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ON LOGARITHMIC COEFFICIENTS OF SOME

CLOSE-TO-CONVEX FUNCTIONS

MD FIROZ ALI AND A. VASUDEVARAO

(Communicated by Jeremy Tyson)

Abstract. The logarithmic coefficients γn of an analytic and univalent func-
tion f in the unit disk D = {z ∈ C : |z| < 1} with the normalization

f(0) = 0 = f ′(0) − 1 are defined by log
f(z)
z

= 2
∑∞

n=1 γnz
n. Recently,

D. K. Thomas [Proc. Amer. Math. Soc. 144 (2016), 1681–1687] proved that

|γ3| ≤ 7
12

for functions in a subclass of close-to-convex functions (with ar-

gument 0) and claimed that the estimate is sharp by providing a form of an
extremal function. In the present paper, we point out that such extremal
functions do not exist and the estimate is not sharp by providing a much more
improved bound for the whole class of close-to-convex functions (with argu-
ment 0). We also determine a sharp upper bound of |γ3| for close-to-convex
functions (with argument 0) with respect to the Koebe function.

1. Introduction

Let A denote the class of analytic functions f in the unit disk D = {z ∈ C :
|z| < 1} normalized by f(0) = 0 = f ′(0)− 1. If f ∈ A, then f(z) has the following
representation:

(1.1) f(z) = z +
∞∑
n=2

an(f)z
n.

We will simply write an := an(f) when there is no confusion. Let S denote the
class of all univalent (i.e., one-to-one) functions in A. A function f ∈ A is called
starlike (convex respectively) if f(D) is starlike with respect to the origin (convex
respectively). Let S∗ and C denote the class of starlike and convex functions in
S respectively. It is well known that a function f ∈ A is in S∗ if and only if
Re (zf ′(z)/f(z)) > 0 for z ∈ D. Similarly, a function f ∈ A is in C if and only if
Re (1 + (zf ′′(z)/f ′(z))) > 0 for z ∈ D. From the above it is easy to see that f ∈ C
if and only if zf ′ ∈ S∗. Given α ∈ (−π/2, π/2) and g ∈ S∗, a function f ∈ A is
said to be close-to-convex with argument α and with respect to g if

(1.2) Re

(
eiα

zf ′(z)

g(z)

)
> 0 z ∈ D.
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Let Kα(g) denote the class of all such functions. Let

K(g) :=
⋃

α∈(−π/2,π/2)

Kα(g) and Kα :=
⋃

g∈S∗

Kα(g)

be the classes of functions called close-to-convex functions with respect to g and
close-to-convex functions with argument α, respectively. The class

K :=
⋃

α∈(−π/2,π/2)

Kα =
⋃

g∈S∗

K(g)

is the class of all close-to-convex functions. It is well known that every close-to-
convex function is univalent in D (see [2]). Geometrically, f ∈ K means that the
complement of the image-domain f(D) is the union of non-intersecting half-lines.

The logarithmic coefficients of f ∈ S are defined by

(1.3) log
f(z)

z
= 2

∞∑
n=1

γnz
n

where γn are known as the logarithmic coefficients. The logarithmic coefficients
γn play a central role in the theory of univalent functions. Very few exact upper
bounds for γn seem to have been established. The significance of this problem in
the context of the Bieberbach conjecture was pointed out by Milin in his conjecture.
Milin conjectured that for f ∈ S and n ≥ 2,

n∑
m=1

m∑
k=1

(
k|γk|2 −

1

k

)
≤ 0,

which led de Branges, by proving this conjecture, to the proof of the Bieberbach
conjecture [1]. More attention has been given to the results of an average sense
(see [2, 3]) than the exact upper bounds for |γn|. For the Koebe function k(z) =
z/(1 − z)2, the logarithmic coefficients are γn = 1/n. Since the Koebe function
k(z) plays the role of extremal function for most of the extremal problems in the
class S, it is expected that |γn| ≤ 1

n holds for functions in S. But this is not true
in general, even in order of magnitude. Indeed, there exists a bounded function f
in the class S with logarithmic coefficients γn �= O(n−0.83) (see [2, Theorem 8.4]).

