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HYPERBOLIC SURFACES WITH LONG SYSTOLES

THAT FORM A PANTS DECOMPOSITION

BRAM PETRI

(Communicated by David Futer)

Abstract. We present a construction of sequences of closed hyperbolic sur-
faces that have long systoles which form pants decompositions of these surfaces.
The length of the systoles of these surfaces grows logarithmically as a function
of their genus.

1. Introduction

The systole of a closed hyperbolic surface is the minimal length realized by a
non-contractible curve on this surface. In this note, we will also use the word systole
for a non-contractible curve of minimal length.

The systole function achieves a maximum among all closed hyperbolic surfaces
of a given genus. This follows from the compactness of the thick part of the moduli
space of these surfaces. What this maximum should be is wide open in general.
First of all, if a closed hyperbolic surface X has genus g(X), then a simple area
argument shows that its systole sys(X) satisfies

sys(X) ≤ 2 log(4g(X)− 2)

(see for instance [Bus10, Lemma 5.2.1]). Because of this inequality, a sequence of
surfaces with long systoles will be a sequence of closed hyperbolic surfaces {Xk}k∈N

with genus g(Xk) → ∞ as k → ∞ and systoles sys(Xk) ≥ C log(g(Xk)) for some
constant C > 0 independent of k.

It is known that surfaces with long systoles exist. In particular, in [BS94] Buser
and Sarnak show that there are sequences {Xk}k of congruence covers of a fixed
arithmetic surface such that

g(Xk) → ∞ as k → ∞ and lim
k→∞

sys(Xk)

log(g(Xk))
≥ 4

3
.

This construction was later generalized to a larger class of surfaces by Katz, Schaps
and Vishne in [KSV07]. [PW15] contains another construction of surfaces with
long systoles, based on gluing hyperbolic triangles together. In the latter case the
multiplicative constant in front of the logarithm equals 1. In the case of cusped
hyperbolic surfaces, there are similar bounds and constructions, for which we refer
to [Sch94], [SS98], [Par14], [FP15].

The question we ask in this paper is a slight variation of the above problem.
We not only ask for long systoles, but also ask that these systoles form a pants
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decomposition of the surface. Recall that a pants decomposition of a surface is
a set of simple closed curves that decompose it into three-holed spheres (pairs of
pants).

Let us first note that it isn’t hard to construct a hyperbolic surface of which the
systoles form a pants decomposition: take any pants decomposition and pinch all
the curves down to some length ε. If ε is small enough, the collar lemma guarantees
that these curves are indeed systoles (see eg. [Bus10, Chapter 4] for details). This
doesn’t answer our question, because for this argument to work, ε needs to be
uniformly small.

There also already exists a construction of closed hyperbolic surfaces with grow-
ing systoles that form a pants decomposition. Namely, in [Bus78], Buser con-
structed surfaces with systolic pants decompositions consisting of curves of length
roughly

√
log(g).

The main result (Theorem 6.3) of this article is that there exist sequences of
closed hyperbolic surfaces {Xn}n∈N of which the systoles form a pants decomposi-
tion and

sys(Xn) ≥
4

7
log(g(Xn))−K and g(Xn) → ∞,

as n → ∞, where K is a constant independent of n.
The largest part of our proof, ending with Proposition 6.2, consists of finding a

hyperbolic surface which for every a ∈ (0,∞) large enough:

1. has a pants decomposition of curves that all have the same length a and
2. all simple curves that are not part of the given pants decomposition are ‘long

enough’.

The genus of this surface might be much larger than what we want. However, if this
is the case, we can modify it so that the genus achieves the bound we claim. This
relies on a comparison between a type of diameter of the surface and its systole.
A similar idea has been used by Erdős and Sachs to construct regular graphs with
large girth (the length of a shortest cycle in this graph) [ES63].

2. Background

Recall that a closed hyperbolic surface is a compact 2-manifold without bound-
ary, equipped with a Riemannian metric of constant curvature−1. For the geometry
of hyperbolic surfaces in general, we refer to [Bus10].

Given a ∈ (0,∞), let Pa denote the hyperbolic pair of pants (three-holed sphere)
of which all the boundary components have length a. Recall that this defines Pa

up to isometry.
To obtain surfaces with systolic pants decompositions and long systoles, we need

to find a fortunate way to glue copies of Pa together into a closed hyperbolic surface.
Of course, if we want to have any chance of obtaining surfaces with large systoles,
we need to choose a large. Unfortunately, this will make the seams of Pa (the
shortest geodesic segments between all pairs of distinct boundary components of
Pa) very short. Hence, the ultimate goal will be to balance these two effects.

