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COMMUTATIVITY OF NORMAL COMPACT OPERATORS

VIA PROJECTIVE SPECTRUM

TONG MAO, YIKUN QIAO, AND PENGHUI WANG

(Communicated by Stephan Ramon Garcia)

Abstract. In this note we obtain commutativity criteria for normal compact
operators using the projective spectrum. We thus improve a corresponding
result obtained by Chagouel, Stessin and Zhu in Trans. Amer. Math. Soc. 368
(2016), 1559–1582.

1. Introduction

In [4], R. Yang introduced the concept of projective spectrum. For an n-tuple
A = (A1, . . . , An) of operators acting on a Hilbert space H, the projective spectrum
of A is defined by

Σ(A) = {(z1, . . . , zn) ∈ Cn : z1A1 + · · ·+ znAn is noninvertible}.

Obviously, if H is infinite-dimensional and all Ai’s are compact, then Σ(A) = Cn.
To study the commutativity of normal compact operators, in [2] the authors gave
the following modified definition of projective spectrum:

σ(A) = {(z1, . . . , zn) ∈ Cn : I + z1A1 + · · ·+ znAn is noninvertible},

and the point projective spectrum:

σp(A) = {(z1, . . . , zn) ∈ Cn : ker(I + z1A1 + · · ·+ znAn) �= 0}.
By using the modified projective spectrum, I. Chagouel, M. Stessin and K. Zhu
obtained the following theorem.

Theorem 1.1 (Chagouel, Stessin and Zhu, 2016). Let A = (A1, A2, . . . , An) be an
n-tuple of compact operators on a Hilbert space H. Suppose that

(1) each Ai is self-adjoint and dimH = ∞,
(2) each Ai is normal and dimH < ∞.

Then the operators A1, . . . , An pairwise commute if and only if their projective
spectrum σp(A) consists of countably many, locally finite, complex hyperplanes in
Cn, where, “locally finite” means that for each z0 ∈ Cn, there is a neighborhood U0

of z0 such that U0 ∩ σp(A) has finite branches.

Received by the editors October 13, 2016 and, in revised form, April 18, 2017 and April 21,
2017.

2010 Mathematics Subject Classification. Primary 47A13, 47A10.
Key words and phrases. Projective spectrum, normal operator, compact operator,

commutativity.
This work was supported by NSFC (No. 11471189).

c©2017 American Mathematical Society

1165

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/13797


1166 TONG MAO, YIKUN QIAO, AND PENGHUI WANG

The paper [2] also pointed out that the theorem does not hold without a normal-
ity condition on the tuple. In the present paper, we will show that such a result is
true for normal tuples under some mild conditions. As a particular case, we recover
the cited result of Chagouel, Stessin and Zhu. In the following we shall use the no-
tation from [2]. To state our result, we recall that an operator A satisfies Agmon’s
condition [1] if there is a ray {Argλ = θ} such that A has no eigenvalues on the
ray. With Agmon’s condition, S. Seeley studied the complex powers of elliptic op-
erators. Inspired by Agmon’s condition, we introduce the following strengthening
of Agmon’s condition.

Definition 1.2. A normal compact operator A is said to satisfy the strong Agmon
condition if there is an ε > 0 and θ ∈ (0, 2π) such that A has no nonzero eigenvalues
in {z : θ − ε < Argz < θ + ε}.

The following theorem is the main result in the present note.

Theorem 1.3. Let A = (A1, A2, . . . , An) be a tuple of normal compact operators
satisfying the strong Agmon condition. Then the following conditions are equivalent:

1) A is commutative.
2) σp(A) consists of countably many, locally finite, complex hyperplanes in Cn.

Since self-adjoint compact operators and normal matrices satisfy the strong Ag-
mon condition, Theorem 1.1 is a consequence of Theorem 1.3. The result is proved
as follows. At first we will need the following technical condition.

Condition A. A normal compact operator A is said to satisfy Condition A if there
is an ε > 0 such that the set

⋂
λ∈σp(A){z ∈ C : |1 + λz| ≥ ε} is unbounded.

It will be shown that the strong Agmon condition implies Condition A. As in
[2], to get our main result, the key point is to consider the case n = 2. We will
prove that if A satisfies Condition A and B is a normal compact operator, then
[A,B] = 0 if and only if σp(A,B) consists of countably many, locally finite, complex
lines in C2.

