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BOUNDS ON THE GREEN FUNCTION FOR INTEGRAL

OPERATORS AND FRACTIONAL HARMONIC MEASURE

WITH APPLICATIONS TO BOUNDARY HARNACK

LUIS A. CAFFARELLI AND YANNICK SIRE

(Communicated by Joachim Krieger)

Abstract. We prove a priori bounds on the Green function for general inte-
gral operators in divergence form in the spirit of Littman, Stampacchia and
Weinberger’s result. For general linear integral operators with bounded mea-
surable coefficients, we introduce the so-called fractional harmonic measure and
prove several estimates on it. As an application, we prove a new boundary
Harnack principle for these operators. Once the bounds on the Green function
are known, the proof follows the approach of Caffarelli-Fabes-Mortola-Salsa
and K. Bogdan.

1. Introduction

The aim of the present note is three-fold: first we derive bounds on the Green
function for integral operators in the spirit of [LSW63] (see also [GW82]). The
operators in consideration can be linear or nonlinear, modeled in the latter case
on the fractional p−Laplacian. Second, for general integral operators in divergence
form with bounded measurable coefficients we introduce the fractional harmonic
measure and derive, thanks to the previous bounds, some estimates. Finally, we
state, as an application, a boundary Harnack principle in Non-Tangentially Acces-
sible (NTA) domains. The purpose of the note is to collect some known results for
the fractional Laplacian and generalize them, thanks to our bounds on the Green
function, to any type of integral operator in divergence form. The proof follows
closely known ideas, but our contribution is to put such a theory in a unified way.

The work of Littman, Stampacchia and Weinberger [LSW63] establishes that
any second-order differential operator with bounded measurable coefficients of the
form

L :=
n∑

i,j=1

∂i(aij(x)∂j) +
n∑

i=1

bi∂i + c in Ω ⊂ R
n, n ≥ 3,

admits a Green function in Ω with pole at y ∈ Ω denoted GΩ(., y) comparable with
the one of the Laplacian; i.e. there exist constants c1, c2 > 0 such that

c1
|x− y|n−2

≤ GΩ(x, y) ≤
c2

|x− y|n−2
.
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The main goal of this note is to obtain such a result for general nonlocal operators
and give some applications to fractional harmonic measure and boundary Harnack
principle in nonsmooth domains.

Results on the boundary Harnack principle for nonlocal equations. The first bound-
ary Harnack principle was obtained by Bogdan for the fractional Laplacian (−Δ)α

with α ∈ (0, 1) in [Bog97] for Lipschitz domains. The approach he followed is in
the seminal paper by Caffarelli, Fabes, Mortola and Salsa [CFMS81] dealing with
second-order equations in divergence form with bounded measurable coefficients.
Later, his result was generalized to any open set by Song and Wu in [SW99]. We
refer the reader also to [BKK08]. More generally, the paper [BKK15] deals with
a wide class of Markov processes with jumps. Their theory particularly applies to
operators of the type (see Example 5.6 in [BKK15])

Lu(x) =
∫
Rn

(u(x+ y) + u(x− y)− 2u(x)

2

)
K(y) dy

for kernels K(y) = K(−y) and

λ

|y|n+2α
≤ K(y) ≤ Λ

|y|n+2α
, y ∈ R

n.

Finally, recently, Ros-Oton and Serra [ROS17] derived a boundary Harnack prin-
ciple in open domains for nonlocal operators in nondivergence form (i.e. of the
previous form) with bounded measurable kernels K(x, y) comparable to the one of
the fractional Laplacian.

Setting of the problem and main results. We will mainly consider in this paper
operators of the form

(1.1) Lu(x) = P.V.

∫
Rn

(u(x)− u(y))K(x, y) dy

where P.V. stands for the principal value in the Cauchy sense, n ≥ 2 and the kernel
K satisfies the bounds

(1.2)
1

Λ|x− y|n+2α
≤ K(x, y) ≤ Λ

|x− y|n+2α
, 0 < α < 1 .