Before we get to this (Section 6), we will first need to recall and prove some facts
about the geometry of Pa (Sections 3 and 4) and spheres with boundary glued out
of multiple copies of Pa (Section 5).



LONG SYSTOLIC PANTS DECOMPOSITIONS 1071

3. Pairs of pants

Let us first gather some facts about the geometry of Pa. We will write s(a) for
the length of the three seams on Pa. Using the formulas on [Bus10, p. 454], we
obtain

cosh(s(a)) =
cosh2

(
a
2

)
+ cosh

(
a
2

)
sinh2

(
a
2

) =
cosh

(
a
2

)
cosh

(
a
2

)
− 1

.

Working this out we obtain

s(a) ∼ 2e−a/4,

as a → ∞, where we write f(a) ∼ g(a) as a → ∞ if

lim
a→∞

f(a)

g(a)
= 1.

Every boundary component of Pa has two pairs of special points: the points
where the seams meet the boundary and the midpoints between each pair of seams,
indicated in white and black respectively in Figure 1.

Figure 1. The pair of pants Pa.

All gluings of copies of Pa into hyperbolic surfaces that we shall consider will
be such that white points are glued to black points and vice versa. Note that this
comes down to twists of either a/4 or 3a/4. We will call such gluings admissible
gluings.

For the arguments later on, we will need a bound on the diameter diam(Pa) of
Pa as a hyperbolic surface. To this end we have the following lemma:

Lemma 3.1. There exists a constant C > 0, independent of a, so that
a

2
≤ diam(Pa) ≤

a

2
+ C,

for all a large enough.

Proof. The lower bound is for instance achieved by any pair midpoints on a single
boundary component.

For the upper bound, we note that for a large enough, the distance between
any point on Pa and ∂Pa is uniformly bounded. As such we can instead bound
max {dPa

(p, q); p, q ∈ ∂Pa}, where dX : X × X → [0,∞) denotes the distance
function on a hyperbolic surface X.

Let p, q ∈ ∂Pa. Their distance is bounded from above by a/2 if they lie on the
same boundary component, so let us assume that they do not. Denote by mp,1,
mp,2 and mq,1, mq,2 the midpoints on the boundary components containing p and
q respectively. Furthermore, we may label these midpoints so that when we cut
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Pa open along the seams, mp,1 and mq,1 lie on the same right-angled hexagon and
mp,2 and mq,2 do as well. As such

d(mp,1,mq,1) ≤ D and d(mp,2,mq,2) ≤ D

for some D > 0 that does not depend on a (given that a is large enough). The
formulas on [Bus10, p. 454] can be used to work out an explicit bound for this
constant.

We have

dPa
(p,mp,1) + dPa

(p,mp,2) + dPa
(q,mq,1) + dPa

(q,mq,2) = a.

So either

dPa
(p,mp,1) + dPa

(q,mq,1) ≤
a

2
or dPa

(p,mp,2) + dPa
(q,mq,2) ≤

a

2
.

Together with the bound on the distances between midpoints, this implies the
lemma. �

For convenience, let us define a constant a0 ∈ (0,∞) so that

(1) 2 · diam(Pa)/a ≤ min{3/2, 1 + C/a},
for all a ≥ a0. The use of these inequalities will become apparent later on.

4. Lengths of simple arcs

In this section we record two lemmas about the lengths of arcs on Pa. The first,
in which dX : X×X → [0,∞) denotes the distance function on a hyperbolic surface
X, is as follows:

Lemma 4.1. Let γ ⊂ Pa be a simple arc between two points p, q ∈ ∂Pa in the
same boundary component and suppose that γ is not homotopic to a segment in
∂Pa relative to p and q. Let sp and sq be the seams nearest to p and q respectively
and write x = dPa

(p, sp) and y = dPa
(q, sq). Then

�(γ) ≥ a− x− y.

Proof. Because γ is not homotopic to a segment in ∂Pa, it necessarily intersects one
of the seams. We will prove our lemma in three steps: first for arcs that intersect
the seams on Pa only once, then for arcs that intersect the seams twice and finally
for arcs that intersect the seams at least three times.

