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UNIQUENESS OF SOLUTIONS

OF MEAN FIELD EQUATIONS IN R2

CHANGFENG GUI AND AMIR MORADIFAM

(Communicated by Joachim Krieger)

Abstract. In this paper, we prove uniqueness of solutions of mean field equa-
tions with general boundary conditions for the critical and subcritical total
mass regime, extending the earlier results for null Dirichlet boundary condi-
tion. The proof is based on new Bol’s inequalities for weak radial solutions
obtained from rearrangement of the solutions.

1. Introduction

Let Ω ⊂ R
2 be an open bounded domain and consider the mean field equation{

Δu+ ρ eu∫
Ω
eu

= 0 in Ω,

u = 0 on ∂Ω.
(1)

Suzuki [23] proved that if Ω is simply-connected, then for 0 < ρ < 8π the equation
(1) has a unique solution. Later in [8] the authors extended this result to the
case ρ = 8π. Recently in [5] Bartolucci and Lin extended the result to multiply-
connected domains. Indeed they proved the following.

Theorem A (Theorem 2 in [5]). Let Ω be an open, bounded, and multiply-connected
domain of class C1. Then equation (1) admits at most one solution for 0 < ρ ≤ 8π.

The proof relies on a generalization of the classical Bol’s inequality for multiply-
connected domains (see Theorem C below). A necessary and sufficient condition
for the existence of a solution at the critical parameter ρ = 8π is also provided in
[5].

In this paper, among other results, we study uniqueness of solutions of the general
mean field equation {

Δu+ ρ K(x)eu∫
Ω
K(x)eu

= f in Ω,

u = g on ∂Ω,
(2)

on simply-connected domains, where K is a prescribed positive C2 function. We
shall prove the following uniqueness results for ρ ≤ 8π.
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Theorem 1.1. Let Ω be an open, bounded and simply-connected domain, and let
K ∈ C2(Ω) ∩ C(Ω) be positive. Assume that vi ∈ C2(Ω) ∩ C(Ω), i = 1, 2, satisfy

(3) Δvi +Kevi = fi(x),

where f2 ≥ f1 ≥ −Δ ln(K) in Ω. If v2 − v1 > c on Ω, v2 − v1 = c on ∂Ω for some
c ∈ R, and ∫

Ω

Kev1dx =

∫
Ω

Kev2dx = ρ,

then ρ > 8π.

The above theorem is equivalent to the next uniqueness result. Indeed Theorem
1.1 follows from Theorem 1.2 by letting wi = lnK + vi, i=1,2, and Theorem 1.2
follows from Theorem 1.1 by letting K ≡ 1.

Theorem 1.2. Let Ω be an open, bounded, and simply-connected domain. Assume
that wi ∈ C2(Ω) ∩ C(Ω), i = 1, 2, satisfy

(4) Δwi + ewi = fi(x),

where f2 ≥ f1 ≥ 0 in Ω. If w2 −w1 > c on Ω, w2 −w1 = c on ∂Ω for some c ∈ R,
and ∫

Ω

ew1dx =

∫
Ω

ew2dx = ρ,

then ρ > 8π.

Corollary 1.3. Let Ω be an open, bounded and simply-connected domain, and let
K ∈ C2(Ω) ∩ C(Ω) be positive. Assume that ui ∈ C2(Ω) ∩ C(Ω), i = 1, 2 satisfy

(5) Δui + ρ
Keui∫
Ω
Keui

= fi(x),

where f2 ≥ f1 ≥ −Δ ln(K) in Ω, and u2 − u1 > c on Ω. If u2 − u1 = c on ∂Ω for
some c ∈ R, then ρ > 8π.

We also present the following uniqueness results on multiply-connected domains.

Theorem 1.4. Let Ω be an open, bounded and multiply-connected domain, and let
K ∈ C2(Ω) ∩ C(Ω) be positive. Assume that vi ∈ C2(Ω) ∩ C(Ω), i = 1, 2, satisfy

(6) Δvi +Kevi = fi(x),

where f2 ≥ f1 ≥ −Δ ln(K). If v2 − v1 > c2 − c1 on Ω, v1 + ln(K) = c1 and
v2 + ln(K) = c2 on ∂Ω for some c1, c2 ∈ R, and∫

Ω

Kev1dx =

∫
Ω

Kev2dx = ρ,

then ρ > 8π.