By differentiating (1.3) and equating coefficients we obtain

γ1 =
1

2
a2,(1.4)

γ2 =
1

2
(a3 −

1

2
a22),(1.5)

γ3 =
1

2
(a4 − a2a3 +

1

3
a32).(1.6)

If f ∈ S, then |γ1| ≤ 1 follows at once from (1.4). Using the Fekete-Szegö inequality
[2, Theorem 3.8] for functions in S in (1.5), we can obtain the sharp estimate

|γ2| ≤
1

2
(1 + 2e−2) = 0.635 . . . .

For n ≥ 3, the problem seems much harder, and no significant upper bound for |γn|
when f ∈ S appear to be known.

If f ∈ S∗, then it is not very difficult to prove that |γn| ≤ 1
n for n ≥ 1 and the

equality holds for the Koebe function k(z) = z/(1−z)2. The inequality |γn| ≤ 1
n for

n ≥ 2 extends to the class K was claimed in a paper of Elhosh [4]. However, Girela
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[6] pointed out some error in the proof of Elhosh [4] and, hence, the result is not
substantiated. Indeed, Girela proved that for each n ≥ 2, there exists a function
f ∈ K such that |γn| > 1

n . In the same paper, it has been shown that |γn| ≤ 3
2n

holds for n ≥ 1 whenever f belongs to the set of extreme points of the closed convex
hull of the class K. Recently, Thomas [12] proved that |γ3| ≤ 7

12 for functions in
K0 (close-to-convex functions with argument 0) with the additional assumption
that the second coefficient of the corresponding starlike function g is real. Thomas
claimed that this estimate is sharp and has given a form of the extremal function.
But after rigorous reading of the paper [12], we observed that such functions do
not belong to the class K0 (more details will be given in Section 2).

By fixing a starlike function g in the class S∗, the inequality (1.2) gives a specific
subclass of close-to-convex functions. One such important subclass is the class of
close-to-convex functions with respect to the Koebe function k(z) = z/(1− z)2. In
this case, the inequality (1.2) becomes

(1.7) Re
(
eiα(1− z)2f ′(z)

)
> 0, z ∈ D

and defines the subclass Kα(k). Several authors have extensively studied the class
of functions f ∈ S that satisfies the condition (1.7) (see [5,7,9,11]). Geometrically
(1.7) says that the function h := eiαf has the boundary normalization

lim
t→∞

h−1(h(z) + t) = 1

and h(D) is a domain such that {w+ t : t ≥ 0} ⊆ h(D) for every w ∈ h(D). Clearly,
the image domain h(D) is convex in the positive direction of the real axis. Denote
by CR+ := K0(k) the class of close-to-convex functions with argument 0 and with
respect to Koebe function k(z). That is,

CR+ =
{
f ∈ A : Re (1− z)2f ′(z) > 0, z ∈ D

}
.

Then clearly functions in CR+ are convex in the positive direction of the real axis.
In the present article, we determine the upper bound of |γ3| for functions in K0 and
CR+.

2. Main results

Let P denote the class of analytic functions P with positive real part on D which
has the form

(2.1) P (z) = 1 +

∞∑
n=1

cnz
n.

Functions in P are sometimes called Carathéodory functions. To prove our main re-
sults, we need some preliminary lemmas. The first one is known as Carathéodory’s
lemma (see [2, p. 41] for example) and the second one is due to Libera and
Z�lotkiewicz [10].

Lemma 2.1 ([2, p. 41]). For a function P ∈ P of the form (2.1), the sharp
inequality |cn| ≤ 2 holds for each n ≥ 1. Equality holds for the function P (z) =
(1 + z)/(1− z).

Lemma 2.2 ([10]). Let P ∈ P be of the form (2.1). Then there exist x, t ∈ C with
|x| ≤ 1 and |t| ≤ 1 such that

2c2 = c21 + x(4− c21)
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and

4c3 = c31 + 2(4− c21)c1x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)t.

In [12], Thomas claimed that his result (i.e. |γ3| ≤ 7/12) is sharp for functions in
the class K0 by ascertaining the equality holds for a function f defined by zf ′(z) =
g(z)P (z) where g ∈ S∗ with b2(g) = 2, b3(g) = 3 and P ∈ P with c1(P ) = 0,
c2(P ) = c3(P ) = 2. But in view of Lemma 2.2, it is easy to see that there does
not exist a function P ∈ P with the property c1(P ) = 0, c2(P ) = c3(P ) = 2. Thus
we can conclude that the result obtained by Thomas is not sharp. The main aim
of the present paper is to obtain a better upper bound for |γ3| for functions in the
class K0 than that obtained by Thomas [12]. To prove our main results we also
need the following Fekete-Szegö inequality for functions in the class S∗.