Consider Figure 2 for the first case.

p

q

x

y

γ1

γ2

β

Figure 2. An arc on Pa that intersects the seams once.
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It shows the arc γ that is cut into two sub-arcs γ1 and γ2 by one of the seams.
Note that γ necessarily intersects the ‘middle’ seam, if not it would be homotopic
to the boundary.

The dashed arc β in the image is homotopic to an arc in the boundary of Pa (of
length a/2) relative to the seams. Because the arc in the boundary is orthogonal
to the seams, it realizes the minimal length in its homotopy class. As such

�(γ1) + x = �(β) ≥ a

2
⇒ �(γ1) ≥

a

2
− x.

Likewise, we have

�(γ2) ≥
a

2
− y.

Adding these up gives us the inequality we are after. Because the case where the
nearest seam to p and q is the same is completely analogous, this completes the
proof in the case where γ intersects the seems once.

The case where γ intersects the seams twice splits into two situations. First note
that γ necessarily intersects two distinct seams, otherwise it would be homotopic
to a boundary segment.

We start with the assumption that the seams closest to p and q are the same.
Suppose that of the two, q is closest to the seam, in this case, the situation looks
as it does in Figure 3.

pq

x

y

γ

Figure 3. An arc on Pa that intersects the seams twice.

We can complete γ with a boundary segment into a curve homotopic to a
boundary curve. As such we obtain

�(γ) ≥ a− x+ y ≥ a− x− y.

If p is closest to the seam instead, then the plus and minus signs in front of x and
y interchange, which means that the lemma is still valid.

The second possibility is that the seam closest to p is not the seam closest to q.
In that case, the situation looks as in Figure 4.
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p q

x yγ1

γ2

Figure 4. Another arc on Pa that intersects the seams twice.

With similar arguments to the one above, we obtain

�(γ1) ≥
a

2
− x and �(γ2) ≥

a

2
,

hence

�(γ) ≥ a− x ≥ a− x− y.

Again, we might change which pair of seams γ intersects, which changes the role of
x and y in the above, but not the validity of the lemma.

Finally, in the case where γ intersects the seams at least three times, γ has at
least two sub-arcs that run from seam to seam. By the same arguments as the ones
above, such an arc has length at least a/2, from which we obtain that

�(γ) ≥ a,

which finishes the proof. �

Furthermore, we have the following:

Lemma 4.2. Let α ⊂ Pa be a simple arc between two points p and q on a single
boundary component of Pa. Furthermore, let β1 and β2 be the two arcs between p
and q on the given boundary component. Then

�(α) ≥ max{�(β1), �(β2)}.

Proof. Set b = �(β1). Hence �(β2) = a− b. Because α ∪ β1 is homotopic to one of
the pants curves, we have

�(α) + b ≥ a ⇒ �(α) ≥ a− b = �(β2).

Likewise, α ∪ β2 is homotopic to the other pants curve, so

�(α) + a− b ≥ a ⇒ �(α) ≥ b = �(β1).

�
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5. Trees of pants

The two lemmas above allow us to control the lengths of simple curves on spheres
with boundary obtained from admissible gluings of multiple copies of Pa. In this
section we detail how to do this.

Given k ∈ N, let Bk be the radius k ball around a vertex in the infinite 3-regular
tree. So Bk is a tree in which all the vertices except the leaves have degree 3.
Furthermore, let Xk be the surface obtained by gluing copies of Pa together in an
admissible way according to Bk. Note that this uniquely defines the surface Xk,
this follows from the symmetry of Bk and Pa. Topologically Xk is a sphere with
3 · 2k boundary components.

The lemmas above imply the following:

Proposition 5.1. Let k ∈ N and a ≥ a0. Furthermore, let γ be a non-contractible
simple closed curve on Xk that is not homotopic to a pants curve. Then

�(γ) ≥ 3a/2.

Proof. We may and will assume that γ is a simple closed geodesic. Any such curve
γ intersects the pants curves in a positive even number of points. In particular, γ
crosses at least two pairs of pants.

Let us denote the points where γ intersects the pants curves p1, . . . , p2m. Fur-
thermore, let γi be the sub-arc of γ between pi and pi+1 for i = 1, . . . , 2m, where
we set p2m+1 = p1. Note that because geodesics do not form bigons, none of these
γi are homotopic to a segment of a pants curve relative to pi and pi+1. Let Pi be
the pair of pants on which γi lies and let si,1 and si,2 denote the seams of Pi that
are nearest to pi and pi+1 respectively and write

xi = dPi
(pi, si,1) and yi = dPi

(pi+1, si,2)

Because the gluing is admissible, we have

(2) xi+1 =
a

4
− yi.