Corollary 1.5. Let Ω be an open, bounded and multiply-connected domain, and let
K ∈ C2(Ω) ∩ C(Ω) be positive. Assume that ui ∈ C2(Ω) ∩ C(Ω), i = 1, 2 satisfy

(7) Δui + ρ
Keui∫
Ω
Keui

= fi(x),

where f2 ≥ f1 ≥ −Δ ln(K). If u2 − u1 > c2 − c1 on Ω, u1 + ln(K) = c1 and
u2 + ln(K) = c2 on ∂Ω for some c1, c2 ∈ R, then ρ > 8π.
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We should mention that Theorems 1.1 and 1.2, and Corollary 1.3 are known in
some special cases and also when the wight K is singular (see [4]).

We shall use a new idea from [14] regarding the rearrangement of the solutions
according to the standard metric on a sphere (projected to R

2) and compare the
total masses of the solutions. In particular, we shall show a reversed Bol’s inequality
in exterior domain for weak radial solutions (Proposition 3.1).

2. Preliminaries

Bol’s isoperimetric inequality plays a crucial role in the proof of our main results.
In this section we gather some results on Bol’s inequality that will be used in
subsequent sections. Let us first recall the classical Bol’s isoperimetric inequality;
see [2, 4, 6, 8, 21, 23], and [7] for a detailed history of the Bol’s inequality.

Theorem B. Let Ω ⊆ R
2 be a simply-connected and assume u ∈ C2(Ω) ∩ C(Ω)

satisfies

(8) Δu+ eu ≥ 0,

∫
Ω

eudx ≤ 8π.

Then for every ω � Ω of class C1 the following inequality holds:

(9)

(∫
∂ω

e
u
2

)2

≥ 1

2

(∫
ω

eu
) (

8π −
∫
ω

eu
)
.

Moreover the inequality in (9) is strict if Δu+ eu > 0 somewhere in ω or ω is not
simply-connected.

For λ > 0 the function Uλ defined by

(10) Uλ := −2 ln(1 +
λ2|y|2

8
) + 2 ln(λ)

satisfies
ΔUλ + eUλ = 0,

and (∫
∂Br

e
Uλ
2

)2

=
1

2

(∫
Br

eUλ

) (
8π −

∫
Br

eUλ

)
,

for all r > 0 and λ > 0, where Br denotes the ball of radius r centered at the origin
in R

2.
Note that Theorem B requires Ω to be simply-connected but ω can be multiply-

connected. Recently in [5] Theorem B is extended to the case where Ω ⊂ R
2 is

multiply-connected and u is constant on ∂Ω.

Theorem C (Theorem 3 in [5]). Let Ω be an open and bounded domain of class
C1 in R

2 and assume u ∈ C2(Ω) ∩ C(Ω) satisfies (8) and u = c on ∂Ω, for some
constant c ∈ R. Then (9) holds for every ω � Ω. Moreover the inequality is strict
if Δu+ eu > 0 somewhere in ω or ω is not simply-connected.

Let Ω be an open, bounded, and multiply-connected domain of class C1 in R
2,

and Ω∗ be the closure of the union of the bounded components of R2 \ ∂Ω and
Ω∗ = Ω∗ \ ∂Ω∗. It is easy to see that Ω ⊂ Ω∗. Suppose g ∈ C(∂Ω) satisfies

(11) g = G|∂Ω,
where G is Lipschitz continuous in Ω∗, G is subharmonic in Ω∗ and harmonic in Ω.
The following more general result is also proved in [5].
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Theorem D (Theorem 4 in [5]). Let Ω be an open, bounded, and multiply-connected
domain of class C1 in R

2. Suppose u ∈ C2(Ω) ∩ C(Ω) satisfies (8) with u = g on
∂Ω, and g ∈ C(∂Ω) satisfies (11). Then (9) holds for every ω � Ω. Moreover the
inequality is strict if Δu+ eu > 0 somewhere in ω or ω is not simply-connected.

Next we shall recall some facts about rearrangements according to the metric on
R

2 which is the stereographic projection of the standard metric on the unit sphere.
Such rearrangments are discussed in detail in [14], but we also include it here for
the sake of the readers. Let Ω ⊂ R

2 and λ > 0, and suppose that u ∈ C2(Ω)
satisfies

Δu+ eu ≥ 0.

Then any function φ ∈ C2(Ω) which is constant on ∂Ω can be equimeasurably
rearranged with respect to the measures eudy and eUλdy (see [2], [4], [8], [21], [23]),
where Uλ is defined in (10). More precisely, for t > miny∈Ω φ define

Ωt := {φ > t} ⊂⊂ Ω,

and let Ω∗
t be the ball centered at the origin in R

2 such that∫
Ω∗

t

eUλdy =

∫
Ωt

eudy := a(t).

