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A CALCULUS PROOF OF THE CRAMÉR–WOLD THEOREM

RUSSELL LYONS AND KEVIN ZUMBRUN

(Communicated by Mark M. Meerschaert)

Abstract. We present a short, elementary proof not involving Fourier trans-
forms of the theorem of Cramér and Wold that a Borel probability measure is
determined by its values on half-spaces.

1. Introduction

In this note, we give a brief and elementary proof, not involving Fourier trans-
forms, of a theorem of Cramér and Wold.

The fundamental theorem of [Cramér and Wold (1936)] states that a Borel prob-
ability measure on Euclidean space is determined by the values it assigns to all half-
spaces (equivalently, by its projections to lines through the origin). This theorem is
proved easily with the aid of Fourier analysis. However, generations of probabilists
have learned from the editions of the textbook of [Billingsley (1995)] that despite
the elementary statement of the theorem, no proof was known that did not use
Fourier transforms. That changed with the publication of [Walther (1997)], who
used Gaussians. Walther’s proof depends on a nice idea, but its implementation
uses 11

2 pages of calculations. See Section 8.7 of [Pollard (2002)] for another pre-
sentation of Walther’s proof. By contrast, our proof uses only natural constructions
and avoids calculations.

A brief and somewhat inaccurate outline of our proof is the following. Using
Crofton’s measure on half-spaces, we show that knowledge of μ(S) for all half-
spaces S determines the μ-average distance fμ(x) to every point x. We then show
that a suitable power of the Laplacian applied to fμ yields a constant times μ.
Thus, integral geometry combined with differentiation recovers μ.

2. Proof

Let S be the set of closed half-spaces S ⊂ R
n.

The Cramér–Wold Theorem. Let μ and ν be Borel probability measures on R
n

such that μ(S) = ν(S) for all S ∈ S. Then μ = ν.

Proof. Let σ be the (infinite) Borel measure on S that is invariant under isometries,
normalized so that

(2.1) σ
(
{0 ∈ S, x /∈ S}

)
= ‖x‖/2
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for ‖x‖ = 1. The measure σ goes back to [Crofton (1868)] (in two dimensions); it
can be constructed as follows. (See Theorem 5.1.1 of [Schneider and Weil (2008)]
for a generalization.) Let Ωn−1 denote hypersurface area measure on the unit sphere
S
n−1 ⊂ R

n, and let λ denote Lebesgue measure on R. Write ϕ : Sn−1 × R → S for
the map

ϕ(ω, p) :=
{
x ∈ R

n ; 〈ω, x〉 ≥ p
}
.

Then σ := αn ·ϕ∗(Ωn−1×λ) for some constant αn whose value does not concern us.
It is clear that σ is invariant under rotations about the origin and under reflections
in hyperplanes that pass through the origin. Translation invariance amounts to the
property that for y ∈ R

n, the pushforward by ϕy(ω, p) := ϕ(ω, p) − y is the same
measure. But since

ϕ(ω, p)− y =
{
x− y ∈ R

n ; 〈ω, x〉 ≥ p
}
=

{
x ∈ R

n ; 〈ω, x+ y〉 ≥ p
}

=
{
x ∈ R

n ; 〈ω, x〉 ≥ p− 〈ω, y〉
}
= ϕ

(
ω, p− 〈ω, y〉

)
,

isometry invariance of λ gives this property. The isometry invariance of σ implies
that σ

(
{0 ∈ S, x /∈ S}

)
is a function of ‖x‖ alone; additivity for collinear segments

shows that it is a linear function. Thus, we may choose αn so that (2.1) holds.
From (2.1) and isometry invariance, we have

‖x‖ =

∫
S
|1S(0)− 1S(x)|2 dσ(S) .

Integrating with respect to a signed measure μ on R
n with compact support, we

obtain ∫
Rn

‖x‖ dμ(x) =
∫
S

∫
Rn

|1S(0)− 1S(x)|2 dμ(x) dσ(S)

=

∫
S

[
1S(0)

(
1− 2μ(S)

)
+ μ(S)

]
dσ(S) .

The choice of 0 was arbitrary, so making another choice and subtracting, we get∫
Rn

(
‖y − x‖ − ‖x‖

)
dμ(x) =

∫
S

[(
1S(y)− 1S(0)

)(
1− 2μ(S)

)]
dσ(S) .