Furthermore, because every pants curve on Xk is separating, at least two of the
segments γi run between two points on a single pants curve.

Let us first assume that γ lies on two pairs of pants only. In particular, this
means that all the points pi lie on the same pants curve. Lemma 4.1 tells us that

�(γ) =

2m∑
i=1

�(γi) ≥
2m∑
i=1

a− xi − yi = 2ma−
(

2m∑
i=1

xi + yi

)
.

Now we apply (2) and obtain

�(γ) ≥ 3

2
m · a,

which is at least 3a/2.
Our goal will be to use Lemma 4.2 to show that if γ runs through n ≥ 3 pairs

of pants, then we can modify it, so that it becomes a curve that is shorter, lies in 2
pairs of pants and is still not a pants curve. Note that this is enough to prove the
proposition.

The pairs of pants that contain γ induce a sub-tree Tγ ⊂ Bk and a subsurface
Xγ ⊂ Xk. BecauseXγ consists of at least 3 pairs of pants, it has at least 5 boundary
components. Since γ is simple and separating, Xγ \ γ consists of two components
A and B.
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Our first claim is that at least one of these components (say A) contains at least
3 boundary components of Xγ , at least 1 of which is a boundary component of a
pair of pants P that corresponds to a leaf of Tγ (we will call such pairs of pants
leaves from hereon). To see this, note that Tγ has at least 2 leaves. Each leaf
contributes 2 boundary components to ∂Xγ and hence Xγ has at least 4 boundary
components coming from leaves of Tγ . If all of these lie on the same component A
or B of Xγ \ γ, then that component satisfies the condition. If this is not the case,
then both A and B contain boundary components coming from leaves and we only
need to check that one of the two has at least 3 boundary components in common
with Xγ . This follows from the fact that Xγ has at least 5 boundary components.

Note that when a pair of pants P is a leaf, the intersection γ∩P necessarily con-
sists of a disjoint collection of arcs with endpoints on a single boundary component
of P . If α is such an arc, then P \ α necessarily consists of two components, each
one containing one of the two components δ1 and δ2 of ∂P ∩ ∂Xγ . As such, we can
speak of the sub-arc α1 (or α2) of γ that is closest to δ1 (or δ2 respectively). These
are the arcs α1 and α2 so that the component of P \ αi that contains δi contains
no other sub-arcs of γ (for i = 1, 2).

Now there are two cases to consider. The first is when A contains both compo-
nents of ∂Xγ ∩ ∂P , for some leaf P . Let δ1 be one of the components of ∂Xγ ∩ ∂P
and α1 the sub-arc of γ closest to δ1. We replace the sub-arc α1 of γ by the arc
in ∂P ∩ A with the same endpoints as α1 to create a new curve γ′. First note
that because α1 is the arc closest to δ1, γ

′ is still a simple curve. To see that γ′ is
still not a pants curve, note that by construction, the components of Xγ \ γ′ both
contain exactly one component from ∂P ∩ ∂Xγ . This means that γ′ cannot be a
pants curve.

The second case to consider is when A contains at most one of the components
of ∂P ∩∂Xγ for every leaf P . Let us first note that we may assume the same about
B. Indeed, there needs to be at least one leaf P so that A contains exactly one of
the components of ∂P ∩ ∂Xγ . As such B needs to contain the other component of
∂P ∩ ∂Xγ . If B were to contain both boundary components of another leaf, then
B would have at least 3 boundary components and we could apply the surgery
described above to B. So, we will assume that both A and B contain exactly one
of the components of ∂P ∩ ∂Xγ for every leaf P and moreover that ∂A ∩ ∂Xγ has
at least 3 components.