Written this way, the operator L is of divergence form with bounded measurable
coefficients, with an associated Dirichlet form given by

EK(u, η) :=

∫
Rn

∫
Rn

(u(x)− u(y))[η(x)− η(y)]K(x, y) dx dy .

The previous assumptions (1.2) make the form coercive inWα,2(Rn) and the related
nonlocal equations elliptic. More generally, we will also consider operators defined
by the energy

EΦ
K(u, η) :=

∫
Rn

∫
Rn

Φ(u(x)−u(y))(η(x)− η(y))K(x, y) dx dy

with associated operator LΦ and where the function Φ : R �→ R is assumed to be
continuous, satisfying Φ(0) = 0 together with the monotonicity property

(1.3) Λ−1|t|p ≤ Φ(t)t ≤ Λ|t|p , ∀ t ∈ R .
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Finally, the kernel K : Rn × R
n → R is assumed to be measurable, satisfying the

following ellipticity/coercivity properties:

(1.4)
1

Λ|x−y|n+αp
≤ K(x, y) ≤ Λ

|x−y|n+αp
∀ x, y ∈ R

n, x 	= y,

where Λ ≥ 1 and

(1.5) α ∈ (0, 1) , p ≥ 2.

The canonical example for Φ is Φ(t) = |t|p, yielding the fractional p−Laplacian.
We focus on the following measure data problem: Let Ω be a bounded domain

in R
n and let δy be the Dirac mass at y ∈ R

n. Consider

(1.6)

{
−LΦGΩ = δy in Ω,
GΩ = 0 in R

n\Ω.
Then the function GΩ(., y) is the Green function of LΦ at point y in Ω. We prove

the following theorem.

Theorem 1.1. Let LΦ be defined as before and consider problem (1.6). Then there
exist two constants c1, c2 > 0 such that

c1
|x− y|n−αp

≤ GΩ(x, y) ≤
c2

|x− y|n−αp
.

Remark 1.1. We refer the reader to the proof for the precise definition in which
sense one has to consider problem (1.6).

In Theorem 1.1, taking Φ(t) = |t|2 and p = 2, one gets for the operator L defined
in (1.1) the following bounds for its Green function:

c1
|x− y|n−2α

≤ GΩ(x, y) ≤
c2

|x− y|n−2α
.

The previous theorem has the following applications.

Theorem 1.2. Let α ∈ (0, 1) and Ω be an NTA domain such that 0 ∈ ∂Ω. Let
u, v ≥ 0 in R

n, continuous in B1 satisfying

Lu = Lv, in Ω ∩B1,

u = v = 0, in B1\Ω,
and u(x0) = v(x0) = 1 at some interior point x0 ∈ Ω. Then there exists C > 0
such that

1

C
u ≤ v ≤ Cu, in B1/2.

Here the constant C depends only on n, α,Ω and the ellipticity constants.

We also have

Theorem 1.3. Let α ∈ (0, 1) and Ω be an NTA domain such that 0 ∈ ∂Ω. Let
u, v ≥ 0 in R

n, continuous in B1 satisfying

Lu = Lv, in Ω ∩B1,

u = v = 0, in B1\Ω.
Then there exists C > 0 such that∥∥∥u

v

∥∥∥
Cβ(Ω̄∩B1/2)

≤ C.

Here the constants C, β depend only on n, α,Ω and the ellipticity constants.
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We refer the reader to [JK82] for an extensive theory of nontangentially accessible
(NTA) domains. Basically, an NTA domain is a domain such that the interior
admits a corkscrew chain and the complement has positive density. As in [CFMS81],
we will do the proof when Ω is a Lipschitz domain checking that what we need is
just the previous characterization of NTA domains.

2. Bounds on the Green function: Proof of Theorem 1.1

As already mentioned, the Littman-Stampachia-Weinberger theory ensures
bounds on the Green function in bounded domains for general bounded measurable
second-order operators (see [LSW63] and also [GW82]). The goal of this section is
to derive such bounds for the Green functions of our operators and prove our main
theorem, Theorem 1.1. This relies on zero-order potential estimates obtained in
[KMS15].

