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Abstract. The purpose of this paper is to investigate the valency of planar
harmonic mappings of bounded boundary rotation of the open unit disc D.
The paper is motivated by the earlier work of the first two authors [Complex
Analysis Oper. Theory 5 (2011), 767–774] and the recent work of T. Hayami
[Complex Var. Elliptic Equ. 59 (2014), 1214–1222].

First, the authors give a counterexample showing that both the main result

of Hayami, Theorem 2.1, and the related conjecture, Conjecture 4.1, are false.
Second, the authors give a valency criterion for planar harmonic mappings of
bounded boundary rotation of D, proving an ameliorated statement of Theorem
2.1 and settling a modified version of Conjecture 4.1.

1. Introduction and preliminary results

A planar harmonic mapping of a domain Ω in the complex plane C is a complex-
valued function of the form

f(z) = u(z) + iv(z),

where z = x+ iy and u and v are real harmonic functions. If Ω is simply connected
and z0 ∈ Ω, then f admits the canonical representation

f = h+ g,

where h and g are analytic functions in Ω and g(z0) = 0. The mapping f is both
sense-preserving and univalent in some open neighborhood of z0 if, and only if, its

Jacobian |h′|2 − |g′|2 is positive at z0. Also, f is sense-preserving in Ω if, and only
if, its Jacobian is nonnegative in Ω or, equivalently, if its second dilatation

ω =
g′

h′

is analytic and satisfies |ω(z)| < 1 in Ω.
A simply connected subdomain Ω of C is called close-to-convex if its complement

C \ Ω is the union of closed half lines with pairwise disjoint interiors. A univalent
analytic or harmonic mapping of the open unit disc D is called close-to-convex if
its image set f(D) is close-to-convex.

In 2011, the first two authors proved the following result [2], which settled a
conjecture of Mocanu [8]:

Received by the editors August 3, 2016 and, in revised form, August 3, 2016, April 4, 2017
and April 13, 2017.

2010 Mathematics Subject Classification. Primary 30C45.
Key words and phrases. Planar harmonic mapping, harmonic mapping of bounded boundary

rotation, close-to-convex function, multivalent function.

c©2017 American Mathematical Society

1113

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/13796


1114 D. BSHOUTY, A. LYZZAIK, AND F. M. SAKAR

Theorem A. Let f = h + g be a harmonic mapping of D, with h′(0) �= 0, that
satisfies g′(z) = zh′(z) and

(1) �
{
1 + z

h′′(z)

h′(z)

}
> −1

2
, z ∈ D.

Then f is a univalent close-to-convex mapping.

Suppose that f = h + g is a harmonic mapping of the closed unit disc D with
h′ �= 0 on ∂D and g′(z) = zmh′(z) for some positive integer m. To study the
behavior of f on ∂D, we write

d

dt
f(eit) = ieith′(eit) + ieitg′(eit)

= ieith′(eit) + iei(m+1)th′(eit)

= ie−imt/2
{
ei(m+2)t/2h′(eit)− ei(m+2)t/2h′(eit)

}

= −2e−imt/2�
{
ei(m+2)t/2h′(eit)

}
.

Observe that �
{
ei(m+2)t/2h′(eit)

}
changes sign at finitely many values tk ∈ [0, 2π),

if any, and that elsewhere every single-valued continuous branch of arg df(eit)/dt
decreases steadily on every complementary component (interval). It follows that
f(∂D) admits a cusp, called a harmonic cusp, at every point f(eitk) and is locally
concave with respect to f(D) at every other point [7].

The notion of a harmonic cusp for a more general setting may be found in [7].

Definition 1. A sense-preserving harmonic mapping f : D → C is called p-valent
if it takes every value at most p times, counting multiplicity.