Compared to [2], firstly, our proof is shorter and more elementary. Secondly, we
do not need a stronger hypothesis for the case of normal operators. We conjecture
that the result is true for normal compact operators without any extra condition.

2. Proof of the main result

In this section, we will prove our main theorem. At first, we will show that the
strong Agmon condition implies Condition A.

Lemma 2.1. If a compact operator A satisfies the strong Agmon condition, then
there exists 0 < ε < 1 and a complex sequence {zn}n∈N such that

lim
n→∞

zn = ∞

and for every λ ∈ σp(A) and n ∈ N,

|1 + λzn| ≥ ε.

Proof. By Definition 1.2, there exist 0 ≤ θ < 2π and 0 < δ < π such that

σp(e
iθA)\{0} ⊆ {z ∈ C : 0 ≤ Arg(z) < π − δ or π + δ < Arg(z) < 2π}.
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Take 0 < ε < sin δ, zn = eiθn; then limn→∞ zn = ∞. Now, for any λ ∈ σp(A),

eiθλ ∈ σp(e
iθA) ⊆ {z ∈ C : 0 ≤ Arg(z) < π − δ or π + δ < Arg(z) < 2π} ∪ {0}.

Obviously, if λ = 0, then

|1 + λzn| = 1 ≥ ε.

If λ �= 0, then − 1
eiθλ

∈ {z ∈ C : δ < Argz < 2π − δ}, since Arg(eiθλ) =

π −Arg(− 1
eiθλ

). The distance between − 1
eiθλ

and the positive x-axis is

inf
x>0

∣∣x− (− 1

eiθλ
)
∣∣ ≥ sin δ

|λ| ;

then

|1 + λzn| = |λ| ·
∣∣zn − (− 1

λ
)
∣∣ = |λ| ·

∣∣n− (− 1

eiθλ
)
∣∣ ≥ sin δ ≥ ε.

�

Lemma 2.2. For compact operators A and B, suppose A is normal and satisfies
Condition A. If μ �= 0 is a complex number such that the complex line {(z, w) ∈
C2 : μw + 1 = 0} is contained in σp(A,B) and |μ| = ‖B‖, then there exists a unit
vector x such that

(2.1) Ax = 0 and Bx = μx.

Proof. Write

A =
∑
j

λjej ⊗ ej ,

where {ej} is an orthonormal sequence of eigenvectors of A with corresponding
eigenvalues λj . Since A satisfies Condition A, there exists 0 < ε < 1 and a complex
sequence {zn}n∈N such that

lim
n→∞

zn = ∞,

and for every j ∈ N and n ∈ N,

|1 + λjzn| ≥ ε.

Because the complex line μw + 1 = 0 is contained in σp(A,B), for every z ∈ C,
I + zA− 1

μB has nontrivial kernel. There exists a unit vector vn such that

(2.2)
(
I + znA− 1

μ
B

)
vn = 0.

Since the unit ball of a Hilbert space is weakly compact, there exists a subse-
quence {vnk

} of {vn} which converges weakly to some vector v0 ∈ H. Since A,B
are compact, we have

lim
k→∞

Avnk
= Av0 and lim

k→∞
Bvnk

= Bv0.(2.3)

Let P0 be the orthogonal projection onto kerA. Now, we claim that v0 �= 0. To
see this, we argue by contradiction. Assume v0 = 0; then

(2.4) lim
k→∞

(I + znk
A)vnk

= lim
k→∞

1

μ
Bvnk

=
1

μ
Bv0 = 0.

In the basis {ej}j ,

(I − P0)(I + znk
A)vnk

=
∑
j

(1 + λjznk
)〈vnk

, ej〉ej ,
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which tends to 0, that is,

(2.5) lim
k→∞

∑
j

|1 + λjznk
|2|〈vnk

, ej〉|2 = 0.