Lemma 2.3 ([8, Lemma 3]). Let g ∈ S∗ be of the form g(z) = z +
∑∞

n=2 bnz
n.

Then for any λ ∈ C,

|b3 − λb22| ≤ max{1, |3− 4λ|}.
The inequality is sharp for k(z) = z/(1 − z)2 if |3 − 4λ| ≥ 1 and for (k(z2))1/2 if
|3− 4λ| < 1.

For f ∈ K0 (close-to-convex functions with argument 0), we obtained the follow-
ing improved result for |γ3| (compare [12]).

Theorem 2.1. If f ∈ K0, then |γ3| ≤ 1
18 (3 + 4

√
2) = 0.4809.

Proof. Let f ∈ K0 be of the form (1.1). Then there exists a starlike function
g(z) = z +

∑∞
n=2 bnz

n and a Carathéodory function P ∈ P of the form (2.1) such
that

(2.2) zf ′(z) = g(z)P (z).

A comparison of the coefficients on the both sides of (2.2) yields

a2 =
1

2
(b2 + c1),

a3 =
1

3
(b3 + b2c1 + c2),

a4 =
1

4
(b4 + b3c1 + b2c2 + c3).

By substituting the above expression for a2, a3 and a4 in (1.6) and then further
simplification gives

2γ3 = a4 − a2a3 +
1

3
a32

(2.3)

=
1

24

(
(6b4 − 4b2b3 + b32)+2c1

(
b3 −

1

2
b22

)
+b2(2c2 − c21) + c31 − 4c1c2 + 6c3

)
.

In view of Lemma 2.2 and writing c2 and c3 in terms of c1 we obtain

48γ3 = (6b4 − 4b2b3 + b32) + 2c1

(
b3 −

1

2
b22

)
+ b2x(4− c21)(2.4)

+
1

2
c31 + c1x(4− c21)−

3

2
c1x

2(4− c21) + 3(4− c21)(1− |x|2)t,
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where |x| ≤ 1 and |t| ≤ 1. Note that if γ3(g) denotes the third logarithmic coefficient
of g ∈ S∗, then |γ3(g)| = 1

2 |b4 − b2b3 +
1
3b

3
2| ≤ 1

3 . Since g ∈ S∗, in view of Lemma
2.3 we obtain

(2.5) |6b4 − 4b2b3 + b32| ≤ 6|b4 − b2b3 +
1

3
b32|+ 2|b2||b3 −

1

2
b22| ≤ 8.

Since the class K0 is invariant under rotation, without loss of generality we can
assume that c1 = c, where 0 ≤ c ≤ 2. Taking modulus on both sides of (2.4) and
then applying triangle inequality and further using the inequality (2.5) and Lemma
2.3, it follows that

48|γ3| ≤ 8+2c+2|x|(4−c2)+

∣∣∣∣12c3 + cx(4− c2)− 3

2
cx2(4− c2)

∣∣∣∣+3(4−c2)(1−|x|2),

where we have also used the fact |t| ≤ 1. Let x = reiθ where 0 ≤ r ≤ 1 and
0 ≤ θ ≤ 2π. For simplicity, by writing cos θ = p we obtain

(2.6) 48|γ3| ≤ ψ(c, r) + |φ(c, r, p)| =: F (c, r, p)

where ψ(c, r) = 8 + 2c+ 2r(4− c2) + 3(4− c2)(1− r2) and

φ(c, r, p) =

(
1

4
c6 + c2r2(4− c2)2 +

9

4
c2r4(4− c2)2 + c4(4− c2)rp

−3

2
c4r2(4− c2)(2p2 − 1)− 3c2(4− c2)r3p

)1/2

.

Thus we need to find the maximum value of F (c, r, p) over the rectangular cube
R := [0, 2]× [0, 1]× [−1, 1].