Then a(t) is a right-continuous function, and φ∗ : Ω∗ → R defined by φ∗(y) :=
sup{t ∈ R : y ∈ Ω∗

t } provides an equimeasurable rearrangement of φ with respect
to the measure eudy and eUλdy, i.e.

(12)

∫
{φ∗>t}

eUλdy =

∫
{φ>t}

eudy, ∀t > min
y∈Ω

φ.

We shall need the following lemma.

Proposition 2.1. Let u, ϕ ∈ C1(Ω̄) and assume that φ is constant on ∂Ω. Let
φ∗(r) be the equimeasurable rearrangement of φ with respect to the measure eudy
and eUλdy. Then φ∗ is Lipschitz continuous on (ε, R − ε), for every ε > 0, where
R is the radius of Ω∗.

Proof. First note that the function φ∗ is decreasing and the set

T := {t ≥ min
Ω̄

φ : (φ∗)−1(t) is not a singleton}

has Lebesgue measure zero. Indeed (φ∗)−1(t) is a connected closed interval for all
t ∈ T . Let 0 < r1 < r2 < R and

a(t) =

∫
{φ∗>t}

eUλdy =

∫
{φ>t}

eudy, ∀t > min
y∈Ω

φ.

For φ∗(r1), φ
∗(r2) �∈ T , we have

a(φ∗(r2))− a(φ∗(r1)) =

∫
{φ∗(|y|)>φ∗(r2)}

eUλdy −
∫
{φ∗(|y|)>φ∗(r2)}

eUλdy

=

∫
{φ(y)>φ∗(r2)}

eudy −
∫
{φ(y)>φ∗(r2)}

eudy

=

∫
{φ∗(r2)≤φ(y)≤φ∗(r1)}

eudy

=

∫
{φ∗(r2)≤φ∗(|y|)≤φ∗(r1)}

eUλdy.
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Now let m := min
Ω

eu(y), M1 := max
Ω∗

eUλ(y), and M2 := max
Ω

|∇φ|. Then it follows

from the above equality that

a(φ∗(r2))− a(φ∗(r1)) ≤ M1μ({φ∗(r2) ≤ φ∗(|y|) ≤ φ∗(r1)})
= M1μ(r1 ≤ |y| ≤ r2) = M1π(r

2
2 − r21)

≤ 2πRM1(r2 − r1).

On the other hand,

a(φ∗(r2))− a(φ∗(r1)) ≥ mμ({φ∗(r2) ≤ φ(y) ≤ φ∗(r1)})

≥ m

M2

∫
{φ∗(r2)≤φ(y)≤φ∗(r1)}

|∇φ|dy

≥ m

M2

∫ φ∗(r1)

φ∗(r2)

∫
{φ−1(t)}

dsdt

≥ m

M2
(φ∗(r1)− φ∗(r2))K(r1, r2),

where

K(r1, r2) = min
{φ∗(r2)≤t≤φ∗(r1)}

Hn−1(φ−1(t)) > 0, 0 < r1 < r2 < R.

Since {φ−1(t)} = ∂{x : φ(x) > t}, it follows from the isoperimetric inequality that
if φ∗(r1) < max

y∈Ω
φ− δ and φ∗(r2) > min

y∈Ω
φ+ δ, for some α ∈ (0, 1), then

K(r1, r2) > C > 0, ∀r2 with r1 < r2 < R,

for some C > 0 independent of φ. Hence we have

0 ≤ a(φ∗(r2))− a(φ∗(r1))

r2 − r1
≤ 2πRM1M2

mK(r1, r2)
≤ 2πRM1M2

mC
.(13)

By approximation the above also holds for ε < r1 < r2 < R−ε. Thus φ∗ is Lipschitz
continuous on (ε, R− ε) for every ε > 0. �

Now let

j(t) :=

∫
{φ>t}

|∇φ|2dy, j∗(t) :=

∫
{φ>t}

|∇φ∗|2dy, ∀t > min
y∈Ω

φ;

J(t) :=

∫
{φ>t}

|∇φ|dy, J∗(t) :=

∫
{φ∗>t}

|∇φ∗|dy, ∀t > min
y∈Ω

φ.