In an attempt to extend this theorem, Hayami [4] proved the following:

Theorem B. Let h(z) = zp +
∑∞

n=p+1 anz
n be an analytic function of D, with

H(z) = h′(z)/zp−1 �= 0 on D, and let

F (t) = (2p+m− 1)t+ 2arg
{
H(eit)

}
, −π ≤ t < π,

for some m = 2, 3, 4, . . . . If for each k ∈ K = {0,±1,±2, . . . ,±�(2p+m + 1)/2	}
the equation F (t) = 2kπ has at most a single root in [−π, π), and for all k ∈ K
there exist exactly 2p + m − 1 such roots in [−π, π), then the harmonic function

f(z) = h(z) + g(z), with g′(z) = zm−1h′(z), is p-valent in D and maps ∂D onto a
curve comprising 2p +m − 1 harmonic cusps whose vertices subdivide f(∂D) into
2p+m− 1 concave curves.

Following the proof of Theorem B, Hayami posed the following conjecture [4,
Conjecture 4.1]:

Conjecture C. Let h(z) = zp +
∑∞

n=p+1 anz
n and g(z) be an analytic function of

D satisfying g′(z) = zm−1h′(z) for some m = 2, 3, . . . , and

(2) �
{
1 + z

h′′(z)

h′(z)

}
> −m− 1

2
, z ∈ D.

Then the harmonic mapping f(z) = h(z) + g(z) is p-valent in D.
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The purpose of this paper is two-fold: first, to give an example showing that
both Theorem B and Conjecture C are false, and second, to give a valency crite-
rion for planar harmonic mappings of bounded boundary rotation of D proving an
ameliorated version of Theorem B and settling a stronger version of Conjecture C.
This criterion has interesting applications, of which one (Corollary 1) yields a new
and more direct and informative proof of Theorem A.

Definition 2. A sense-preserving harmonic mapping f of D is said to belong to
the class V Hk(p), where p is a positive integer and k is a real number at least 2, if
f has p− 1 critical points in D, counting multiplicity, and

(3) lim sup
r→1−

∫ 2π

0

∣∣∣∣ ddt arg
∂

∂t
f(reit)

∣∣∣∣ dt ≤ pkπ.

The classes V Hk(p), for all p and k, constitute all multivalent harmonic mappings
of bounded boundary rotation.

The subclass of V Hk(p) consisting only of analytic functions of D is denoted by
Vk(p); particularly, Vk(p) is a proper subclass of V Hk(p). The classes Vk(p) were
first introduced and investigated by Leach [5] and further studied by Lyzzaik [6].
The class of functions f ∈ Vk(1) normalized by f(0) = 0 and f ′(0) = 1, denoted
simply by Vk, was introduced by Paatero [9], who showed that V4 consists only of
univalent functions. Much later, Brannan [1] showed that V4 is properly contained
in the class of univalent close-to-convex functions. However, every class Vk with
k > 4 contains nonunivalent functions.

The geometries of the classes Vk(p) were investigated by the second author [6]. By
deploying a cutting and pasting method that applies essentially in the same manner
to the classes V Hk(p), questions related to their decomposition and valency, among
others, were settled.

Definition 3. Let P be a complex polynomial, and let γ be a ray in C. A simple
unbounded curve l is called a P -ray if P : l → γ is a homeomorphism.

In this paper, we need both Corollary 6.3 and Theorem 6.3 of [6] formulated for
the more general classes V Hk(p) as follows.

Proposition 1. Let f ∈ V Hk(p). Then f = P ◦ φ, where P is a polynomial of
degree at most

(a) the largest integer less than k/2 if k > 2 and p = 1 and
(b) the smallest integer larger than pk/2− 1 if p > 1,

and φ is a homeomorphism of D into C such that the zeros of P ′ lie in φ(D), and
C \ φ(D) is either empty or is a union of P -rays of disjoint interiors starting from
∂φ(D).

Note that the notation {pk/2 − 1} was used in [6] to indicate the quantities
appearing above in items (a) and (b) of Proposition 1 and that if f ∈ Vk(p), then
φ is an analytic univalent function and C \ φ(D) is nonempty.

2. Main results

We begin this section by giving an example showing that both Theorem B and
Conjecture C are, in fact, false [4, Theorem 2.1 and Conjecture C], at least in the
case p = 1,m = 4. In doing so, we shall avoid the tedious calculations by adhering
to the associated figures from Mathematica�.
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Example 1. Let

h′(z) = (1− 0.7z)−5 and g′(z) = z3h′(z).