By taking a limit, we see that this equation holds for every finite signed measure
μ.

Define

fμ(y) :=

∫
Rn

(
‖y − x‖ − ‖x‖

)
dμ(x) .

We have shown that the function S 	→ μ(S) determines fμ. It remains to show that
fμ determines μ.

The idea is that if n = 2m − 1 is odd, then Δmfμ = cmμ for some constant
cm, using the fundamental solution of the Laplacian, Δ. This then establishes the
Cramér–Wold theorem in odd dimensions. But since an even dimension embeds in
the next higher dimension, the Cramér–Wold theorem follows in even dimensions
as well. That is, we may identify a measure μ on R

2m with a measure μ′ on
R

2m × {0} ⊂ R
2m+1. The function S 	→ μ(S) on half-spaces S ⊂ R

2m determines
the values μ′(S′) for half-spaces S′ ⊂ R

2m+1. Since this determines μ′, the theorem
follows for μ.

We now show that Δmfμ = cmμ in an appropriate sense for μ on R
2m−1. Recall

Green’s second identity, which says that for a bounded domain D ⊂ R
n with C1
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boundary ∂D having outward unit normal n and two functions φ, ψ ∈ C2(D ), we
have ∫

D

(φΔψ − ψΔφ) =

∫
∂D

(φ∇nψ − ψ∇nφ) .

Recall also that if F : Rn → R is such that F (x) = G
(
‖x‖

)
depends only on

r := ‖x‖, then

(ΔF )(x) = G′′(r) +
n− 1

r
G′(r) .

In particular, Δrk = k(k + n− 2)rk−2. If the support of ψ lies in the interior of a
ball B(0, R) and φ(x) = rk with k > −n + 2, then letting D be B(0, R) \ B(0, ε)
with ε → 0 shows that

∫
Rn φΔψ =

∫
Rn ψΔφ. Similarly, if k = −n + 2, then∫

Rn φΔψ = βn−1ψ(0), where βn−1 is the surface area of Sn−1.

To show that fμ determines
∫
g dμ for all g ∈ C∞

c (R2m−1), we now prove that
with cm := 2(−2π)m−1(2m− 2)!!, where !! denotes the double factorial, we have∫

g dμ = c−1
m

∫
R2m−1

fμ(y)(Δ
mg)(y) dλ(y) ,

where now λ denotes Lebesgue measure on R
2m−1. Fubini’s theorem yields∫

R2m−1

fμ(y)(Δ
mg)(y) dλ(y) =

∫
R2m−1

∫
R2m−1

(
‖y−x‖−‖x‖

)
(Δmg)(y) dλ(y) dμ(x) .

Applying the preceding Green formulas (translated to x) repeatedly to the inner
integral, we obtain∫
R2m−1

(
‖y − x‖ − ‖x‖

)
(Δmg)(y) dλ(y) =

∫
R2m−1

Δm−1
y

(
‖y − x‖ − ‖x‖

)
Δg(y) dλ(y)

= cmg(x) ,

as desired. �

Our inversion formula μ = c−1
m Δmfμ in R

2m−1 is similar to a well-known in-
version formula for the Radon transform due to [Radon (1917)] and [John (1955),
p. 13]: If f ∈ C1

c (R
n), then writing J(ω, p) :=

∫
〈ω,x〉=p

f(x) dx for the integral of f

on a hyperplane perpendicular to ω ∈ S
n−1, we have

f(x) =

{
1
2 (2π)

1−n(−Δx)
(n−1)/2

∫
Sn−1 J(ω, 〈ω, x〉) dΩn−1(ω) if n is odd,

−(2π)−n(−Δx)
(n−2)/2

∫
Sn−1

∫
R

dJ(ω,p)
p−〈ω,x〉 dΩn−1(ω) if n is even.

Apparently it was not realized until pointed out by [Rényi (1952)] that the theorem
of [Cramér and Wold (1936)] generalized the injectivity results of Radon, John, and
others.

The injectivity of the map μ 	→
∫
Rn ‖x‖ dμ(x) for probability measures μ with

finite first moment holds in other spaces as well. On metric spaces of negative type,
it is equivalent to strong negative type. See Remark 3.4 of [Lyons (2013)] for details
and references. That paper also shows its relevance to statistics.
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