It is easy to see that both j(t) and J(t) are absolutely continuous and decreasing
in t > miny∈Ω φ. If φ ≡ C on ∂Ω, it can be shown that

(14)

∫
{φ=t}

|∇φ|ds ≥
∫
{φ∗=t}

|∇φ∗|ds, for a.e. t > min
y∈Ω

φ.
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Indeed it follows from Cauchy-Schwarz and Bol’s inequalities that∫
{φ=t}

|∇φ|ds ≥
(∫

{φ=t}
e

u
2

)2 (∫
{φ=t}

eu

|∇φ|

)−1

=

(∫
{φ=t}

e
u
2

)2 (
− d

dt

∫
Ωt

eu
)−1

≥ 1

2
(

∫
Ωt

eu)(8π −
∫
Ωt

eu)(− d

dt

∫
Ωt

eu)−1

=
1

2
(

∫
Ω∗

t

eUλ)(8π −
∫
Ω∗

t

eUλ)(− d

dt

∫
Ω∗

t

eUλ)−1

=

∫
{φ∗=t}

|∇φ∗|ds, for a.e. t > min
y∈Ω

φ.

It also follows that j∗(t), J∗(t) are absolutely continuous and decreasing in t >
miny∈Ω φ, since both functions are right-continuous by definition and

0 ≤ j∗(t− 0)− j∗(t) ≤ j(t− 0)− j(t) =

∫
{φ=t}

|∇φ|2dy = 0, t > min
y∈Ω

φ.

0 ≤ J∗(t− 0)− J∗(t) ≤ J(t− 0)− J(t) =

∫
{φ=t}

|∇φ|dy = 0, t > min
y∈Ω

φ.

Therefore we have the following proposition.

Proposition 2.2. Let u ∈ C2(Ω) satisfy

Δu+ eu ≥ 0 in Ω,

and let Uλ be given by (10). Suppose φ ∈ C1(Ω) and φ ≡ C on ∂Ω. Define the
equimeasurable symmetric rearrangement φ∗ of φ, with respect to the measures eudy
and eUλdy, by (12). Then φ∗ is Lipschitz continuous on (ε, R− ε) for every ε > 0,
and j∗(t), J∗(t) are absolutely continuous and decreasing in t > miny∈Ω φ and (14)
holds.

3. Bol’s type inequalities

We first prove the following lemma.

Lemma 3.1. Let ψ ∈ C(R2 \BR) be a decreasing radial function and∫
(R2\BR)

eψdx < ∞,

for some R > 0. Then

lim
s→−∞

es
∫
{ψ>s}

dx = 0.

Proof. Since ψ is decreasing,

3π

4
r2eψ(r) ≤

∫
(Br\Br/2)

eψdx,

for r > 2R. Letting r → ∞ we obtain,

lim
r→∞

r2eψ(r) = 0.
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Define

r(s) := sup{r ≥ R : ψ(r) > s}, s ∈ R.

Then r(s) is well defined for s < ψ(R) and lims→−∞ r(s) = ∞. Since

es
∫
{ψ>s}

dx ≤ π(r(s)2 −R2)eψ(r(s)),

we obtain

lim
s→−∞

es
∫
{ψ>s}

dx = 0.

The proof is complete. �

For the proof of our main results, we shall need the following reversed Bol’s
inequality.

Proposition 3.1. Let BR be the ball of radius R in R
2 ψ ∈ C0,1(R2 \ BR) be a

strictly decreasing radial function satisfying

(15)

∫
∂Br

|∇ψ|ds ≤ 8π −
∫
R2\Br

eψ for a.e. r ∈ (R,∞), and

∫
R2\BR

eψ < 8π.

Then the following inequality holds:

(16)

(∫
∂BR

e
ψ
2

)2

≤ 1

2

(∫
R2\BR

eψ

) (
8π −

∫
R2\BR

eψ

)
.

Moreover if
∫
∂Br

|∇ψ|ds �≡ 8π−
∫
R2\Br

eψ on (R,∞), then the inequality in (16) is

strict.

Proof. Let β := ψ(R) and define

k(s) = 8π −
∫
{ψ<s}

eψdx, and μ(s) =

∫
{ψ>s}

dx+ πR2,

for s < β. Then

−k′(s) =

∫
{ψ=s}

eψ

|∇ψ| = −esμ′(s).