We show that f(z) = h(z) + g(z), with h(0) = g(0) = 0, satisfies the assumptions
of Theorem B and Conjecture C for the case p = 1 and m = 4; nonetheless f is
2-valent.

Indeed, h′(0) = 1 and

�
{
1 + z

h′′(z)

h′(z)

}
= �

{
10 + 28z

10− 7z

}
> −3

2
, z ∈ D.

Hence, inequality (2) of Conjecture C holds. On the other hand,

F (t) = 5t+ 2arg
{
(1− 0.7eit)−5

}

= 5arg

{
eit

(1− 0.7eit)2

}
,

where arg is the single-valued continuous branch of the argument satisfying arg 1 =
0. It is immediate that F is a strictly increasing function on [0, 2π] with range
[0, 10π]; hence it satisfies the assumption of Theorem B for the respective case.

Note that the circle shown in Figure 1 does not relate in any manner to f(∂D),
but it is sketched only to distinguish between two parts of a subdivision of f(∂D)
which are sketched for the sake of clarity with two different scalings: the part
depicted in Figure 1 lying outside the circle, and the part depicted in Figure 2
lying inside the circle. It is evident from both figures that f(∂D) has exactly 5
harmonic cusps and that f takes on exactly twice every value in the connected
component of C \ f(∂D) containing the interval (−1.4,−1.3), and takes on at most
once every other value of C \ f(∂D). Therefore, f is 2-valent and both Theorem B
and Conjecture C are false.

Figure 1. Graph of f(∂D) outside the disc

Remark 1. Example 1 is based on a self-intersecting concave subarc of the subdi-
vision of f(∂D) induced by the set of vertices of the harmonic cusps. This shows
that Hayami’s apparent assumption that all the concave subarcs of the subdivision
are simple is generally not true, and it is the reason why his Theorem 2.1 [4] falls
short of giving the better valency result of Theorem 1 of this paper.
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Figure 2. Graph of f(∂D) inside the disc of Figure 1

A modified version of Conjecture C will be settled by proving the following
theorem:

Theorem 1. Let h(z) = zp+
∑∞

n=p+1 anz
n, p ≥ 1, and g(z) be an analytic function

of D satisfying h′(z)/zp−1 �= 0, g′(z) = zmh′(z), m = 1, 2, . . . , and the inequality

(4) �
{
1 + z

h′′(z)

h′(z)

}
> −m

2
, z ∈ D.

Then the harmonic mapping f = h+ g satisfies the following properties:

(a) f ∈ V H2(1+m/p)(p);
(b) f = P ◦φ, where P is a polynomial of degree at most m if p = 1 and p+m

otherwise, and φ is a homeomorphism of D into C such that the zeros of P ′

lie in φ(D) and C \ φ(D) is nonempty and is a union of P -rays of disjoint
interiors starting from ∂φ(D);

(c) f is m-valent if p = 1 and (p+m)-valent otherwise.

Furthermore, if h is analytic on D and h′ is nonvanishing on ∂D, then f(∂D)
subdivides into 2p+m concave curves and comprises the same number of harmonic
cusps whose vertices are the points of the subdivision.

A requisite for the proof of this theorem is the following lemma:

Lemma 1. Fix r, 0 < r ≤ 1. For z ∈ D \ {0}, let κ(z) = zm/2zh′(z) and η(z) =

κ(z)− |z|mκ(z). Then, under the assumptions of Theorem 1, there exists a strictly
increasing, single-valued, differentiable branch of arg η(reit), −∞ < t < ∞, whose
net (total) variation over [0, 2π] is exactly (2p+m)π.

Proof. Since κ is nonvanishing in D\{0}, it is locally analytic there and there exists
a single-valued differentiable branch of arg κ(reit). From inequality (4) we infer that

∂

∂t
arg κ(reit) = �

{
∂

∂t
log κ(reit)

}

=
m

2
+ �

{
1 + reit

h′′(reit)

h′(reit)

}
> 0.