By elementary calculus one can verify the following:

max
0≤r≤1

ψ(0, r) = ψ

(
0,

1

3

)
=

64

3
, max

0≤r≤1
ψ(2, r) = 12,

max
0≤c≤2

ψ(c, 0) = ψ

(
1

3
, 0

)
=

61

3
, max

0≤c≤2
ψ(c, 1) = ψ(0, 1) = 16 and

max
(c,r)∈[0,2]×[0,1]

ψ(c, r) = ψ

(
3

10
,
1

3

)
=

649

30
= 21.6333.

We first find the maximum value of F (c, r, p) on the boundary of R, i.e., on the six
faces of the rectangular cube R.

On the face c = 0, we have F (0, r, p) = ψ(0, r), where (r, p) ∈ R1 := [0, 1] ×
[−1, 1]. Thus

max
(r,p)∈R1

F (0, r, p) = max
0≤r≤1

ψ(0, r) = ψ

(
0,

1

3

)
=

64

3
= 21.33.

On the face c = 2, we have F (2, r, p) = 16, where (r, p) ∈ R1.
On the face r = 0, we have F (c, 0, p) = 8 + 2c+ 3(4− c2) + 1

2c
3, where (c, p) ∈

R2 := [0, 2]× [−1, 1]. By using elementary calculus it is easy to see that

max
(c,p)∈R2

F (c, 0, p) = F

(
2

3
(3−

√
6), 0, p

)
=

16

9

(
9 +

√
6
)
= 20.3546.

On the face r = 1, we have F (c, 1, p) = ψ(c, 1)+|φ(c, 1, p)|, where (c, p) ∈ R2. We
first prove that φ(c, 1, p) �= 0 in the interior of R2. On the contrary, if φ(c, 1, p) = 0
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in the interior of R2, then

|φ(c, 1, p)|2 =

∣∣∣∣12c3 + ceiθ(4− c2)− 3

2
ce2iθ(4− c2)

∣∣∣∣
2

= 0

and hence,
(2.7)
1

2
c3+cp(4−c2)− 3

2
c(4−c2)(2p2−1) = 0 and c(4−c2) sin θ− 3

2
c(4−c2) sin 2θ = 0.

On further simplification, (2.7) reduces to

1

2
c2 + p(4− c2)− 3

2
(4− c2)(2p2 − 1) = 0 and 1− 3p = 0,

which is equivalent to p = 1/3 and c2 = 6. This contradicts the range of c ∈ (0, 2).
Thus φ(c, 1, p) �= 0 in the interior of R2.

Next, we prove that F (c, 1, p) has no maximum at any interior point of R2.
Suppose that F (c, 1, p) has a maximum at an interior point of R2. Then at such

point ∂F (c,1,p)
∂c = 0 and ∂F (c,1,p)

∂p = 0. From ∂F (c,1,p)
∂p = 0, (for points in the interior

of R2), a straightforward calculation gives

(2.8) p =
2
(
c2 − 3

)
3c2

.

Substituting the value of p as given in (2.8) in the relation ∂F (c,1,p)
∂c = 0 and further

simplification gives

(2.9) 3c3 − 2c+ (2c− 1)
√
6(c2 + 2) = 0.

It is easy to show that the function ρ(c) = 3c3 − 2c+ (2c− 1)
√
6(c2 + 2) is strictly

increasing in (0, 2). Since ρ(0) < 0 and ρ(2) > 0, the equation (2.9) has exactly
one solution in (0, 2). By solving the equation (2.9) numerically, we obtain the
approximate root in (0, 2) as 0.5772. But the corresponding value of p obtained by
(2.8) is −5.3365 which does not belong to (−1, 1). Thus F (c, 1, p) has no maximum
at any interior point of R2.

Thus we find the maximum value of F (c, 1, p) on the boundary of R2. Clearly,
F (0, 1, p) = F (2, 1, p) = 16,

F (c, 1,−1) =

⎧⎪⎨
⎪⎩
8 + 2c+ 2(4− c2) + c(10− 3c2) for 0 ≤ c ≤

√
10
3 ,

8 + 2c+ 2(4− c2)− c(10− 3c2) for
√

10
3 < c ≤ 2,

and

F (c, 1, 1) =

⎧⎨
⎩
8 + 2c+ 2(4− c2) + c(2− c2) for 0 ≤ c ≤

√
2,

8 + 2c+ 2(4− c2)− c(2− c2) for
√
2 < c ≤ 2.