Hence

−k(s)k′(s) ≥
∫
{ψ=s}

|∇ψ| ·
∫
{ψ=s}

eψ

|∇ψ|(17)

= (

∫
{ψ=s}

eψ/2)2 = es(

∫
{ψ=s}

ds)2

= es · 4π(
∫
{ψ>s}

dx+ πR2) = 4πesμ(s),

for a.e. s < β. Therefore

d

ds
[esμ(s)− k(s) +

1

8π
k2(s)] = μ(s) +

1

4π
k′(s)k(s) ≤ 0,

for a.e. s < β. Integrating on (−∞, β) and using Lemma 3.1 we get

(18)

[
esμ(s)− k(s) +

1

8π
k2(s)

]β
−∞

= eβμ(β)− k(β) +
1

8π
k2(β) ≤ 0.
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Now notice that

k(β) = 8π −
∫
R2\BR

eψdx

and

eβμ(β) = eβ
∫
BR

dx =
1

4π
eβ(

∫
∂BR

ds)2 =
1

4π
(

∫
∂BR

e
ψ
2 ds)2.

Thus (16) follows from the inequality (18). Finally if
∫
∂Br

|∇ψ|ds �≡ 8π−
∫
R2\Br

eψ

on (R,∞), then the inequality (17) will be strict, and consequently (16) will also
be strict. �

Similarly one can prove the following proposition (see Proposition 2.2 in [14]).

Proposition 3.2. Let BR be the ball of radius R in R
2 and u ∈ C0,1(BR) be a

strictly decreasing radial function satisfying

(19)

∫
∂Br

|∇u|ds ≤
∫
Br

eu for a.e. r ∈ (0, R), and

∫
BR

eu < 8π.

Then the following inequality holds:

(20)

(∫
∂BR

e
u
2

)2

≥ 1

2

(∫
BR

eu
) (

8π −
∫
BR

eu
)
.

Moreover if
∫
∂Br

|∇ψ|ds �≡
∫
Br

eψ on (0, R), then the inequality in (20) is strict.

4. Proof of the main results

Lemma 4.1. Let R > 0 and assume that ψ ∈ C0,1(R2 \BR) is a strictly decreasing
radial function that satisfies

(21)

∫
∂Br

|∇ψ| ≤ 8π −
∫
R2\Br

eψ

for a.e. r ∈ (R,∞) and ψ = Uλ1
= Uλ2

on ∂BR for some λ2 > λ1. Then

(22)

∫
R2\BR

eUλ2 ≤
∫
R2\BR

eψ ≤
∫
R2\BR

eUλ1 .

Moreover if
∫
∂Br

|∇ψ| �≡
∫
R2\Br

eψ on r ∈ (R,∞), then the inequalities in (22) are

also strict.

Proof. Let m1 :=
∫
R2\BR

eUλ1 , m2 :=
∫
R2\BR

eUλ2 , and m :=
∫
R2\BR

eψ. Define

β :=

(∫
∂BR

e
ψ
2

)2

=

(∫
∂BR

e
Uλ1
2

)2

=

(∫
∂BR

e
Uλ2
2

)2

.

It follows from Proposition 3.1 that

β ≤ 1

2
m(8π −m).

On the other hand

β =
1

2
m1(8π −m1) =

1

2
m2(8π −m2),

i.e. m1 and m2 are roots of the quadratic equation

x2 − 8πx+ 2β = 0.
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Since m satisfies

m2 − 8πm+ 2β ≤ 0,

we have

m2 ≤ m ≤ m1.

�

Similarly the following lemma holds (see Lemma 3.3 in [14]).

Lemma 4.2. Assume that ψ ∈ C0,1(BR) is a strictly decreasing, radial, Lipschitz
function, and satisfies

(23)

∫
∂Br

|∇ψ| ≤
∫
Br

eψ

a.e. r ∈ (0, R) and ψ = Uλ1
= Uλ2

for some λ2 > λ1 on ∂BR, and R > 0. Then
there holds

(24) either

∫
BR

eψ ≤
∫
BR

eUλ1 or

∫
BR

eψ ≥
∫
BR

eUλ2 .

Moreover if the inequality in (23) is strict in a set with positive measure in (0, R),
then the inequalities in (24) are also strict.

We shall also need the following lemma.

Lemma 4.3. Assume that ψ ∈ C0,1(BR) is a strictly decreasing radial function
satisfying (23) for a.e. r ∈ (0, R). If

ρ =

∫
BR

eψdx =

∫
BR

eUλ < 8π,

then Uλ(R) ≤ ψ(R).