2.1. Existence of a Green function.

Definition 1. Let μ ∈ (Wα,2(Ω))′ and g ∈ Wα,2(Rn). A weak (energy) solution
to the problem

(2.1)

{
−LΦu = μ in Ω,

u = 0 in R
n \ Ω

is a function u ∈ Wα,2(Rn) such that∫
Rn

∫
Rn

Φ(u(x)−u(y))(ψ(x)− ψ(y))K(x, y) dx dy = 〈μ, ψ〉

holds for any ψ ∈ C∞
0 (Ω) and such that u = 0 a.e. in R

n \ Ω.
First let us introduce some notation:

(2.2) Tail(v;x0, r) :=

[
r2α

∫
Rn\Br(x0)

|v(x)|
|x−x0|n+αp

dx

]

and the (truncated) Wolff potential

Wμ
β,p(x0, r) :=

∫ r

0

(
|μ|(B�(x0))

	n−βp

)1/(p−1)
d	

	
, β > 0.

We are now ready for the following:

Definition 2 (Solutions obtained by Limiting Approximations for the Dirichlet
problem). Let μ ∈ M(Rn), g ∈ W s,p

loc (R
n) ∩ Lp−1

sp (Rn) and let −LΦ be defined as

above under assumptions (1.3)-(1.5). We say that a function u ∈ Wh,q(Ω) for

(2.3) h ∈ (0, s) , max{1, p− 1} =: q∗ ≤ q < q̄ := min

{
n(p− 1)

n− s
, p

}
is a SOLA to (2.1) if it is a distributional solution to −LΦu = μ in Ω; that is,

(2.4)

∫
Rn

∫
Rn

Φ(u(x)−u(y))(ϕ(x)− ϕ(y))K(x, y) dx dy =

∫
Rn

ϕdμ

holds whenever ϕ ∈ C∞
0 (Ω), if u = g a.e. in R

n \ Ω. Moreover it has to satisfy
the following approximation property: There exists a sequence of functions {uj} ⊂
W s,p(Rn) weakly solving the approximate Dirichlet problems

(2.5)

{
−LΦuj = μj in Ω,

uj = gj on R
n \ Ω ,
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in the sense of Definition 1, such that uj converges to u a.e. in R
n and locally in

Lq(Rn). Here the sequence {μj} ⊂ C∞
0 (Rn) converges to μ weakly in the sense of

measures in Ω and moreover satisfies

(2.6) lim sup
j→∞

|μj |(B) ≤ |μ|(B)

whenever B is a ball. The sequence {gj} ⊂ C∞
0 (Rn) converges to g in the following

sense: For all balls Br ≡ Br(z) with center in z and radius r > 0, it holds that

(2.7) gj → g in W s,p(Br) and lim
j

Tail(gj − g; z, r) = 0 .

2.2. Potential estimates.

Theorem 2.1 (Kuusi, Mingione, Sire [KMS15]). Let μ ∈ M(Rn) be a nonnegative
measure, and let −LΦ be defined as before. Let u be a SOLA as in the previous defi-
nition which is nonnegative in the ball Br(x0) ⊂ Ω and such that the approximating
sequence {μj} for μ is made of nonnegative functions. Then the estimate

(2.8) Wμ
α,p(x0, r/8) ≤ cu(x0)+cTail(u−;x0, r/2) ≤ cWμ

α,p(x0, r)+c

∫
Br(x0)

|u| dx

+cTail(u;x0, r)

holds for a constant c ≡ c(n, s, p,Λ), as soon as Wμ
α,p(x0, r/8) is finite, where

u− := max{−u, 0}.

2.3. Proof of Theorem 1.1. Assume y = 0. From this, we conclude directly.
Indeed, since G ≥ 0 everywhere by the maximum principle we have

Tail(G−;x0, r/2) ≡ 0

for any r > 0.
Since G = 0 outside Ω, this gives

(2.9) Wδ0
α,p(x0, r/8) ≤ cG(x0) ≤ cWδ0

α,p(x0, r) + c

∫
Br(x0)

|G(x)| dx

+rpα
∫
Ω\Br(x0)

|G(x)|
|x−x0|n+pα

dx.

