each k ∈ Z

Ak(G(v̄)k) = Ak ◦ πs
k(vk) +

k−1∑
n=−∞

Ak ◦Ak−1 ◦ · · · ◦Anπ
s
n(vn)− πu

k+1(vk+1)

−
+∞∑

n=k+1

A−1
k+1 ◦ · · · ◦ πu

n+1(vn+1).

To obtain the desired equality, just put −πu
k+1(vk+1) = πs

k+1(vk+1) − vk+1 in the
last one. �
Proof of Theorem 3.2. We first prove that Id−T is surjective. Indeed, G is a right
inverse for Id− T . If w ∈ C0 and k ∈ Z, then

(Id− T )(G(w))k = G(w)k −Ak−1(G(w)k−1)

= wk.
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The second equality is ensured by Lemma 4.3. To prove that Id − T is injective,
let v ∈ C0 be such that (Id− T )(v) = 0, that is, T (v) = v. Then

Ak−1(vk−1) = vk, k ∈ Z.

By induction, we obtain

vk = Ak−1 ◦ · · · ◦A0(v0), k > 0,

and

vk = A−1
k ◦ · · · ◦A−1

−1(v0), k < 0.

This, and the fact that

|vk|xk
→ 0, |k| → ∞,

imply that

πs
0(v0) = πu

0 (v0) = 0.

Indeed, if this is not the case, then |vk|xk
would converge to ∞. This implies that

v0 = 0, and, hence, that vk = 0 for every k ∈ Z. This is enough to prove the
injectivity of Id − T . Thus, the map G is a linear isomorphism in C0, that is, the
inverse of Id− T , and is bounded, since its norm satisfies

||G|| = sup
‖v̄‖=1

‖G(v̄)‖

= sup
‖v̄‖=1

sup
k∈Z

|G(v̄)k|xk

≤ max

{
N

(
1 + ‖I‖λ
1− λ

)
, N

(
1 + ‖I−1‖λ

1− λ

)}
.

�

Remark. If f is a partially hyperbolic diffeomorphism, then we can consider the
map G as defined above. The difference is that Lemma 4.3 does not hold as it is
written. Indeed, the following holds: for each v̄ ∈ C0 and each k ∈ Z we have

Ak(G(v̄)k) = G(v̄)k+1 − vk+1 + πc
k+1(vk+1),

where πc
k is the projection in the central direction Ec(xk) parallel to Es(xk) ⊕

Eu(xk). In this case, we have

(Id− T )(G(w))k = G(w)k −Ak−1(G(w)k−1) = wk − πc
k(wk)

and G is not the inverse of Id− T anymore.
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