Recall that |1 + λjzn| ≥ ε. Combining with (2.4), we get∑
j

|1 + λjznk
|2|〈vnk

, ej〉|2 ≥ ε2
∑
j

|〈vnk
, ej〉|2

= ε2(‖vnk
‖2 − ‖P0vnk

‖2)
= ε2(1− ‖P0(I + znk

A)vnk
‖2)

→ ε2,

which contradicts (2.5). By (2.2) and (2.3)

Av0 = lim
k→∞

Avnk
= lim

k→∞

1

znk

(−I +
1

μ
B)vnk

= 0,

by which v0 ∈ kerA. Recall that P0 is the orthogonal projection onto kerA; then

v0 = P0v0

= w − lim
k→∞

P0vnk

= w − lim
k→∞

P0(−znk
A+

1

μ
B)vnk

= w − lim
k→∞

1

μ
P0Bvnk

=
1

μ
P0Bv0.

Since |μ| = ‖B‖, by the Pythagorean theorem

‖(I − P0)Bv0‖2 = ‖Bv0‖2 − ‖P0Bv0‖2

≤ ‖B‖2‖v0‖2 − ‖μv0‖2 = 0,

that is,

(2.6) Bv0 = P0Bv0 = μv0,

which shows that v0 is a common eigenvector of A and B. By normalizing v0, we
get the unit vector x satisfying (2.1). �

We also need the following lemma.

Lemma 2.3. For compact operators A and B, suppose A is normal and (λ, μ) �=
(0, 0) are complex numbers such that the complex line {(z, w) ∈ C2 : λz+μw+1 = 0}
is contained in σp(A,B) and λ is an isolated eigenvalue of A. Then there exists a
unit vector x such that

(2.7) Ax = λx and μ = 〈Bx, x〉.

Proof. We can choose a disc D = D(λ, δ) containing λ for a small δ > 0 such that:

(1) 0 /∈ D if λ �= 0,
(2) D ∩ σp(A) = {λ},
(3) uI −A is invertible for u ∈ ∂D.
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Define
Aε := A+ εB, λε := λ+ εμ.

Take σ > 0 small enough such that for 0 < |ε| < σ, uI−Aε is invertible for u ∈ ∂D,
λε ∈ D and λε �= 0. Since (− 1

λε
,− ε

λε
) ∈ σp(A,B) and

λεI −Aε = λε(I −
1

λε
A− ε

λε
B),

we have λε is an eigenvalue of Aε. For any fixed ε > 0 small enough, take a unit vε
such that

(Aε − λεI)vε = 0.

Consider the Riesz projections [3]

Pε =
1

2πi

∫
∂D

(uI −Aε)
−1du

and

(2.8) P0 =
1

2πi

∫
∂D

(uI −A)−1du;

then Pε → P0 as ε → 0. Obviously Pεvε = vε. Rewrite Pε as

Pε =
1

2πi

∫
∂D

(uI −Aε)
−1du

=

∞∑
r=0

1

2πi

∫
∂D

εr((uI −A)−1B)r(uI −A)−1du

=
1

2πi

∫
∂D

(uI −A)−1du

+
1

2πi
ε

∫
∂D

(uI −A)−1B(uI −A)−1du+O(ε2)

= P0 + εP̃ +O(ε2),

where P̃ = 1
2πi

∫
∂D

(uI − A)−1B(uI − A)−1du. Accordingly (Aε − λεI)Pε can be
written as

(Aε − λε)Pε =
(
A− λI + ε(B − μI)

)(
P0 + εP̃ +O(ε2)

)
= (A− λI)P0 + ε

(
(A− λI)P̃ + (B − μI)P0

)
+O(ε2).(2.9)

Please note that
(A− λI)P0 = P0(A− λI) = 0.

Multiplying P0 to the left of (2.9), we get

(2.10) P0(Aε − λεI)Pε = εP0(B − μI)P0 +O(ε2).

Recall that vε is a unit eigenvector, together with (2.10):

(2.11) P0(B − μI)P0vε = O(ε).

If λ �= 0, then since A is compact, the range RanP0 is of finite dimension. Thus
we can choose a converging subsequence of {P0vε} with the limit v0. In (2.11), let
ε → 0 in the subsequence

(2.12) P0(B − μI)v0 = 0.

We have ‖v0‖ = 1 because

1 ≥ ‖v0‖ ≥ ‖Pεvε‖ − ‖Pεvε − P0vε‖ − ‖v0 − P0vε‖.
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If λ = 0, then μ �= 0. Consider B̃ = P0(B − μI)P0 and an operator on RanP0.