1118 D. BSHOUTY, A. LYZZAIK, AND F. M. SAKAR

But since h′ has p− 1 zeros in D located at the origin,∫ 2π

0

∂

∂t
arg κ(reit) dt =

∫ 2π

0

(
m

2
+ �

{
1 + reit

h′′(reit)

h′(reit)

})
dt

= mπ +

∫ 2π

0

�
{
1 + reit

h′′(reit)

h′(reit)

}
dt

= (2p+m)π.

Hence, arg κ(reit) is a strictly increasing function that increases by exactly (2p+m)π
on [0, 2π].With κ(reit) = ρ(t)eiΘ(t), it follows at once that there exist values tk, 1 ≤
k ≤ 2p + m + 1, such that t1 < t2 < · · · < t2p+m < t2p+m+1 = t1 + 2π and
Θ(tk) = (k − 1)π.

By the same argument as above, there exists a single-valued differentiable branch
of arg η(reit) on (−∞,∞). Since κ(reit1) > 0, we may choose arg η(reit) so that
arg η(reitk) = (k − 1)π for k, 1 ≤ k ≤ 2p+m+ 1. We write

η(reit) = ρ(t)
(
eiΘ(t) − rme−iΘ(t)

)
.

Then

arg η(reit) = arg
(
eiΘ(t) − rme−iΘ(t)

)
.

Consequently,

∂

∂t
arg η(reit) =

∂

∂t
arg

(
eiΘ(t) − rme−iΘ(t)

)

= Θ′(t) + �
{

∂

∂t
log

(
1− rme−2iΘ(t)

)}

= Θ′(t) + 2Θ′(t)�
{

rme−2iΘ(t)

1− rme−2iΘ(t)

}

> Θ′(t)−Θ′(t) = 0,

since Θ′ > 0 for all real t and �{z/(1 − z)} > −1/2 in D. Hence, arg η(reit) is a
strictly increasing function on (−∞,∞).

Therefore, arg η(reitk) = (k − 1)π, 1 ≤ k ≤ 2p + m + 1, in [t1, t1 + 2π] if, and
only if, t = tk, and the net (total) variation of arg η(reit) on the latter interval (or
[0, 2π]) is exactly (2p+m)π.

A more elegant proof of the last conclusion goes as follows. Write

arg η(reit) = arg
{
η(reit)/|(1 + rm)κ(reit)|

}
= arg

{
A ◦

(
κ(reit)

|κ(reit)|

)}
,

where A is the affine transformation A(w) = (w − rmw)/(1 + rm). Note that the
curve A(eiϕ), 0 ≤ ϕ ≤ 2π, is the positively directed ellipse whose minor axis is the
closed interval [−(1− rm)/(1+ rm), (1− rm)/(1+ rm)] and whose major axis is the
closed interval extending from −i to i. It follows that the point η(reit) traverses
the ellipse positively starting from A(1) = (1 − rm)/(1 + rm) to A(ei(2p+m)) =
(−1)m(1 − rm)/(1 + rm) as t varies from zero to 2π. Therefore, arg η(reit) is a
strictly increasing function whose net (total) variation on [0, 2π] is (2p+m)π. This
completes the proof of the lemma. �

Proof of Theorem 1. First, we show that f ∈ V H2(1+m/p)(p) and f is at most
(p + m)-valent in D. Assume that κ(z) and η(z) are defined as in Lemma 1.
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With 0 < r < 1, it can be easily computed that

∂

∂t
f(reit) = ireith′(reit) + i(reit)mreith′(reit)

= ir−m/2e−imt/2
{
rm/2eimt/2reith′(reit)− rmrm/2eimt/2reith′(reit)

}

= ir−m/2e−imt/2η(reit).

By invoking Lemma 1 we obtain∣∣∣∣ ∂∂t arg
∂

∂t
f(reit)

∣∣∣∣ =

∣∣∣∣−m

2
+

∂

∂t
arg η(reit)

∣∣∣∣
≤ m

2
+

∣∣∣∣ ∂∂t arg η(reit)
∣∣∣∣

≤ m

2
+

∂

∂t
arg η(reit).