By using elementary calculus we find that

max
0≤c≤2

F (c, 1,−1) = F

(
2

9
(2
√
7− 1), 1,−1

)
=

8

243

(
403 + 112

√
7
)
= 23.023 and

max
0≤c≤2

F (c, 1, 1) = F

(
2

3
, 1, 1

)
=

427

27
= 17.48.
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Hence,

max
(c,p)∈R2

F (c, 1, p) = F

(
2

9
(2
√
7− 1), 1,−1

)
=

8

243

(
403 + 112

√
7
)
= 23.023.

On the face p = −1,

F (c, r,−1) =

⎧⎨
⎩
ψ(c, r) + η1(c, r) for η1(c, r) ≥ 0,

ψ(c, r)− η1(c, r) for η1(c, r) < 0,

where η1(c, r) = c3(3r2 + 2r + 1) − 4cr(3r + 2) and (c, r) ∈ R3 := [0, 2] × [0, 1].
Differentiating partially F (c, r,−1) with respect to c and r and a routine calculation
shows that

max
(c,r)∈intR3\S1

F (c, r,−1) = F

(
2(
√
2− 1),

1

3
(1 +

√
2),−1

)
=

8

3
(3+4

√
2) = 23.0849,

where S1 = {(c, r) ∈ R3 : η1(c, r) = 0}. Now we find the maximum value of
F (c, r,−1) on the boundary of R3 and on the set S1. Note that

max
(c,r)∈S1

F (c, r,−1) ≤ max
(c,r)∈R3

ψ(c, r) =
649

30
= 21.6333.

On the other hand by using elementary calculus, as before, we find that

max
(c,r)∈∂R3

F (c, r,−1) = F

(
2

9
(2
√
7− 1), 1,−1

)
=

8

243

(
403 + 112

√
7
)
= 23.023,

where ∂R3 denotes the boundary of R3. Hence, by combining the above cases we
obtain

max
(c,r)∈R3

F (c, r,−1) = F

(
2(
√
2− 1),

1

3
(1 +

√
2),−1

)
=

8

3
(3 + 4

√
2) = 23.0849.

On the face p = 1,

F (c, r, 1) =

⎧⎨
⎩
ψ(c, r) + η2(c, r) for η2(c, r) ≥ 0,

ψ(c, r)− η2(c, r) for η2(c, r) < 0,

where η2(c, r) = c3(3r2 − 2r + 1) − 4cr(3r − 2) and (c, r) ∈ R3. Differentiating
partially F (c, r, 1) with respect to c and r and a routine calculation shows that

max
(c,r)∈intR3\S2

F (c, r, 1) = F

(
1

3
(10− 2

√
19),

1

3
, 1

)
=

16

81

(
28 + 19

√
19
)
= 21.89,

where S2 = {(c, r) ∈ R3 : η2(c, r) = 0}. Now, we find the maximum value of
F (c, r, 1) on the boundary of R3 and on the set S2. By noting that

max
(c,r)∈S2

F (c, r, 1) ≤ max
(c,r)∈R3

ψ(c, r) =
649

30
= 21.6333

and proceeding similarly as in the previous case, we find that

max
(c,r)∈R3

F (c, r, 1) = F

(
1

3
(10− 2

√
19),

1

3
, 1

)
=

16

81

(
28 + 19

√
19
)
= 21.89.

Let S′ = {(c, r, p) ∈ R : φ(c, r, p) = 0}. Then

max
(c,r,p)∈S′

F (c, r, p) ≤ max
(c,r)∈R3

ψ(c, r) = ψ

(
3

10
,
1

3

)
=

649

30
= 21.6333.
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We prove that F (c, r, p) has no maximum at any interior point of R \ S′. Suppose
that F (c, r, p) has a maximum at an interior point of R \ S′. Then at such point
∂F
∂c = 0, ∂F

∂r = 0 and ∂F
∂p = 0. Note that ∂F

∂c ,
∂F
∂r and ∂F

∂p may not exist at points in

S′. In view of ∂F
∂p = 0 (for points in the interior of R \ S′), a straightforward but

laborious calculation gives

(2.10) p =
3c2r2 + c2 − 12r2

6c2r
.