Now by the properties of the Wolff potentials, one gets

Wδ0
α,p(x0, r/8) ∼

1

|x0|n−pα
.

Trivially, one has∫
Ω\Br(x0)

|G(x)|
|x−x0|n+pα

dx ≤ 1

rn+pα

∫
Ω\Br(x0)

|G|.

Hence

(2.10)
C1

|x0|n−pα
≤ G(x0) ≤

C2

|x0|n−pα
+

C

rn

∫
Ω

|G(x)| dx.

Now using Lemma 3.6 in [KMS15] (for v = 0 and then w = u), we deduce that
G ∈ L1(Ω) with a bound depending only on Ω. From the previous estimate we
deduce the result.
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3. The fractional harmonic measure

We now introduce the fractional harmonic measure. Consider

(3.1)

{
−Lu(x) = 0 in Ω,
u = f in R

n\Ω,
where f ∈ C(Rn\Ω) ∩ U with

U =

{
u : Rn → R :

∫
Rn

|u(x)|
1 + |x|n+2α

< ∞
}
.

Remark 3.1. The last integrability condition ensures the convergence of the integral
in L (see [Sil07]).

Therefore, the map
f → u(x)

defines a positive linear functional on C(Rn\Ω). Consequently there exists a Borel
measure W x

L(.,Ω) supported on R
n\Ω such that

u(x) =

∫
Rn\Ω

f(y)dW x
L(y,Ω).

Definition 3. We call the measure W x
L(.,Ω) the fractional harmonic measure at

point x ∈ Ω associated to the operator L. For any A ⊂ Ωc, we denote it W x
L(A,Ω).

Following [CFMS81], the harmonic measure plays a major role in obtaining
boundary Harnack principles in Lipschitz (or NTA) domains. In this section, we
derive several properties for fractional harmonic measure.

The fractional harmonic measure for the fractional Laplacian, called α−harmonic
measure, was investigated for the first time in the work of M. Riesz, who proved
that in the case of the ball B(0, r), one has for α ∈ (0, 2),

dW x
(−Δ)α/2(y,B(0, r)) = kB(x, y) dx

where

kB(x, y) =

{
c(n, α)

(
r2−|x|2
|y|2−r2

)α/2

|x− y|−n, |y| > r,

0, |y| ≤ r.

In particular this proves that the α−harmonic measure on the ball is mutually
absolutely continuous with respect to Lebesgue measure.

3.1. The fractional harmonic measure (or α−harmonic measure) for the
fractional Laplacian. In this section, we collect a few known results on the
α−harmonic measure. Most can be found in the work of Bogdan [Bog97]. The
results we present here will be valid for our general fractional harmonic measure
under appropriate changes.

Bogdan proved in [Bog97, Lemma 6]:

Lemma 3.1. Let V ⊂ R
n be a bounded open set with the outer cone property. Let

A1 and A2 be Borel sets in V c. Assume that there exists a constant C such that
for every ball B = B(x, r) ⊂ V satisfying dist(B, V c) = diam(B) we have

W x
(−Δ)α/2(A1, B) ≤ CW x

(−Δ)α/2(A2, B).

Then
W x

(−Δ)α/2(A1, V ) ≤ CW x
(−Δ)α/2(A2, V ).
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Furthermore the α−harmonic measure is concentrated on intV c and is absolutely
continuous with respect to Lebesgue measure in V c.

Bogdan also proved the following bound (see [Bog97, Corollary 1]):

Lemma 3.2. There exist C,R0 > 0 such that for all Q ∈ ∂D and r ∈ (0, R0/2),
and all x ∈ D\B(Q, 2r),

C−1rn−αGD(a,Aρr/2(Q)) ≤ W x
(−Δ)α/2(B(Q, r), D) ≤ Crn−αGD(a,Aρr/2(Q)),

where Ar(Q) denotes a point A ∈ D ∩ B(Q, r) such that B(A, κr) ⊂ D ∩ B(Q, r)
for some κ > 0 depending only on the Lipschitz constant of the domain D.

The following theorem is due to Wu [Wu02], which will be valid in our case with
suitable changes.