Because a pair of pants that is not a leaf contributes at most one boundary
component to ∂Xγ , this implies that every component of ∂A ∩ ∂Xγ comes from
a different pair of pants. Suppose P is a leaf and δ1 the boundary component it
shares with A. We again replace the corresponding closest arc α1 ⊂ γ by the arc in
∂P ∩A with the same endpoints to obtain a curve γ′. As before γ′ is still simple. It
is also still not a pants curve, because by construction both components of Xγ \ γ′

contain boundary components coming from at least 2 pairs of pants.
We conclude by observing that the total number of essential intersections of our

curve with the internal pants curves of Xγ goes down in each step (the arc we add
can always be homotoped out of the corresponding leaf P ). As such, we know that
after some number of iterations of the process described above, the resulting curve
needs to lie in at most two pairs of pants. By Lemma 4.2 the length of the curve
does not increase in any of the iterations. �
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6. The construction

We are now ready to describe the construction. First of all, given a > 0, a
trivalent graph Γ with vertices V and edges E and t ∈ {−1, 1}E , we define a
hyperbolic surface Sa(Γ, t). The surface Sa(Γ, t) is obtained by gluing copies of Pa

according to Γ with twist τe along the edge e for all e ∈ E, where

τe =

{
a/4 if te = −1
3a/4 if te = 1

for all e ∈ E.

Here we measure twist as the distance between the images of some predefined
triple of midpoints (the black points in Figure 1) on ∂Pa (one on each boundary
component). Which exact triple we choose, will not play a role in what follows.

Given such a pair (Γ, t), let us write

g(Γ, t) and sysa(Γ, t)

for the genus and the systole of Sa(Γ, t) respectively. We furthermore define

diama(Γ, t) = max
v,w∈V

{
dSa(Γ,t)(∂v, ∂w)

}
,

where ∂v ⊂ Sa(Γ, t) denotes the boundary of the copy of Pa corresponding to a
vertex v ∈ V .

Our first observation is the following:

Lemma 6.1. Let (Γ, t) be as above and a ≥ a0. Then there exists a constant R > 0
independent of (Γ, t) and a such that

3a

4
+ diama(Γ, t) ≥ log(|V |)−R.

Proof. Take a point x ∈ ∂v for some v ∈ V and consider a different vertex w ∈ V .
By the definition of diama(Γ, t), there exist points pv ∈ ∂v and pw ∈ ∂w so that

dSa(Γ,t)(pv, pw) ≤ diama(Γ, t).

From (1) we get that

dSa(Γ,t)(pv, x) ≤ diam(Pa) ≤
a

2
+ C,

for some constant C > 0 independent of a. Furthermore there exists a midpoint
y ∈ ∂w (one of the black points in Figure 1) so that

dSa(Γ,t)(pw, y) ≤
a

4
.

There exist constants A,D>0 independent of a so that Pa contains a disk of area A
at distance D from any midpoint on ∂Pa. These constants have been made explicit
by Parlier in [Par06]. For the current computation we will stick to D and A.

Combining all the observations above, we obtain that the disk Dr(x) ⊂ Sa(Γ, t)
of radius

r = diama(Γ, t) +
3a

4
+ C ′

contains at least |V | disjoint disks of area A. Here C ′ is slightly larger than D+C
so as to include the entire disk in every pair of pants. As such

2π cosh

(
diama(Γ, t) +

3a

4
+ C ′

)
≥ area(Dr(x)) ≥ |V |A.

Applying cosh−1 to both sides now gives the inequality. �
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Finally, we need the following proposition:

Proposition 6.2. Let a ≥ a0 and 1 < r < 3/2. Then there exists a pair (Γ, t)
consisting of a trivalent graph Γ = (V,E) and t ∈ {−1, 1}E so that every simple
closed geodesic γ on Sa(Γ, t) that is not homotopic to a pants curve satisfies

�(γ) ≥ r · a.

Proof. There exist trivalent graphs of arbitrarily high girth (see for instance [ES63]).
So we can pick a trivalent graph Γ so that its girth h(Γ) satisfies

h(Γ) ≥ 2 · �r · a/s(a).
Choose any t ∈ {−1, 1}E and consider a simple closed geodesic γ on Sa(Γ, t) of
length �(γ) < r · a. Given a pair of pants v ∈ V so that γ ∩ v �= ∅, we have

�(γ ∩ v) ≥ s(a).

This is because γ ∩ v is not homotopic to any segment in ∂v relative to ∂v.
Now pick any pair of pants v0 ∈ V such that v0 ∩ γ �= ∅. The above tells us

that the pairs of pants v ∈ V that intersect γ non-trivially form a subgraph of
D�r·a/s(a)�(v0), the graph ball of radius �r · a/s(a) around v0. Because of our
assumption on the girth of Γ, we have

D�r·a/s(a)�(v0) � B�r·a/s(a)�,

as graphs. Proposition 5.1 now tells us that γ is necessarily a pants curve. �

For a > 0, define

r(a) =
2 · diam(Pa)

a
.