Substituting the value of p as given in (2.10) in the relations ∂F
∂c = 0 and ∂F

∂r = 0
and simplifying (again, a long and laborious calculation), we obtain

(2.11)
3
√
6c3(1− 3r2) + 12(c(3r2 − 2r − 3) + 1)

√
c2 + 2 + 4

√
6c

6
√
c2 + 2

= 0

and

(2.12) (4− c2)
(
(
√
6(c2 + 2)− 6)r + 2

)
= 0.

Since 0 < c < 2, solving the equation (2.12) for r, we obtain

(2.13) r =
2

6−
√

6(c2 + 2)
.

Substituting the value of r in (2.11) and then further simplification gives

3c3 + 6c− (6c− 2)
√
6 (c2 + 2) = 0.

Taking the last term on the right hand side and squaring on both sides yields

(2.14) 3
(
c2 + 2

) (
3c4 − 66c2 + 48c− 8

)
= 0.

Clearly c2 + 2 �= 0 in 0 < c < 2. On the other hand the polynomial q(c) =
3c4 − 66c2 +48c− 8 has exactly two roots in (0, 2), one lies in (0, 1/3) and another
lies in (1/3, 1/2). This can be seen using the well-known Sturm theorem for isolating
real roots and hence for the sake of brevity we omit the details. By solving the
equation q(c) = 0 numerically, we obtain two approximate roots 0.2577 and 0.4795
in (0, 2). But the corresponding value of p obtained from (2.13) and (2.10) are
−23.6862 and −6.80595 which do not belong to (−1, 1). This proves that F (c, r, p)
has no maximum in the interior of R \ S′

Thus combining all the above cases we find that

max
(c,r,p)∈R

F (c, r, p) = F

(
2(
√
2− 1),

1

3
(1 +

√
2),−1

)
=

8

3
(3 + 4

√
2) = 23.0849,

and hence from (2.6) we obtain

|γ3| ≤
1

18
(3 + 4

√
2) = 0.4809.

�

We obtained the following sharp upper bound for |γ3| for functions in the class
CR+.

Theorem 2.2. Let f ∈ CR+ be of the form (1.1) with 1 ≤ a2 ≤ 2. Then

(2.15) |γ3| ≤
1

243
(28 + 19

√
19) = 0.4560.

The inequality is sharp.
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Proof. If f ∈ CR+, then there exists a Carathéodory function P ∈ P of the form
(2.1) such that zf ′(z) = g(z)P (z), where g(z) := k(z) = z/(1− z)2. Following the
same method as used in Theorem 2.1 and noting that g(z) := k(z) = z + 2z2 +
3z3 + 4z4 + · · · , a simple computation in (2.4) shows that

(2.16) 48γ3 = 8 + 2c1 +
1

2
c31 + (4− c21)(2x+ c1x− 3

2
c1x

2) + 3(4− c21)(1− |x|2)t,

where |x| ≤ 1 and |t| ≤ 1. Since 1 ≤ a2 ≤ 2 and 2a2 = 2 + c1, then 0 ≤ c1 ≤ 2.
Taking modulus on both sides of (2.16) and then applying triangle inequality and
writing c = c1, it follows that

48|γ3| ≤
∣∣∣∣8 + 2c1 +

1

2
c31 + (4− c21)(2x+ c1x− 3

2
c1x

2)

∣∣∣∣+ 3(4− c2)(1− |x|2),

where we have also used the fact |t| ≤ 1. Let x = reiθ where 0 ≤ r ≤ 1 and
0 ≤ θ ≤ 2π. For simplicity, by writing cos θ = p we obtain

(2.17) 48|γ3| ≤ ψ(c, r) + |φ(c, r, p)| =: F (c, r, p)

where ψ(c, r) = 3(4− c2)(1− r2) and

φ(c, r, p) =

(
(8 + 2c+

1

2
c3)2 + r2(4− c2)2(4 + c2 +

9

4
c2r2 + 4c− 6crp− 3c2rp)

+2(4− c2)(8 + 2c+
1

2
c3)(2rp+ crp− 3

2
cr2(2p2 − 1))

)1/2

.

Thus we need to find the maximum value of F (c, r, p) over the rectangular cube
R = [0, 2]× [0, 1]× [−1, 1].