Proof. By Proposition 3.2 we have(∫
∂BR

e
Uλ
2

)2

=
1

2

(∫
BR

eUλ

) (
8π −

∫
BR

eUλ

)

=
1

2

(∫
BR

eψ
) (

8π −
∫
BR

eψ
)

≤
(∫

∂BR

e
ψ
2

)2

,

and hence Uλ(R) ≤ ψ(R). �

Now we are ready to prove the main result of this paper, Theorem 1.2.

Proof of Theorem 1.2. First we prove that ρ ≥ 8π. Suppose w1 and w2 satisfy the
assumptions of Theorem 1.2. Then

Δ(w2 − w1) + ew2 − ew1 = f2 − f1 ≥ 0.

Now choose λ > 0 and R ∈ (0,∞) such that

(25)

∫
Ω

ew1 =

∫
BR

eUλ ,
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and let φ be the symmetrization of w2 − w1 with respect to the measures ew1dy
and eUλdy. Then it follows from Proposition 2.2 and Fubini’s theorem that∫

{φ=t}
|∇φ| ≤

∫
{w2−w1=t}

|∇(w2 − w1)|

≤
∫
Ωt

ew2 − ew1dx

=

∫
{φ>t}

eUλ+φ −
∫
{φ>t}

eUλ

=

∫
{φ>t}

eUλ+φ −
∫
{φ=t}

|∇Uλ|,

for a.e. t > infΩ(w2 − w1). Hence

(26)

∫
{φ=t}

|∇(Uλ + φ)| ≤
∫
{φ>t}

e(Uλ+φ)d

for all t > infΩ(w2 − w1). Since φ is decreasing in r, ψ := Uλ + φ is a strictly
decreasing function, and

(27)

∫
∂Br

|∇ψ| ≤
∫
Br

eψdy, a.e. r ∈ (0, R),

by Proposition 2.2 and the above inequality we see that ψ ∈ W 1,∞(BR) and thus
by Morrey’s inequality ψ ∈ C0,1(BR).

Since w1 �≡ w2 and
∫
Ω
ew1 =

∫
Ω
ew2 , then w2 < w1 on a subset of Ω with positive

measure. Hence φ(R) < 0 and consequently ψ(R) = Uλ(R) + φ(R) < Uλ(R). This
is a contradiction in view of Lemma 4.3, and therefore we must have ρ ≥ 8π.

Next we prove that ρ > 8π. Suppose ρ = 8π and let λ1 > 0. With an argument
similar to the one above we may show that there exists ψ = Uλ1

+ φ ∈ C0,1(R2)
such that ∫

Ω

ew1dx =

∫
R2

eUλ1 = 8π =

∫
Ω

ew2dx =

∫
R2

eψdx,

and

(28)

∫
∂Br

|∇ψ| ≤
∫
Br

eψdx

for a.e. r ∈ (0,∞). Since
∫
R2 e

ψ =
∫
R2 e

Uλ1 , there exists r0 ∈ (0,∞) such that
ψ(r0) = Uλ1

(r0). There exists a positive constant λ2 �= λ1 such that Uλ2
(r0) =

Uλ1
(r0) = ψ(r0). Since ψ > Uλ1

in Br0 , it follows from Proposition 4.2 that λ1 < λ2

and ∫
Br0

eψ ≥
∫
Br0

eUλ2 .

On the other hand ψ < Uλ1
in R

2\Br0 and consequently it follows from Proposition
4.1 that ∫

R2\Br0

eψ ≥
∫
R2\Br0

eUλ2 .

Hence

(29) 8π = ρ =

∫
R2

eψ ≥
∫
R2

eUλ2 = 8π.
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Note that if f1 �≡ 0 or f2 �≡ f1, then the inequality in (29) will be strict, which is
a contradiciton . Suppose f1 ≡ f2 ≡ 0. We may assume without loss of generality
that c = w2 −w1 ≥ 0 on ∂Ω, since otherwise we can switch w1 and w2. By (29) we
conclude that the equality in (28) holds for a.e. r ∈ (0,∞) and ψ = Uλ2

. It also
yields that the equality in (14) must be true for φ = w2 − w1 and t ≥ infΩ φ. By
the proof of Proposition 2.2, we also know that Bol’s inequality (9) on ω = {φ > t}
must be equality, and therefore {φ > t} must be simply-connected for t ≥ infΩ φ
by Theorem D. This is a contradiction since {φ > t} is not simply-connected when
infΩ φ < t < 0. The contradiction implies ρ > 8π. �

Proof of Theorem 1.4. The proof follows from Theorem D and the same argument
used in the proof of Theorem 1.2. �
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