Recall that by the definition of a0 (1) we have

(3) 1 ≤ r(a) ≤ min

{
3

2
, 1 + C/a

}
,

for all a ≥ a0 and some constant C > 0 independent of a.
Given a ≥ a0, let us write

Ga =

{
(Γ, t);

Any simple closed geodesic γ on Sa(Γ, t) that is
not a pants curve satisfies �(γ) ≥ r(a) · a

}
.

The proposition above tells us that this set is not empty. Note that

sysa(Γ, t) = a

for any (Γ, t) ∈ Ga. This is because the systole of a closed hyperbolic surface is
necessarily a simple closed geodesic.

The fact that Ga is non-empty makes it possible to define (Γa, ta) to be any pair
so that

g(Γa, ta) = min
(Γ,t)∈Ga

{g(Γ, t)}.

We claim that this pair defines a surface with the desired properties:

Theorem 6.3. There exists a constant K > 0, independent of a so that

sysa(Γa, ta) ≥
4

7
log(g(Γa, ta))−K,

for all a ≥ a0. In particular, Sa(Γa, ta) is a surface with large systoles and a systolic
pants decomposition.
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Proof. What we will actually prove is that

diama(Γa, ta) ≤ r(a) · a.
Suppose this is not the case. This means that we can find vertices v, w ∈ V so that

dSa(Γa,ta)(∂v, ∂w) ≥ r(a) · a.
If we remove the corresponding pairs of pants, we obtain a pair (Γ′, t′) where Γ′ =

(V ′, E′) is a graph with vertex degrees bounded by 3 and t′ ∈ {−1, 1}E′
. This pair

still corresponds to a surface Sa(Γ
′, t′), depicted in Figure 5.

v

α1

α2

α3

w

β1

β2

β3

Sa(Γ
′, t′)

Figure 5. Modifying the surface.

We claim that when we glue the curve αi to βi for i = 1, 2, 3 in an admissible way,
then the resulting surface still has no simple non-pants curves of length ≤ r(a) · a.
Let us denote the corresponding graph and set of twists by Γ′′ and t′′ respectively.

First of all note that the surface Sa(Γ
′, t′) certainly has no such curves. So any

simple non-pants curve of length ≤ r(a) · a needs to consist of arcs between various
α- and β-curves.

The fact that dSa(Γa,ta)(∂v, ∂w) ≥ r(a) ·a tells us that any arc that runs from an
α-curve to a β-curve is too long. So if Sa(Γ

′′, t′′) has a non-pants curve of length
≤ r(a) · a, it consists of arcs running between α-curves and arcs running between
β-curves.

Furthermore, such a curve necessarily contains at least two such arcs. Finally, we
may assume that if any of these arcs has both endpoints on the same α- or β-curve,
it is not homotopic to a segment of the corresponding α- or β- curve relative to
its endpoints. Otherwise, we would be able to homotope the curve into Sa(Γ

′, t′),
which is a case that we have already dealt with.

Consider a simple arc γ running between p, q ∈ ∂v. On Sa(Γa, ta) we can use
a simple arc between p and q in v to complete γ to a simple curve that is not
homotopic to a pants curve. Because Sa(Γa, ta) has no non-pants curves of length
≤ r(a) · a we have

�(γ) ≥ r(a) · a− diam(Pa) = r(a) · a/2.
But then any curve that contains more than two such arcs has length at least r(a)·a.
As such Sa(Γ

′′, t′′) indeed has no non-pants curves of length ≤ r(a) · a.
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This means that (Γ′′, t′′) ∈ Ga. But

g(Γ′′, t′′) < g(Γa, ta),

which contradicts our assumption on (Γa, ta).
So indeed

diama(Γa, ta) ≤ r(a) · a.
Filling in Lemma 6.1 and using (3) gives

7a

4
+ C ≥

(
3

4
+ r(a)

)
· a ≥ log(|V |)−R = log(2g(Γa, ta)− 2)−R,

for some C,R > 0 independent of a. Using that a = sysa(Γa, ta) and rearranging
the terms now gives the result. �

Finally, we note that the admissibility of the twists was only used in the con-
struction of a surface without short pants curves (Proposition 6.2). The other parts
of the proof of Theorem 6.3 do not make essential use of this assumption.
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