We first find the maximum value of F (c, r, p) on the boundary of R, i.e., on
the six faces of the rectangular cube R. As before, let R1 = [0, 1] × [−1, 1], R2 =
[0, 2]× [−1, 1] and R3 = [0, 2]× [0, 1]. By elementary calculus it is not very difficult
to prove that

max
(r,p)∈R1

F (0, r, p) = F (0,
1

3
, 1) =

64

3
= 21.33,

max
(r,p)∈R1

F (2, r, p) = F (2, r, p) = 16,

max
(c,p)∈R2

F (c, 0, p) = F

(
2

3
(3−

√
6), 0, p

)
=

16

9

(
9 +

√
6
)
= 20.3546.

On the face r = 1, we have F (c, 1, p) = |φ(c, 1, p)| where (c, p) ∈ R2. As in
the proof of Theorem 2.1, one can verify that φ(c, 1, p) �= 0 in the interior of R2

(otherwise, one can simply proceed to find maximum value F (c, 1, p) at an interior
point of R2 \ T , where T = {(c, p) ∈ R2 : φ1(c, 1, p) = 0}, as F (c, 1, p) = 0 in T ).
Suppose that F (c, 1, p) has a maximum at an interior point of R2. Then at such
point ∂F

∂c = 0 and ∂F
∂p = 0. From ∂F

∂p = 0 (for points in the interior of R2), it follows

that

(2.18) p =
2
(
c3 − 2c+ 4

)
3c (c2 − 2c+ 8)

.

By substituting the above value of p given in (2.18) in the relation ∂F
∂c = 0 and

further computation (a long and laborious calculation) gives

3c8 − 17c7 + 76c6 − 136c5 + 120c4 + 640c3 − 832c2 − 192c+ 128 = 0.



1140 MD FIROZ ALI AND A. VASUDEVARAO

This equation has exactly two real roots in (0, 2), one lies in (0, 1) and another lies
in (1, 2). This can be seen using the well-known Sturm theorem for isolating real
roots therefore for the sake of brevity we omit the details. Solving this equation
numerically we obtain two approximate roots 0.3261 and 1.2994 in (0, 2) and the
corresponding values of p are 0.9274 and 0.2602 respectively. Thus the extremum
points of F (c, 1, p) in the interior of R2 lie in a small neighborhood of the points
A1 = (0.3261, 1, 0.9274) and A2 = (1.2994, 1, 0.2602) (on the plane r = 1). Now
F (A1) = 15.8329 and F (A2) = 18.6303. Since the function F (c, 1, p) is uniformly
continuous on R2, the value of F (c, 1, p) would not vary too much in the neigh-
borhood of the points A1 and A2. Again, proceeding similarly as in the proof of
Theorem 2.1, we find that

max
(c,p)∈∂R2

F (c, 1, p) = F (2, 1, p) = 16

and hence

max
(c,p)∈R2

F (c, 1, p) ≈ 18.6306 <
64

3
.

On the face p = −1,

F (c, r,−1) =

⎧⎨
⎩
ψ(c, r) + η1(c, r) for η1(c, r) ≥ 0,

ψ(c, r)− η1(c, r) for η1(c, r) ≤ 0,

where η1(c, r) = c3−3cr2(4−c2)+2(c−2)(c+2)2r+4c+16 and (c, r) ∈ R3. Again,
proceeding similarly as in the proof of Theorem 2.1, we can show that F (c, r,−1)
has no maximum in the interior of R3 \ S1, where S1 = {(c, r) ∈ R3 : η1(c, r) =
0}. Computing the maximum value on the boundary of R3 and on the set S1 we
conclude that

max
(c,r)∈R3

F (c, r,−1) = F (0, 0,−1) = 20.

On the face p = 1, we have F (c, r, 1) = ψ(c, r) + η2(c, r), where

η2(c, r) = (c+ 2)(8− 2c+ c2 + 8r − 2c2r − 6cr2 + 3c2r2)

≥ (c+ 2)
(
3 + (1− c)2 + r(8− 2c2) + r2(3c2 − 6c+ 4)

)
≥ 0

for (c, r) ∈ R3. Differentiating partially F (c, r, 1) with respect to c and r and a
routine calculation shows that

max
(c,r)∈intR3

F (c, r, 1) = F

(
1

3
(10− 2

√
19),

1

3
, 1

)
=

16

81

(
28 + 19

√
19
)
= 21.8902,

and on the boundary of R3 we have

max
(c,r)∈∂R3

F (c, r, 1) = F (0,
1

3
, 1) =

64

3
= 21.33.