Hence, ∫ 2π

0

∣∣∣∣ ∂∂t arg
∂

∂t
f(reit)

∣∣∣∣ dt ≤
∫ 2π

0

m

2
dt+

∫ 2π

0

{
∂

∂t
arg η(reit)

}
dt

= 2(p+m)π.

Therefore, f ∈ HV2(1+m/p)(p) and (a) holds.
By invoking Proposition 1, we conclude immediately that (c) also holds. As for

(b), it also holds except for the property that φ(D) �= C, which we now establish.
The fact that h′(z)/zp−1 is nonvanishing in D yields a single-valued analytic branch
of log{h′(z)/zp−1} there. Since

d

dz
log

{
h′

zp−1

}
=

1

z

{
1 + z

h′′(z)

h′(z)

}
− p

z
,

inequality (4) implies that (d/dz) log{h′(z)/zp−1} has finite radial (angular) limits
a.e. on ∂D [3, p. 3 (Exercise 2) and p. 17 (Theorem 2.2)]. But the existence of
the radial limit of the derivative of an analytic function of D at a point implies the
existence of the radial limit of the function at the same point. Thus h′(z)/zp−1

has finite radial limits a.e. on ∂D. Evidently, the same holds for h′ and likewise for
g′ since g′ = zmh′. Hence h and g, and consequently f, have finite radial limits
a.e. on ∂D. Suppose now that ζ ∈ ∂D is a point where limr→1− f(rζ) exists and
is finite and that limr→1− φ(rζ) fails to exist. Then the radial cluster set of φ
at ζ (the set of limits of all convergent sequences {f(rnζ)} where rn → 1−) is a
nondegenerate continuum, say Cζ . But f = P ◦ φ, and the cluster set of f at ζ is
also the nondegenerate continuum f(Cζ). This gives a contradiction, and the radial
limit of φ at ζ exists and is finite. Therefore φ(D) �= C.

Suppose now that h is analytic on D and h′ is nonzero on ∂D. We contend that
f(∂D) subdivides into 2p + m concave curves and comprises an equal number of
harmonic cusps whose vertices are the points of the subdivision. We have

(5)
d

dt
f(eit) = −2e−imt/2 �κ(eit).

Then by inequality (4) we obtain

d

dt
arg κ(eit) =

d

dt

{
(m/2 + 1)t+ �{log h′(eit)}

}
=

m

2
+ �

{
1 + eit

h′′(eit)

h′(eit)

}
> 0.
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Since h′ has p zeros at the origin and is nonvanishing on ∂D,∫ 2π

0

d

dt

{
arg κ(eit)

}
dt =

∫ 2π

0

(m

2
+ 1

)
dt+

∫ 2π

0

�
{
eit

h′′(eit)

h′(eit)

}
dt

= (m+ 2)π + �
∫
∂D

h′′(z)

h′(z)
dz

= (m+ 2)π + 2(p− 1)π

= (2p+m)π.

Hence, arg κ(eit) is a strictly increasing function on [0, 2π+ ε) so that its growth on
the interval [0, 2π] is exactly (2p+m)π. Consequently, �κ(eit) changes sign exactly
2p + m times on [0, 2π + ε) for any arbitrarily small ε > 0, and, by equation (5),
our contention holds. This ends the proof. �

As immediate applications of Theorem 1 and Proposition 1, we obtain the fol-
lowing corollaries:

Corollary 1. Under the assumptions of Theorem A, f ∈ V H4(1) and f is a
univalent close-to-convex function.

Corollary 2. Under the assumptions of Theorem 1, and if m = 1, then f is
(p+ 1)-valent.

Remark 2. Corollary 1 is more informative than Theorem A, and its proof is dif-
ferent and more direct than that of the authors [2].

We have been unable to construct harmonic mapping satisfying the assumptions
of Theorem 1 and having valency exactly p+m. In view of the corollaries and our
negative attempts in this regard, we pose the following conjecture:

Conjecture 1. The valency of harmonic mappings f satisfying the assumptions
of Theorem 1 is at most m+ p− 1.

Obviously, this conjecture is both true and sharp if m = 1 and p = 1.
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