Then B̃ has nontrivial kernel. Otherwise suppose it were injective. Since P0BP0 is
compact, by Riesz-Schaulder theory, B̃ is invertible. Therefore there exists d > 0
such that

‖P0(B − μI)P0v‖ ≥ d‖P0v‖, for all v ∈ H,

which contradicts (2.11).
In summary, there is a unit vector v0 such that (2.12) holds whether λ = 0 or

not. Letting x = v0, we have (2.7). �

From the above technical lemma, we have:

Corollary 2.4. Let A and B be normal compact operators such that A satisfies
Condition A. If σp(A,B) consists of complex lines, then A and B have a common
eigenvector.

Proof. Choose μ to be the eigenvalue of B with maximal norm, that is, |μ| = ‖B‖.
The case μ = 0 is trivial, so suppose μ �= 0. The point (0,− 1

μ ) is contained in

σp(A,B). By the assumption on σp(A,B), there is a complex line λz+μw+1 = 0
in σp(A,B) containing (0,− 1

μ ).

If λ �= 0, then (− 1
λ , 0) is contained in σp(A,B), which indicates that λ is a

nonzero eigenvalue of A. By Lemma 2.3 we have the desired result.
If λ = 0, the corollary comes from Lemma 2.2. �

Suppose A and B satisfy the conditions in Corollary 2.4. Define two sets of
subspaces of H:

V = {V ⊆ H : A(V ) ⊆ V, B(V ) ⊆ V },
W = {W ∈ V : AB = BA on W}.

We have 0 ∈ W , and A and B commute if and only if H ∈ W .
By Zorn’s lemma, W has a maximal element W with respect to inclusion, and we

argue by contradiction to show that W = H. W is closed since W ∈ W . Assume
that W � H, that is, W⊥ �= 0. If there exists a common eigenvector of A and B
in W⊥, let W ′ be the subspace generated by the vector. Then 0 �= W ′ ⊆ W⊥ such
that W ′ ∈ W , then W ⊕W ′ ∈ W , which contradicts the maximality of W .

Let W⊥ ∈ V because A and B are normal. Denote the restricted operators on
the Hilbert space W⊥ by A′ and B′. We only need to show that A′ and B′ have
a common eigenvector. This is done if the operators A′ and B′ on the Hilbert
space W⊥ satisfy the conditions in Corollary 2.4, which is assured by the following
proposition.

Proposition 2.5. Let A and B be normal compact operators such that σp(A,B)
consists of countably many, locally finite, complex lines in C2. If W is a closed
invariant subspace of both A and B, then the restricted operators on W have the
same property as A and B; that is, A|W and B|W are normal compact operators
over the Hilbert space W such that σp(A|W , B|W ) consists of countably many, locally
finite, complex lines.

Proof. This can be concluded from the proof of Theorem 11 of [2]. �

The reason that the commutativity of A and B implies that σp(A,B) consists
of countably many, locally finite, complex lines in C2 is trivial, since A and B are
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diagonalized by an orthonormal basis; see the proof of Theorem 11 in [2] for details.
We have our main result.

Theorem 2.6. If A and B are normal and compact and A satisfies Condition A,
then the following conditions are equivalent:

(1) A, B are commutative.
(2) σp(A,B) consists of countably many, locally finite, complex lines in C2.

Because self-adjoint operators and finite rank operators satisfy the strong Agmon
condition automatically, by Lemma 2.1 and Theorem 2.6, we have

Corollary 2.7. Let A and B be normal compact operators. Suppose A is self-
adjoint or of finite rank. Then the following are equivalent:

(1) A, B are commutative.
(2) σp(A,B) consists of countably many, locally finite, complex lines in C2.

Obviously, if both A and B are of finite rank, then the commutativity of A and
B is equivalent to the finite-dimensional case, and Corollary 2.7 recovers Theorem
1.1. Next, we give an example which shows that there is a normal compact operator
that does not satisfy Condition A.

Example 2.8. Let H be a Hilbert space with an orthonormal basis

{en,i : n ∈ N; 1 ≤ i ≤ 2n}.

Set ωn,i to be the ith root of x2n = 1. Let νn =
n∑

j=1

1
j . Then

λn,i =
1

νnωn,i
→ 0.

It is easy to verify that the operator

A =
∑
n,j

λn,jen,j ⊗ en,j

does not satisfy Condition A.
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