Thus,

max
(c,r)∈R3

F (c, r, 1) = F

(
1

3
(10− 2

√
19),

1

3
, 1

)
=

16

81

(
28 + 19

√
19
)
= 21.8902.

Let S′ = {(c, r, p) ∈ R : φ(c, r, p) = 0}. Then
max

(c,r,p)∈S′
F (c, r, p) ≤ max

(c,r)∈R3

ψ(c, r) = 12.
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We now prove that F (c, r, p) has no maximum at an interior point of R\S′. Suppose
that F (c, r, p) has a maximum at an interior point of R \ S′. Then at such point
∂F
∂c = 0, ∂F

∂r = 0 and ∂F
∂p = 0. Note that ∂F

∂c ,
∂F
∂r and ∂F

∂p may not exist at points in

S′. In view of ∂F
∂p = 0 (for points in the interior of R \ S′), a straightforward but

laborious calculation gives

(2.19) p =
3c3r2 + c3 − 12cr2 + 4c+ 16

6cr(c2 − 2c+ 8)
.

Substituting the value of p given in (2.19) in the relation ∂F
∂r = 0 and then further

simplifying (again, a long and laborious calculation), we obtain

(2.20) r(4− c2)

(
c

√
6(c3 − 4c2 + 14c+ 4)

c(c2 − 2c+ 8)
− 6

)
= 0.

Since 0 < c < 2 and 0 < r < 1, we can divide by r(4− c2) on both sides of (2.20).
Further, a simple computation shows that

6(4− c2)(c2 − 4c+ 12)

c2 − 2c+ 8
= 0.

But this equation has no real roots in (0, 2). Therefore, F (c, r, p) has no maximum
at an interior point of R \ S′.

Thus combining all the cases we find that

max
(c,r,p)∈R

F (c, r, p) = F

(
1

3
(10− 2

√
19),

1

3
, 1

)
=

16

81

(
28 + 19

√
19
)
= 21.8902,

and hence, from (2.17) we obtain

|γ3| ≤
1

243
(28 + 19

√
19) = 0.4560.

We now show that the inequality (2.15) is sharp. It is pertinent to note that

equality holds in (2.15) if we choose c1 = c = 1
3 (10 − 2

√
19), x = 1

3 and t = 1 in

(2.16). For such values of c1, x and t, Lemma 2.2 elicit c2 = 2
27 (97 − 20

√
19) and

c3 = 1
243 (2050−362

√
19). A function P ∈ P having the first three coefficients c1, c2

and c3 as above is given by

P (z) = (1− 2λ)
1 + z

1− z
+ λ

1 + uz

1− uz
+ λ

1 + uz

1− uz

(2.21)

= 1 +
1

3
(10− 2

√
19)z +

2

27
(97− 20

√
19)z2 +

1

243
(2050− 362

√
19)z3 + · · · ,

where λ = 1
18 (−13 + 4

√
19) and u = α + i

√
1− α2 with α = − 1

9 (1 +
√
19). Hence

the inequality (2.15) is sharp for a function f defined by (1 − z)2f ′(z) = P (z),
where P (z) is given by (2.21). This completes the proof. �

Remark 2.1. In [12], Thomas proved that |γ3| ≤ 7
12 = 0.5833 for functions in

the class K0 with an additional condition that the second coefficient b2 of the
corresponding starlike function g is real. However, in Theorem 2.1 we obtained a
much improved bound |γ3| ≤ 1

18 (3+ 4
√
2) = 0.4809 for functions in the whole class

K0 without assuming any additional condition on functions in the class K0. While
for functions in the class CR+ (with 1 ≤ a2 ≤ 2) we obtained the sharp bound
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|γ3| ≤ 1
243 (28 + 19

√
19) = 0.4560. We conjecture that for the whole class K0 the

sharp upper bound for |γ3| is |γ3| ≤ 1
243 (28 + 19

√
19) = 0.4560.
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