Theorem 3.1. Let 0 < α < 2 and D be an NTA set such that ∂D has zero volume.
Then for any x ∈ D, W x

(−Δ)α/2(∂D,D) = 0.

From the last lemma, invoking the Harnack inequality (see [BK05,DCKP14]),
one deduces that the α−harmonic measure is doubling.

3.2. The fractional harmonic measure for general integral operators L.
We now investigate the fractional harmonic measure as defined before. The fol-
lowing lemma is just a direct consequence of an integration by parts formula (see
[DPROV16]).

Lemma 3.3. Let D ⊂ Ωc be open. Then the fractional harmonic measure is given
by (up to a multiplicative constant)

W x(D,Ω) =

∫
D

(∫
Ω

K(z, y)GΩ(x, y) dy
)
dz

and

dW x(z,Ω) =

∫
Ω

K(z, y)GΩ(x, y) dy.

In particular, the fractional harmonic measure is mutually absolutely continuous
with respect to Lebesgue measure in Ωc.

Notice that an important fact from the previous lemma is that even if one consid-
ers operators with bounded measurable coefficients the fractional harmonic measure
is never singular. This is in great contrast with the local case (see [CFK81,MM81]).

Now using the proof of Bogdan in [Bog97], by replacing the estimates on the
Green function of the fractional Laplacian by our estimates in Theorem 1.1, one
gets

Lemma 3.4. There exists a constant C > 0 universal such that for r0 ≤ 1/2 and
for all x ∈ (Ω ∩B1)\B1/2,

1

C
rn−2αGΩ(x, x0) ≤ W x

L(Br(x0),Ω) ≤ Crn−2αGΩ(x, x0)

where x0 ∈ B1/2 ∩ ∂Ω. Hence by Harnack inequality, the fractional harmonic
measure is doubling.

Similarly, using our bounds on the Green function, one gets verbatim the proof
in [Wu02].
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4. Proof of Theorem 1.2

We first normalize the situation. As already mentioned in the introduction, it is
enough to consider Lipschitz domains as soon as we only need the requirements of
NTA properties. We then assume our domain in

B+
1 = B1 ∩ {xn > 0}

by a standard bilipshitz transformation which preserves the bounds of the kernel
of the new operator L. We then consider the problem

(4.1)

⎧⎨
⎩

Lu(x) = 0 in B+
1 ,

u = 0 on {xn = 0} ∩B1,
u = f on the complement.

One can then reflect in an odd fashion and one obtains an equation in B1 with
a new kernel satisfying the desired bounds.

4.1. The Carleson estimate. We first collect the following several results.

Theorem 4.1 ([Kas09], De Giorgi-Nash-Moser Theorem). Any solution of Lv = 0
in B1 is Hölder continuous on any sub-domain of ω � B1.

Theorem 4.2 ([BK05, DCKP14], Moser’s Harnack inequality). Any solution of
Lv = 0 in B1, v ≥ 0, in R

n satisfies the interior Harnack inequality: for all
ω � B1, we have

sup
ω

v ≤ C inf
ω

v.

Theorem 4.3 ([CCV11], De Giorgi oscillation lemma). Let v be a (sub-)solution
of Lv = 0 in B1 satisfying

• v ≤ 1 in R
n,

• | {v ≤ 0} | > 0.

Then

sup
B1

v ≤ μ < 1.

Combining Theorems 4.1, 4.2 and 4.3 as in [CS05, Theorem 11.5] (see also
[CFMS81]), one proves the following Carleson estimate (note that once the pre-
vious theorems are known, the Carleson estimate does not require any equation).

Theorem 4.4. Let u be a positive solution of (4.1) continuously vanishing on
{xn = 0}. Assume that

u(
1

2
en) = 1.

Then in B+
1 ,

u ≤ M

where M depends on the dimension, α, and the ellipticity constants.

5. Proof of Theorem 1.2

The proof follows using the Carleson estimate and the doubling property of the
fractional harmonic measure as in Wu [Wu02], which uses only the positive density
of the complement. See also Lemma 13 in [Bog97].
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6. Proof of Theorem 1.3

The proof is in Lemma 16 of [Bog97].
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